

M.I.T.便り

今,私は㈱小松製作所より派遣されて米国のケ ンブリッジにあるマサチューセッツエ科大学(M IT)に学んでいます。ここは、緯度的にはかなり 北に位置するためやって来る前から寒さは覚悟し ていたものの、気温の変化が激しく、下は-20~ -30℃から、上は40℃まで上がるので驚いて います。特にここは海岸に近く湿気の多いことが 夏の条件を一層悪くしています。それでもこんな に寒いことや暑いことも、もう2度と人生で経験 することはあまりないと思うと、不思議なもので記 録に挑戦するような気持になって、この暑さの中 で頑張っている毎日です。

ケンブリッジのすぐ隣のボストンの町は、マラソ ンなどでよく知られていますが、この地区は何と 言ってもハーバード大、MITをはじめ数多くの 大学が密集した学園都市です。ハーバード大、M ITに沿って流れるチャールスリバーは、その川面 に対岸のボストンの町にそそり立つ高層建築を映 し、この地区一番の名所となっています。ガスタ ービン関係では、MITのすぐそばにコンプレッ サの設計で有名な Northern Research (N REC)があり、最近ではサンシャイン計画にも 取り組んでいると聞いています。

私は昨年の9月にこのMITの機械工学科に入るとともに,研究関係では原動機の研究所である Sloan Automotive Laborataryに所属 しています。今は直接にはガスタービンエンジン の研究に関係しておりませんので,すこしMIT の授業のことや,Sloan Automotive Lab. での研究内容などの紹介,それに、今年の3月末フ

(昭和52年10月3日原稿受付)

㈱小松製作所 平 木 彦三郎

ィラデルフィアで開かれたガスタービン会議に出 席しましたので,これの感想を述べてみたいと思 います。

1. MITでの1年を振り返って

MITの年間の授業料は夏学期も含むとおよそ 6000ドル(160万円)で、日本の大学から考 えてみるとかなり高い費用です。しかも、受業料は 私立の大学の間でも名の知れたところほど高く、 いい教育を受けるにはそれなりの金を払うのが当 然という考えが根底にあるように思います。しか し、これらの金を完全に自前で払っている学生は 少なく(海外からの留学生は除いて)、たいてい の大学院生は research assistant やteaching assistant (授業時間外の学生から の質問の受けつけや宿題の添削)の資格をもらっ て,授業料免除+月300ドル程度の生活費をもら っているのが一般的と言えます。最近はカーター 大統領の失業率を押さえる政策などにより、外国 人がこうした fellowship をとるのは難しい 情勢になってきています。MITに来ている日本 人のほとんどは、企業が文部省から派遣された留 学生で占められるようですが、特徴として、日本か らのはっきりした資金送金元をもっていて一般的 に裕福で、かつ1、2年先には日本の元のところへ 帰る意志をもっていることがあげられます。これ に比べて、他国からの留学生ははっきりしたスポン サー先を持たず、なんとかMITで fellowship を見つけようとしている人が多く、卒業後 もできれば米国で職を見つけて残りたいと考えて いるようです。しかし、これも先ほど言いました ように、米国内で職を見つけるのは非常に難しく、 私たちの研究所にも卒業はしたけれど職も見つか

らず本国へも帰らず, 今だにブラブラしていると いうケースもかなりあります。

授業の方は,春秋2 つの 学期の他.夏に短かい Session があって、これらを全部とるとほとんど 休みなしに授業を受けることになります。アメリ カに留学された人がまず言われることは、宿題の量 の多さだと思います。MITもこの例にもれず宿 題でシゴかれるところです。授業の構成は,授業1 時間に対して宿題3時間というのが標準になって いますが、多い科目になると5時間、6時間以上 もかかり、3ケ月もするうちに宿題の答案の厚さが 電話帳のようになって、これを机の上にならべて は"やったなあ!"と自己満足したりしたもので す。授業は1科目について週3時間行なわれます が、内容は基礎的なことにかぎり、発展はTextbookの reading や宿題でということになりま す。授業中に生徒からの質問が多いことも特徴で, わからないことはその場ですぐ質問する習慣は見 習いたいものです。しかし、こうした先生と生徒の 会話は非常に聞きとりにくく,私など今だに苦労し ている状態です。

ガスタービンの科目は、昨年の秋学期(私にとっ てはじめての学期)にとりました。先生はNRE Cで Technical Director をやっておられ た D. Wilson 教授<sup>\*1)</sup>でしたが、私など多少ガ スタービンエンジンの経験をもっておりましたの で、先生の経験をまじえた話はおもしろく聞くこと ができました。ただ,全くガスタービンについて経 験のなかった学生からは,授業が難しすぎるという 批判もあったようで、何時ぞや、先生がフォードの セラミックの regeneratorを教室にもってこ られて最前列に座っていた学生に、"これ何だと思 う?"と質問したところ、学生はいい考えが浮か ばなかったのか, "ハチの巣のように思う"と答え たので大笑いしたことがありました。また, Wilson 教授はいつも将来のガスタービン車につい ては楽観的で,形式は1軸式で、低コストと高性能 を達成しなければいけないと主張されていました。 この先生の宿題もかなりきびしく,毎日毎日 (〇 ○の翼冷却タービンを設計せよ"とか、"○○の熱 交換器を設計せよ"など大きなテーマを次から次 へ与えられて、毎日図書館へ通って関係した本を 読みあさるのに必死だったことを憶えています。

提出したことがありましたが、その中の1ケ所に あった計算ミスを、先生は発見されて訂正していた だき頭の下がる思いがしました。必ず答案チェッ クの最後に先生の感想を書いてありましたが、こ れも生徒には励ましになったようです。

生徒から先生のチェックが厳しくやられる点も 日本人には驚きです。各学期最後に調査資料が回 ってきて、取った科目の先生の評価をたずねます。 まず最初に、この調査がこの先生の今後の昇進やク ラス編成のための資料となるから、責任もって答え てほしいと前書きしたあと、細かく教え方や先生 の能力について質問されてきます。そしてこの調 査結果は、MITの新聞に載って発表されますから 先生の方も気が気でないところでしょう。

こうした春秋(短かい夏も含んで)の正規の学 期の他に、1月に約1ケ月間特別のプロジェクト が組まれます。例えば、オンキャンパスのハウジン グの暖房方法とか,最も効率的なMITの駐車シ ステムなど、学内に存在する身近な問題を、MITの スペシャリストを組み合わせて解決しようとする もので、なかなかユニークな試みと言えます。こ れが始まる前ごろになると、それぞれのプロジェク トから、例えば熱伝達の専門家を求むとか、計算 機プログラミング1年以上の経験者だとか、場合 によっては成績いくら以上の超優秀学生を求むな ど募集があります。(もちろんプロジェクトが金 を持っていればペイもされます。) こうした企画に よって、MIT内部の問題を自分自身で解決して行 くやり方はなかなか効率的ですし、またプロジェ クトに参加する者も、同時に他のスペシャリストと 知り合うことができ有効な企画です。このような 一定期間、何かのプロジェクトでスペシャリスト を集め、一定の成果をあげて解散させるやり方は いかにもアメリカ的なシステムの組まれ方と言え ます。

こうやって,私もMITでの生活がほぼ1年にな ろうとするところですが,MITの大学院の授業 内容そのものは、日本の大学に比べて決して高いと は言えず,大半の知識は日本では学部ですませて きたものであり、この点では日本人は決して苦労し ないと思います。しかし、こうした基礎の知識を いかに現実の問題に適用していくかということで、 宿題をとおして徹底的に鍛えられ、単に知っている 知識から使える知識へもっていくことにこちらの 教育の大きな意味があります。

ともかく,来た当初は宿題の量もさることながら, 語学の問題や習慣の違いにとまどいながら精一杯 やっているという状態でした。1ヶ月もして,10 月下旬ともなると、ケンブリッジの町はすっかり 冬景色にかわり,夏姿のままアメリカに来て何の冬 の仕度もしていなかったのに気づき、あわてて町 ヘコートを買いに行ったりしたことが今から懐し く思い返されます。

2. Sloan Automotive Laboratory 昨年の9月MITに留学するとともに、卒業実験 の場として、このSloan Automotive Laboratoryを選び、今もここで研究をやっていま す。MITの "Sloan"の名は、日本ではポール ・サミュエルソンなどが関係している経済・経営 学の研究所としての "Sloan School"がよ く知られていますが、私のいる所も同じ名で、原動機 の研究所です。事実外部からの訪問者もときどき 間違えて、「経営学の○○博士の部屋はどこだろう か?」、と私たちのオフィスにくることがあるほど です。

この原動機の Sloan の建物の中には, automotive division とgas turbine division の2つに分れています。後者はター ボマシナリー専門で, ガスタービン車の車輌性能 とか排ガス特性の研究については, やはりautomotive divisionの方で行なわれています。 Sloan Automotive Lab. の director は Prof. J.B. Heywood <sup>\*2)</sup>で, そのもとに 3~4名の教授と25~30名の大学院生で構成 されています。エンジン関係の研究は, やはり各国 とも力を入れているせいか, 外国からの留学生が多 く,研究所内では半数以上が世界各国からの留学 生で占められています。

Sloan のもっとも得意とする分野は, 燃焼を中 心とした技術で, 2, 3年前までは特に排気ガス 生成のシミュレーション・スタデイ<sup>\*3)</sup>がもっと も活発にやられました。現在はエネルギー問題の 重要性から、多種燃料使用のための燃焼システムと それの排気ガスの研究に重点が移ってきています。 レシプロエンジン関係の研究項目としては、ガソ リン・ディーゼルエンジンや各種タイプの Stratified Charge エンジン、<sup>\*4,5)</sup>それにメタノール

エンジンも手掛けています。この他に基礎研究として, 火炎速度の観測やシリンダー内の流れの可視化な どもやっています。

ガスタービン関係では、低NO<sub>x</sub> ガスタービン 用燃焼器の研究がNASAからの委託で続けられ ています。この研究は、スワールや燃料atomizing 圧力などを変えながら mixing をコント ロールすることにより、NO<sub>x</sub> の特性がどう変わ るかをチェックすることが主な研究内容です。こ の実験と並行して、NO<sub>x</sub> 発生メカニズムの計算機 プログラムも開発されていますが、このプログラ ムの特徴は、stochastic (統計的)手法<sup>\*6)</sup>を 用いることにより、今まで燃焼器内のランダムな流 れを取り扱うことができなかったのを可能にした 点が新しいポイントです。

連続燃焼の研究では、ガスタービン燃焼器の他 に低NO<sub>x</sub>工業炉用燃焼器の開発もやっています。 この研究の主な目的な低質の燃料(例えば gaseous fuel などで燃料中にN分子を含む)を 燃やした時,いかに NOxの発生を防ぐかです。 この場合燃料中の窒素は、比較的低い温度で空気中 の酸素と結びついてしまうために、従来の NOx 低 減技術であった水添加やEGRによる燃焼温度の 低下による効果が得られないため、いわゆる二段 燃焼の方法に頼らざるを得ません。また, 最近この 工業炉用燃焼器の電子コントロール装置の開発に も着手したところです。これの開発に踏み切った 過程には、ちょっとしたハプニングがあって、この 工業炉用燃焼器の研究をやっているのは、私とオフ ィスが同じ仲間で、3ケ月程前やっと作りあげた セラミックの燃焼器に火を入れて実験を始めまし た。ところが運悪く,別の実験をやっていたもの がこの実験装置に使っていた空気源のもとを誤っ て閉じてしまったのです。瞬間的に温度があがっ てしまって、このセラミックの燃焼器をだめにして しまいました。それ以来, こうしたミス操作に対し ても自動的に警報を出したり、停止する装置が必

要ということになったわけです。

車輌用ガスタービンでは, 6,7年ほど前にGeneral MotorsからGT309の排気ガス特 性についての研究があった他,最近では政府から の委託で,"1975-1990年の期間中,新しい エンジン開発に対する政府の役割について"を調査 することになっていて,この中で一部ガスタービ ンも扱うはずです。

MITで扱っている研究内容は、企業内の研究に 比べて、基礎的な問題で人手と時間、それに広範な 頭脳を必要とするところに限られています。新し い研究分野へ手を伸ばすのに極めて慎重で、決して 技術的な興味だけではやりださず、どういう研究 がMITでやるのに適していて、学会の技術レベル より優位に立って金をとれるかをよく見極めてい るように思います。 先ほど 述べましたように、EP A, ERDAやNSFなど, 政府関係からきている 研究はまず間違いなく多種燃料に関係したものと なっていますが、これは、アメリカ政府の意向に沿 ったエネルギー自立のための研究と言えます。ま た、軍からの委託では、(直接MITが軍とコントラ クトすることはなく,必ず別の企業が委託を受けて, MITがそれのサブ・コントラクトを受けるとい う形をとっていますが),戦闘時を想定してこれこ れ仕様のエンジンとか、こういう金属を使わない 条件, (この金属はソ連にたくさん埋蔵されていて 相手を有利にさせるから),などあるそうで、とも かく,日本と違って,今後とも世界一の強国であろう とするためには、ここまで考えてやらなければいけ ないのかと感心させられます。

Sloan でのプロジェクトの組み方,進め方も、 ダイナミックにかつ効率的に運営されています。 他学部との共同プロジェクトでは、排気ガス組成 について Chemical eng. とシリンダ,燃焼 器内の流れでは、fluid mech. lab.と、また多 種燃料問題では energy lab. と、それぞれやっ ています。学外では、 Columbia 大学の法律家 および Harvard 大の経済学者と排気ガス規制 の問題について、joint ventureを持っていま す。また、Sloan内での組織についても、25~ 3 0名の大学院学生がそれぞれ別々のテーマに取 り組みながら、その中で 5、6人ずつが1人の supervisor のもとに集約され、またそれが Sloan として、1つの組織のもとに方向だって動か されています。ですから、1人の学生の論文でもっ て、序論から最後の結論まで述べてしまうというこ とはなく、ある学生は、1つのエンジンの性能テス トを完全にやったとか、ある学生はそれの計測関 係をやって、そのシステムを論文にしたなど、1つ1 つの論文の範囲は狭いけれど内容がしっかりして おり、結局組織全体として、Maximumの仕事を しているように思われます。

# 3. ガスタービン会議(フィラデルフィ

ア)に出席して

今年の3月末にフィラデルフィアで開かれたA SME主催国際ガスタービン会議に出席しました。 この時の会議の特徴は何と言ってもセラミックで、 初日から最終日まで,セラミックに関連したセッションが続きました。またセラミックに関連したセ ッションはどこも大入り満員の盛況で,いかに今ガ スタービン関係者が,これにかける意気込みがすご いか見せつけました。しかし、高温用セラミック としては、ほとんどが耐久テストの途中結果報告で、 今後の性能テストなどを考えると、セラミックエン ジンの全体性能値の発表までには、まだかなりの日 数を要するものと思われました。

車輌用関係では、 "セラミックの車輌用ガスター ビンに与えるインパクト", についてパネルディス カッションが組まれました。どの型式のガスター ビンがもっともセラミック材を使うのに適してい るのか問題提起があり、フォードが1軸式を、ク ライスラーが2軸式を,そして Kronogard <sup>\*7)</sup> が3軸差動式ガスタービンをそれぞれ主張しまし た。1軸式の場合、途中の無段変速機の斜板の制 御によって、タービン入口温度をあげることなくエ ンジンを加速することができるので、 NO<sub>x</sub>の発生 を押えられるとし、また、2軸式では、タービンの形 状が最もセラミックによって作りやすいことをあ げました。3軸差動式は1つあたりのタービンの ローディングを最も小さくできるので 応力を小さ く設計できることを根拠にしました。NO<sub>x</sub> につ いては、セラミック材の目標温度である1370 ℃付近では, すでにガスタービンは他の原動機に対 して決定的な利点を持っているとは考えられず、 最も厳しい排気ガス規制はクリアできないのでは ないかという認識が一般的な雰囲気でした。この

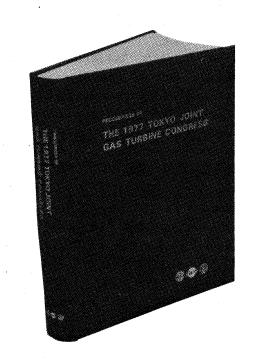
ような中で、触媒を使って  $NO_x$ を大幅に下げることが注目され、これに関する論文 $^{*8)}$ も2,3見受けられました。

このようなセラミック一色の会議の中で,これま でのセラミック開発一辺倒の姿勢を批判する意見 もいくつか出ました。1つは、Balieのラジアル タービンに関する発表<sup>\*9)</sup>で, 今までの材料を使 っても設計によってまだまだタービン入口温度を 上げていくことができるとし、高温タービンへの 道は、セラミック以外にもまだ可能性が残されてい ることを示しました。また,現在車輌用ガスタービ ンのトップランナーと目されている General Motors は、セラミックの目標温度である1370 ℃を達成しなくても、例えば1200℃でもすでに ディーゼルより fuel economy がよくなるの だから、もっと現在のコンポーネントの性能アップ にも力を入れて, 早くガスタービンを市場に出すべ きだと出張しました。こうした意見が出たことは、 車輌用ガスタービンの市場導入には、セラミック材 の開発が必要不可欠かどうかという点について必 ずしも意見が統一されておらず、この時点で、 セラ ミック開発の今後の見通しと、メタルタービンの性 能限界値について見直すことが必要のように感じ られました。

展示品の中では、ERDAとクライスラーの共同 開発のガスタービン搭載の乗用車が展示されたが、 タービン入口温度が1100℃と高くなってきて いるにもかかわらず、まだ、SFCが0451b/ pshrと、General Motors のGT404と 同じ程度であり、こうした小馬力クラスの性能向 上については、難しさをあらためて痛感させられま した。

また、このフィラデルフィアのガスタービン会議 に関連して特記しておくべきこととして、この会 議の約2ケ月前にフロリダで開かれたセラミック の会議で、カミンズの Kamo 氏がセラミックのデ ィーゼルエンジンでもって将来0.28 lb/pshr のSFCを達成することができると発表<sup>\*10)</sup>し ましたが、このことが、今回のガスタービン仲間に 少なからず衝撃を与えていたようでした。会議の 最終日近くに開かれた昼食会で、私と同じテーブル についた幾人かもセラミック材の開発にたずさわ っている人でしたが、この時も Kamo 氏の話が 出て、セラミックの開発は必ずしもガスタービンに だけ有利になる条件ではなく、今後この材料の応 用をめぐって、ここでもディーゼルとの競争である ことが強く印象づけられました。

#### 4. おわりに


ボストンはもう2ヶ月もすれば,いっきに秋を 通りこして冬がやってきます。留学生活もこれか ら2年目,こちらの習慣にも慣れ,いよいよ研究に も本腰を入れてやらなければと決意を新たにして いるところです。遠いMITより日本の皆様の御 活躍を祈っております。

#### 参考文献

- 1. Wilson, D., "Patterning Stage Characteristics for Wide Range Axial Compressors" ASME Paper 60-WA-113など.
- 2. Heywood, J., ほか "Alternatiue Automotiue Engine and Energy Conservaion" SAE SP406 1976 など
- 3. Lavoie, G., ほか "Experimental and Theoretical Study of Nitric Oxide Formation in Internal Combustion Engines" Comb. Sci. and Tech. Vol 1, 1970 PP.313-326.
- 4. Alperstin, M., ほか "Texaco's Stratitied Charge Engine-Multifuel, Clean, and Practical" SAE paper 740563 1974.
- 5. Hires, S., ほか "Performance and NOx Emissions Modeling of a Jet Ignition Prechamber Stratified Charge Engine" SAE paper 760161 1976.
- 6. Flagan, R., ほか "Statistical Turbuleut Mixing Modele Applied to Nitric Oxide Formation in Combustion" Fluid Mechanics Lab. Publication Na73-10, MIT, 1973.
- Kronogard, S., "Three Shaft Automotine Turbine-Transmission Systems of the KTT Type Performance and Features" ASME paper 77-GT-94.

- 8. Anderson, D., "Emissions and Performance of Catalysts for Gas Turbine Catalytic Combustors" ASME paper 77-GT-65 など.
- 9. Baljel O., ほか "High Temperature Potential of Uncooled Radial

Turbines" ASME paper 77-GT-46. 10. Kamo, R., "Cycles and Perfomance Studies for Advanced Diesel Engines" 5th Army Materials Tech. Inst. Florida USA. 1976.



### おしらせ

本年5月、日本ガスタービン学会(GTSJ)、 日本機械学会(JSME)ならびに米国機械学会 (ASME)三者共催で開催されました"1977 Tokyo Joint Gas Turbine Congress" において発表されました論文および討論を含めた Proceedings が完成いたしました。当Proceedingsの予約申込を頂いた方々には既に配布 いたしましたが、なお若干の残部がございますの で、ご希望の方はガスタービン学会事務局にお申 込の上、下記銀行宛ご送金下さい。

記

内容:特別講演2編,論文(討論付)66編,
 会議記録を含め国際版618ページ。
 上製本。

代 金: 15,000円 (郵送料込)

申込先:〒160 東京都新宿区新宿3-17-7
紀伊国屋ビル慶応工学会内 (出日本ガスタービン学会 Tel. 03-352-8926
振込先:第一勧銀新宿支店普通預金口座 日本ガスタービン学会 066-1423331

# 東京大会において世界的関心を集めたガスター ビンおよびディーゼル機関のエネルギー問題

Robert A. Harmon <sup>1)</sup>

### Joint Gas Turbine Congress and CIMAC Congress Reflect Energy Problems

Two important congresses were held simultaneously at the same location in Tokyo, May 22-27, 1977. Close integration of these congresses provided a unique opportunity for a very concentrated yet comprehensive view of the development status, trends, and current problem areas of gas turbines and diesel engines.

An underlying driving force which now pervades these two multinational industries, as they strive for continued growth and profitability, stems from the world-wide concern for finite energy resources, their rapid depletion and the necessity to conserve oil and gas, quickly adapt to the use of alternate fuel sources, and do this without sacrificing the environment. The sense of urgency about this transition continues to rise.

The Japanese location certainly helped to amplify the importance of the work on engines and turbines because of the lack of natural energy resources in Japan.

Almost all of their primary energy must be imported. For a major industrial country all questions concerning energy resources, conversion and utilization are of fundamental importance.

### Gas Turbines and Diesel Engines React to Energy Problems

The comprehensive technical programs reflected the present trends and chronic problem areas-in diesel engines for industrial and marine applications (aircraft and highway vehicle engines are excluded from the scope of CIMAC) and in gas turbines for the complete range of applications, (industrial, utility, marine, aircraft, and vehicular). Emphasis in the diesel engine area seemed to be on various turbocharging systems, components and controls -all methods for increasing the power density and efficiency. Secondary attention was on chronic problem areas usually associated with maintaining good service life and reliability at increased power density - wear and lubrication problems, bearing problems, condition monitoring, strength and stress problems in crankshafts and cylinder heads. Some special attention was given to combustion problems from both the power density and higher heat release viewpoint, and from the emissions

昭和52年7月25日原稿受付

#### viewpoint.

The gas turbine area received comprehensive treatment across the entire spectrum of applications. The total of 97 gas turbine papers can be broadly grouped in two general areas -- the established or essentially proven industrial areas and the future or promising areas of relatively high production vehicle applications. Significant penetration to other market could have an important impact on world economy.

### <u>Gas Turbines Established in Industry - Cogeneration Leads</u> Conservation Trend

The industrial area was effectively keynoted in a Special Lecture by Ivan G. Rice, A Consultant from Houston, Texas and Chairman of the ASME Gas Turbine Division. His talk, "The Industrial Application of the Gas Turbine" (Ref. 1) briefly summarized the historical development of the gas turbine and its present established position in the following market areas:

- o Electric Utility Power Generation
- o Industrial Power Generation
- o Pipeline Prime Movers
- o Process Drivers
- o Offshore Applications

Each of these areas was reviewed in relation to the energy crisis. Thus, general trends were traced toward combined cycles, closed cycles, and topping and bottoming cycles reflecting the basic versatility of the gas turbine and its ability to adapt to the changing requirements of the market place.

Of particular importance is the resurging interest in onsite power generation by large factories or industrial complexes. Under the new term of "cogeneration" closer cooperation between utilities and industrial organizations should lead to much more efficient use of energy and resources where excess electricity generated on site by both steam and gas turbines can be put back into the power grid of the utility. Process heat or usually wasted heat can be either generated or used to optimum advantage for plant processes or to make steam for steam turbines to generate additional electricity (Ref. 2).

### Coal Utilization - A Major Avenue to Future Power Systems

Cogeneration represents a sound approach or partial solution to some of the current energy related problems facing utilities all over the world. Another avenue is rapid conversion to the use of coal and coal derived fuels. A special CIMAC Session on coal derived fuel for gas turbines contained two papers. One paper by K. H. Krieb (Ref. 3) of STEAG AG described operating experience with a pressurized (20 atmospheres) coal gasification system (five Lurgi units) integrated in a combined steam - gas turbine system in Lunen, W. Germany. Programs in the U. S. on advanced power systems for utilities using coal derived fuels were described by W. M. Crim, Jr. of the U. S. Energy Research and Development Administration (Refs. 4 and 5). The program goal is to establish a technological base in developing advanced power systems which can generate electric power at central station capacities and which can achieve coal to busbar efficiencies over 40% using coal and/or coal-derived fuels in an environmentally acceptable manner. To attain these goals use of some combination of two conversion systems is anticipated such as: open cycle gas turbine/steam turbine, closed cycle gas turbine/steam, alkali vapor turbine/steam. Turbine inlet temperatures in the range of 2500 to 3000°F are under consideration for open cycle gas turbines. Turbine cooling systems and ceramic materials are important elements of the development effort.

### Transfer of Advanced Technology

Implicit presence of the advanced aircraft gas turbine technology was present in the many papers on heat-transfer (blade cooling techniques and heat exchangers), internal flow (compressor and diffuser aerodynamics, surge limits, performance, seal leakage, and cascade investigations), and fuel, combustion and control systems. There is major effort to improve the basic efficiency of the components and engines. This is also reflected in the work on high temperature ceramic materials and components, thermal barrier coatings, and improved super alloys. Work on combustion systems is in two directions - higher temperatures with low emissions, and tolerance for an even wider variety of fuels. Such attention to technology transfer from one sector of the industry to another has been a key factor in the growth and success of the gas turbine industry.

#### Vehicle Turbines Draw Major Attention

Perhaps the most salient aspect of the gas turbine program was the attention focused on vehicular gas turbines. This was keynoted by a short banquet speech given by George J. Huebner, past President of the Society of Automotive Engineers and retired executive of Chrysler Corporation (Ref. 6). He has been recognized leader in automotive gas turbine development since 1954.

Many of the papers dealt with the problems, components and materials of vehicle gas turbines including high temperature ceramic burners, blades and heat exchangers and low emission combustion as well as complete engine designs.

Of particular interest was the panel session organized by Mr. Roy Kamo of Cummins Engine Company on "Vehicular Gas Turbines." Because of the interest and pertinence of this topic, the people and the material covered to todays energy and transportation problems, it is planned to repeat this session with essentially the same panelists and subject matter (up- dated by six-months) at the Winter Annual ASME Meeting in Atlanta, Georgia, Japanese Participation in the Power Equipment Field

As part of these congresses a number of plant tours were scheduled to diesel engine and gas turbine manufacturers as well as research and ship building organizations.

As a foreign observer, it was apparent why Japanese industry has earned an important position as an industrial nation. The intense pursuit of achievement, ingenuity, receptivity to new ideas either suggested by others or self-generated, hard work, and an intellegent approach to competitive business are key ingredients to their success.

1) Consultant, and Editor, G.T. Division News Letter Latham, NY

編集の都合により一部割愛して掲載いたしました。

#### REFERENCES

- Rice, Ivan G., "The Industrial Application of the Gas Turbine", Special Lecture, 1977 Tokyo Joint Gas Turbine Congress, JSME Paper No. S-II, May 1977.
- "Saving Energy the Cogeneration Way", <u>Business Week</u>, June 6, 1977, P. 99.
- 3. Krieb, K. H., "Operating Experience of the KDV-Plant in Lunen", CIMAC Paper No. C-27, May 1977.
- Crim, W. M., Jr., "ERDA-Fossil Energy, The Future of Utility Gas Turbines Burning Coal Derived Fuels", CIMAC Paper No. C-26, May 1977.
- Fraize, Lay and Sharp, "Advanced Power Conversion Systems -Technology Readiness Program", Mitre Corporation Report No. M77-36 (for ERDA), April 1977.
- Huebner G., 1977年国際ガスタービン会議に寄せて、日本ガスタービン学会誌、 5-8, (1977), 5



金(その1) 埶 合 焼 結 耐

### 三菱金属 中央研究所 西 野 良 夫

1. 緒 言

粉末冶金法により製造される耐熱材料は次のように分類される。1)金属および合金系耐熱材料 2)サーメット系耐熱材料 3)セラミックス系 耐熱材料 1)は,従来の溶解鋳造合金とほぼ同 等の組成を有する素材を用い,種々の方法にて粉 末を製造したのち,これらの原料を焼結して製造 される材料である。3)は,金属と炭素,ボロン, 窒素,酸素などとの化合物を主成分として焼結法 あるいは,ホットプレス法などにより製造される。 2)は,上述の1),3)の特徴を生かし,非金 属化合物を金属で結合した材料である。ここでは, 1)の焼結材料を主体に述べることにする。

航空機および船舶のエンジンあるいは発電機な どの高温部分の材料として, さらに熱間加工用の 工具材料として、Ni-Cr 合金, Co-Cr 合金な どが用いられている。これらの合金は、高クリー プ特性, 高温における安定性, 高温耐食性などを 有している。Ni 基の耐熱合金は、高温で比較的 安定な $\gamma'$ (Ni<sub>3</sub>Al(Ti))の存在によって高温で すぐれた特性を示す。Co 基耐熱合金においては, 炭化物が主要な強化因子である。したがって耐熱 合金は、高温強度の改善のため活性金属であるAl, Ti を合金元素として添加する場合が多く,従来 は真空高周波溶解法(VIM)が用いられてきた が,真空アーク再溶解法(VAR)が開発されて VIMあるいは大気溶解(AM)されたインゴッ トを電極としてVARをおこなう方法がおこなわ れている。図1 に耐熱合金の製造方法の動向を示

#### (昭和52年8月29日原稿受付)

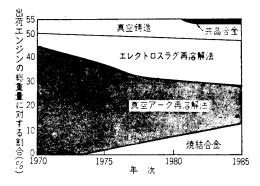



図1 ジェットエンジン用耐熱合金の製造方法の動向

したが<sup>1)</sup>エレクトスラグ再溶解法(ESR)が次 第に増加し、これがVARと一部おきかわること が予想されている。一方耐熱合金のある分野を焼 結合金が占めていくことも予想されている。耐熱 合金は、化学組成が複雑で、普通の鋳造、鍜造状態では 大形品はもちろん、小物でも顕著な偏析が避けら れなくなっている。そのため析出γ′は固溶化で きても、炭化物や一次  $\gamma'$  は合金の溶融するまで 消失させることができず,熱間加工は,いちじる しく困難となってきている。しかしリメルトバー を溶かした合金溶湯をアトマイズなどにより合金 粉末にすると、その一粒一粒は小さな鋳物であり, 偏析もその一粒の中だけに限定されることになる。 したがって微細鋳造組織の粉末をあつめて成形焼 結をおこなう焼結合金の場合は,組織が均一で, 焼結後の塑性加工がいちじるしく容易となる。そ のため従来、鍛造困難とされていた耐熱合金でも 熱間押出し, 鍛造あるいはH<sup>\*</sup>IP(Hot Isostatic Press)などを適用することができる。

図2は, 航空機のタービンディスク材料の強度に 関する将来への予測を示してある<sup>1)</sup>大気溶解から

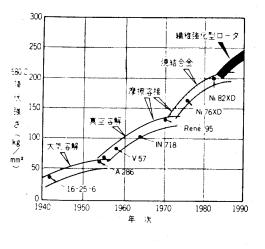



図2 タービンディスク材の進歩

真空溶解に変わり焼結合金が真空溶解材にとって かわろうとしている。図3は、焼結合金の高温引

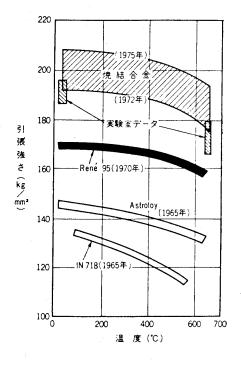



図3 タービンディスクに用いられてきた耐 熱合金と焼結合金の高温強度の比較

張強さを示したもので<sup>1)</sup> 鋭意新合金の開発がおと なわれていることが予想される。焼結耐熱合金の 開発において、1965~70年頃は、IN-100 合金のように $\gamma'$ の量を増して高強度材料の開発

がおこなわれた。  $\gamma'$ の量を増加させることによ って、 $\sigma$ 相のような好ましくない相ができるのを 防ぐため Cr 量は少なくなっている。 Cr 量の低 下によって高温における耐食性が低下するために, 高温強度は低下させずに、耐食性を向上させる合 金の開発が次におこなわれた。すなわち Cr 量を 増加する一方Wや Taのような耐火金属を添加し てMC炭化物を安定にして、 $Cr_{23}C_6$ の生成をお さえてマトリックス中に Cr を残して耐食性を向 上させた。代表的な合金は、 IN-738, IN -792などである。現在は、更に Cr 量の多い 合金が開発されつつある。上述のように新合金の 開発とともに、製造技術の開発がおこなわれてい る。したがって、組織の均一化、それによる特性 の向上,鍛造歩留の向上,後述の経済性などの焼 結耐熱合金の利点により、今後多くの分野で焼結 耐熱合金が利用されるものと思われる。

#### 2. 粉末製造

焼結耐熱合金は,合金粉末の不活性ガス中での 製造および熱間成形による高密度化,加工熱処理 (Thermo Mechanical Treatment, TMT)による機械的特性のコントロールなどが 可能になって発展をとげてきた。最も問題となる のは高密度化と原料粉末の純度の問題である。一 般に酸素量が50~100mの場合,クリープ破 断時間が酸素量がそれ以上の場合にくらべて数倍 上昇する。延性についても同様である<sup>2)</sup>原料粉末 は、通常次のような製造法で作られている。

- 1) 不活性ガスアトマイズ法
- 2) 真空アトマイズ法
- 3) 回転電極法

2.1 不活性ガスアトマイズ法 アトマイズ法は, 古くからアルミニウムや鉛などの低融点金属粉末 製造法として知られているが,鉄系など比較的高 融点の金属に適用できるようになったのは最近の ことである。アトマイズ装置の形式は種々あるが, 大別すれば,水アトマイズ法とガスアトマイズ法 にわけることができる。水アトマイズ法は溶融金 属を高速のジェット水流によって粉化する方法で, ガスアトマイズ法は水のかわりに圧縮空気,蒸気 あるいは不活性ガスを用いる方法である。アトマ イズ法の特徴は,あらゆる合金組成の粉末を製造 できることである。その他に粉末冶金用粉末とし

て要求される粉末性能、すなわち粒度や粉末形状 (見掛け密度,流動度)などについても適正な条 件を選定することによりコントロールできること, また、生産性の面でもきわめて効果的で大量生産 に適し,いっぽう少量生産にもまた好適なプロセ スである。ガスアトマイズ法では、Ar, He, N などが圧力媒体として使用され、粉末を酸化させ ないように溶解の段階から不活性ガス雰囲気で保 護され、アトマイズから生成粉末回収および取扱 いに至るまで完全不活性ガス雰囲気に保たれる。 粉末の冷却速度は、水アトマイズ法より遅いがし かし10<sup>3</sup>℃/秒にもおよび、砂型鋳物の10°~ 10<sup>-2</sup>℃/秒にくらべていちじるしく急速であり, デンドライトアームの間隔や第2相粒子の体積比 も小さく、均一化も簡単で塑性加工が容易になる。 図4にAr ガスアトマイズ装置の概略図を示した。

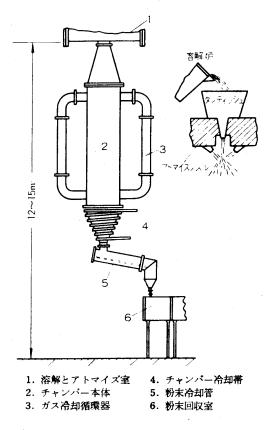



図4 Ar ガスアトマイズ装置

粉末回収まで大気中に触れることなく処理が可能 であり、また生成粉末の凝集を防ぐため、装置内 に充満する Ar ガスを強制循環冷却をすることも ある。このようにして製造された粉末は完全な球 状のきわめて酸素量の低い(100mm以下)粉末 である。 Ar ガスアトマイズで製造された粉末の 外観写真を図5に示した。 $^{(4)}$ 

2.2 真空アトマイズ法 装置の概要を図6に示した。)上部,下部チャンバーとも真空にひかれ,溶 解は下部チャンバーでおこない,溶湯にノズルを 接触させ,下部チャンバーに高圧水素を導入する。 溶湯は上部チャンバーに吹き上げられて粉末化す る。この方法では高純度の粉末が製造できるが, 粉末の形状のコントロールは困難で100 µ以下の 粉末は球状になりやすく,粗粉は薄片状になる。

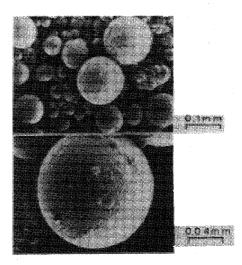
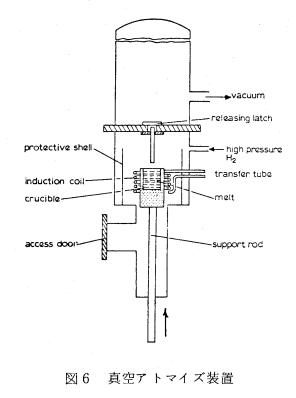
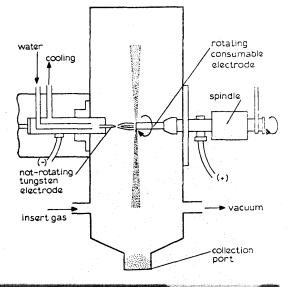
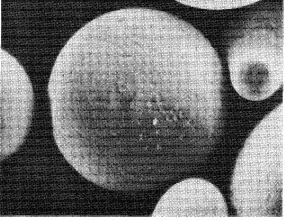






図 5 アルゴンアトマイズ法で製造 された Ni 基耐熱合金粉末



2.3 回転電極法(REP) 装置の概観と製造さ れた粉末を図7に示した。<sup>6)</sup>製造しょうとする合金 組成の電極と非消耗電極のタングステンとの間に アーク又はプラズマをとばして,電極を溶解して, その回転円心力で粉末にする方法である。粉末粒 子の大きさは,電極の直径,回転速度などを変え





<u>, o.1mm</u>,

### 図7 回転電極粉末製造装置およびそれで 製造された Ni 基耐熱合金粉末

ることによりコントロールできる。粒子径の分布 は、一般に狭い範囲にある。ガスアトマイズ粉末 に比して、スラグ等の不純物の混入がない、中空 の粉末ができにくいなどの特徴がある半面、電極 を用意しなければならず、非常に製造コストが高 くなる欠点がある。

その他の粉末の製造方法としては、コールドス トリーム法<sup>7)</sup>スチームアトマイズ法<sup>8)</sup>などが挙げ られる。表1には, IN-100粉末の酸素量, 粒度分布を, 粉末製造法別に示した。<sup>9)</sup>焼結耐熱合

表1 製造方法別 IN-100 合 金粉末の酸素量と粒度分布

| 酸素量咖  | ア ル ゴン<br>アトマイズ | 真空アト<br>マ イ ズ | 回 転<br>電極法 |
|-------|-----------------|---------------|------------|
| INGOT | 4               | 4 4           |            |
| 粉末    | 44              | 67            | 3 1        |

粒度分布

| Mesh      | %     |       |       |
|-----------|-------|-------|-------|
| -60/+100  | 4 1.0 | 3 6.0 | 4 0.5 |
| -100/+200 | 5 1.0 | 5 6.0 | 5 2.0 |
| -200/+325 |       | 8.0   | 7. 5  |

金の製造においては,現在のところアルゴンアト マイズ粉末が一番多く使用されている。粉末中に 含まれる不純物や中空粉末の除去などに種々の技 術が開発されて成功をおさめている。

### 3. 粉末成形, 焼結, 熱処理

一般の粉末冶金の成形焼結技術は,焼結耐熱合 金の成形焼結には適用できない。原料粉末の形状 が球形であったり,塑性変形抵抗が高いなどによ り通常の成形方法では不可能であるためである。 また焼結温度で酸化しやすい Al, Cr, Ti などが 存在するために焼結が非常に困難である。したが って,これらの原料粉末を成形,焼結する特殊な 技術,たとえば,高温高圧で成形焼結するような 技術が必要である。

3.1 熱間静水圧圧縮(Hot Isostatic Press, HIP) 静水圧圧縮, すなわち全方向より均 ーの圧力を加えて粉体を圧縮するという技術は古 くからあり, この技術をさらに発展させ, 常温で の静水圧圧縮に熱を加え, 圧縮と焼結を同時にお こなうという考えも古くからあったが, 装置の設 計に高度な技術を要したため, 長い間実用化され なかった。1956年米国のバテル研究所で, ア ルゴン, ヘリウムなどの不活性ガスを圧力媒体とす るHIPを実用化して, 一連の応用開発が開始さ れた。HIPの適用分野としては, (1) 拡散接合 (Diffusion Bonding) (2) 静水圧加圧焼 結(Hot Isostatic Pressure Sintering)(3) 欠陥除去(Defect Healing) などが挙げられる。静水圧加圧焼結は、切削工具 (WC+Co合金),焼結高速度鋼、ベリリウム, 焼結耐熱合金、チタン合金など適用されている。 図8にHIPの概念図を示した。通常加熱温度は



図8 熱間静水圧圧縮装置

1,000℃~1,400℃, 圧力は 1,000~ 2,000 気圧である。温度と圧力は任意にコントロールで きるようになっている。静水圧加圧焼結の通常の プロセスは、まず原料粉末を軟鋼などできた容器 (カプセル)の中に入れて容器内を真空に引いて 完全に密閉する。その後, 容器をHIPの中に挿 入して高温高圧で焼結する。カプセル内に冷間静 水圧プレス等で圧縮した圧粉体を入れる場合もあ る。不活性ガスを圧力媒体として使用するため粉 体もしくは圧粉体をガスに対し,不侵透性のもの にしてやる必要があるのでカプセルには鉄やニッ ケルなどの金属もしくはガラスを使用する。カプ セルの材質の検討、形状を最終製品に近い形状に する技術などに大きな努力がはらわれている。ガ ラスカプセルの場合は、冷却時に中の金属との熱 膨脹率との差により自己破壊をおこして,製品か らのストリッピングが容易になるメリットがある。 図9にカプセル製造の一例を示す。10) この形状付 与の問題は、後述の経済性に大きく影響する。H IP処理の温度は、通常初期溶融温度(incipient melting temp.) より下で、しかも 十分な塑性をもった温度でおこなわれなければな らない。また  $\gamma'$ の固溶温度  $\gamma'_{s}$  とも関係して, HIP温度  $T_H$  が  $\gamma'_s < T_H$  ならば結晶の粗大化 がおこり、 $\gamma'_{s} > T_{H}$ なら結晶粒は小さい。HI

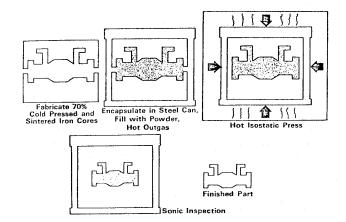



図9 SOFT CANプロセス

 Pにおいては、塑性加工のような材料の大きな変
 形がないために、原料粉末の粒界(Prior Powder Boundary: PPB)がそのまま残る
 ことがある。そのときの組織は組成のC量に影響
 される。C量の多い合金は、PPBにMC炭化物
 が存在して図10のような組織になり十分な特性

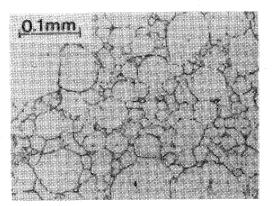



図10 PPBに存在するTiC

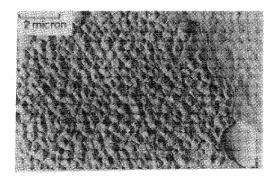



図11 熱間静水圧プレスで製造されたRene '95 合金の組織写真

GTSJ 5-19 1977

が得られない。したがってHIPの温度は合金に よって充分検討されなければならない。さらに、 HIP温度を適当に選ぶと粒界がWavyになり<sup>4)</sup>

(図11),高強度の特性を得ることができる。 焼結合金のディスク材は、低サイクル疲労の信 頼性向上のために、HIP後に鍛造をおこなって いるが、As Hipd 材で使用しょうとする研究 がおこなわれており、数年後には、実用になると 思われる。(粉末の中に含まれている微量の非金 属介在物の除去がポイントである。)

#### 文 献

 L.P. Jahnke, J. of Metals, April (1973).
 田中:金属材料, 第13巻, 第4号, 59

- F.N. Darmara, J.S. Huntington, J. Iron Steel Inst. (1959), 266.
- 3) 公開特許公報:特開昭46-1354.
- 西野,土井:粉体粉末冶金昭和50年秋季 講演概 要集,(1975),138.
- 5) U.S. PAT. 3,510,546.
- 6) U.S. PAT. 3,099,041.
- 7) S.B. Brandstedt, Modern Developments in Powder Metallurgy, vol.4, (1971), 487. Plenum Press.
- 8) R. Widmer, Powder Metallurgy for High Performance Applications, (1972), 69, Syracuse University.
- 9) J.M. Larson, Modern Developments in Powden Metallurgy, vol. 8, (1974), 537, MPIF.
- 10) M. M. Allen, R. L. Athey, Progress in Powder Metallurgy, vol. 31, (1975), 243, MPIF.

# 会告 会員名簿についてのお知らせ

当学会では先にお知らせしましたように会員名簿を発行致します。会員の方には1部1,000円 (送料共)でおわけしていますので,先日名簿調査用紙でお申し込みなさった方以外で購入希望の方 は事務局迄送付先を明記の上お申し込み下さい。

尚,送金方法は下記の通りです。

1. 現金書留

2. 郵便振替(東京179578)

3. 銀行振込(富士銀行新宿支店普通預金口座 ん503141)

ガスタービン用熱交換器技術の工業炉への応用

| ㈱小松製作所技術研究所 | 宮 | 丸 | 利 | 道 |
|-------------|---|---|---|---|
| 11          | 吉 | 光 | 利 | 男 |
| // //       | 後 | 藤 |   | 勤 |

### 1. はじめに

近年,石油燃料の枯渇と価格高騰が相まって, 各種熱源発生装置の省エネルギー化が切実な問題 となって取りあげられている。これまでに工業炉 など各種熱源発生装置などでは,燃料原単位を上 げるために,排ガス中の残存酸素濃度を制御する ことにより,適正燃焼状態の維持,管理や炉壁の 断熱強化,燃焼負荷率の適正化のための炉構造の 改造などが行なわれているが,更に炉外へ放出さ れる排熱エネルギーをレキュペレータにより回収 する効果が大きいため,レキュペレータの技術を 中心とした排熱利用システムの開発とこれらの採 用が注目されている。

当社においても,かねてより建設機械用ガスタ ービンエンジン用レキュペレータの開発を行って きたが,これらの技術を基盤として数種のコンパ クト型で低コストの工業炉用レキュペレータの開 発を行ったので,その特徴と装着効果について紹 介したい。

### 2. 当社製工業炉用レキュテレータの 紹介

前述したごとく,当社においてはガスタービン エンジン用レキュペレータを従来から開発してお り,設計技術・生産技術の両面について既にその 基盤技術を完成しているが,この技術転用の相手 に工業炉用レキュペレータを選定した。

車輌用ガスタービンエンジンのレキュペレータ の場合は,高効率(温度効率80~85%)で容積当 り収容伝熱面積が極力大きく(伝熱密度  $\beta$  =  $3,000 \sim 5,000 \text{ m}^2 / \text{m}^3$ ) コンパクトでかつ,熱 交換する両流体の通過抵抗を極力小さくすること が要求されるほか, 100,000 時間相当の稼動につ

(昭和52年10月6日原稿受付)

いても充分な信頼性を備えておく必要性がある。 工業炉用レキュペレータの場合は,その使用用途 によって若干の仕様内容が異なるが,本質的な技 術内容は殆んど変わらない。

当社が工業炉用レキュペレータの開発にあたり 特に留意した点は,

(1)コスト

既存炉にレキュペレータを装着する場合,炉改 装・取付工事費の占める割合が大きくこれの償却 に長時間を要するので,レキュペレータ本体の低 コスト化と共に軽量・コンパクト化に留意し,レ キュペレータ取付工事費が最少となるようシステ ム的な開発を行なった。

②性 能

レキュペレータの温度効率を高くすると同時に, ファン・モータなどの既存設備を変更することな く利用できるように熱交換する両流体の通過抵抗 を極力小さくした。

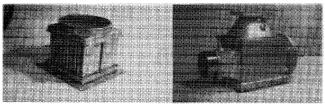
③粉塵,煤塵対策

粉塵・煤塵によって伝熱面が汚損もしくは破損 せぬようガス側伝熱面の通過に特別な設計配慮を 施した。

④耐久性

熱衝撃・伝熱部材の高温劣化による対策。

当社では、車輌用ガスタービンエンジン用レキ ュペレータの技術転用として、既に2種類の工業 炉用コンパクト形レキュペレータの開発を完了し た。1つは排ガス温度950℃(max)に適用する 高温型レキュペレータ(RH型)であり、ガスタ ービン用レキュペレータから発展してたものであ る。従来の同クラスの工業炉用レキュペレータに 比較すると、軽量コンパクトで高効率である。


他の1つは排ガス温度650℃(max)に適用す る低温型レキュペレータ(RH型)であり,形状 的にはガスタービン用レキュペレータと類似構成 である。

その他の形式の工業炉用レキュペレータも当社 にて開発しているが,ここでは前記高温型(RH 型)と低温型(RL)を紹介したい。

2-1 高温型レキュペレータ

構造と性能

本レキュペレータは, 排ガス温度 950℃(max) に適用できる。このレキュペレータは高cr-Ni 鋼板製のフィン・プレート一体ろう接構成となっ ており, 耐熱, 耐蝕性にすぐれているほか, コン パクトとなっている。図1と表1へこのレキュペ



エレメント

レキュペレータ外観

図1 RH型レキュペレータの1例

表1 RH型レキュペレータ諸元

| レキュペレータ入口ガス温度  |   |              | 950°C max |                               |
|----------------|---|--------------|-----------|-------------------------------|
| レキュペレータの予熱空気温度 |   | 常温 → 最高 500℃ |           |                               |
| レキュペレータ入口の熱量   |   |              | <b>火量</b> | $3.2 \times 10^{-4}$ Kcal / H |
| 正力現化           | ガ | ス            | 側         | 1 ~ 2 mm Aq                   |
| 圧 力 損 失        | 空 | 気            | 側         | 2 ~ 3 mm Aq                   |
| 外形寸法タテ×ヨコ×高さ   |   |              | 高さ        | $180 \times 180 \times 250$   |
| 重              |   |              | 量         | 1 4 Kg                        |

レータの外観とその諸元を示す。また図2に標準 レキュペレータの1例としてその性能を示す。こ のレキュペレータの伝熱面性能は輻射熱伝達と対 流熱伝達(伝熱形態は対流幅射型)が加え合って 発揮されており,特にレキュペレータ製作時に空 気側伝熱面のフィンピッチや高さを加減すること によって,レキュペレータの容積当りの伝熱面積 や通過抵抗,伝熱面の性能などが設定できる。

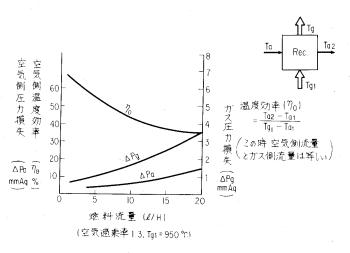
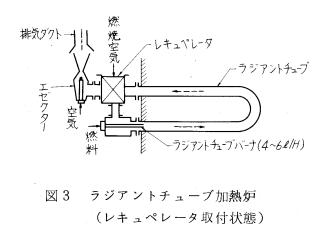




図2 標準レキュペレータ (1エレメント)の性能

(2)適用事例

レキュペレータを装着した連続ガス惨炭炉を図 3に示す。本炉はラジアントチューブ式炉で, 惨



炭部品を輻射熱で加熱する。炉内の雰囲気温度は, バーナより噴射された燃料をON – OFF 制御す ることにより一定にコントロールされている。燃 焼用空気は炉の排気煙道に設置された排気吸引エ ゼクターの引き力を加減することにより,空気過 剰率が適正値になるように調整されている。また このエゼクターは燃料に合わせてON – OFF制 御されている。図4に連続ガス参炭炉の外観と各 バーナに設置したレキュペレータの取り付け状態

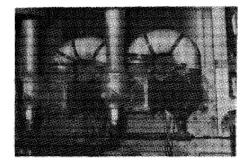



図4 RH型レキュペレータ連ガス炉装着 (炉1基にレキュペレータ27基の内の2基)

を示す。

(b) 適用事例

(イ)燃料節減率

表2に当社連続ガス後炭炉にて、燃料節減率を 測定した結果を示すが、これによると燃料節減率 は30~35%達成されている。

表2 連続炉燃料節減率(実測値の1例)

|       |                  | レキュペレータ<br>なし | レキュペレータ<br>付   |
|-------|------------------|---------------|----------------|
| 予熱空気  | レキュペレータ出口        |               | <b>45</b> 0    |
| 温度(℃) | バーナ入口            | 20 ~ 30       | 410            |
| 排ガス   | ラジアントチューブ<br>出 ロ | 880           | 880            |
|       | レキュペレータ入口        |               | 880            |
| 燃料    | 節約率(%)           | ·             | 30 <b>~</b> 35 |
| (空    | 気過剰率)            | (1.5)         | (1.3)          |

この燃料節減率は予熱空気による燃料節減率と 空気過剰率の低減効果の相乗したものであり,理 論的に求められるレキュペレータによる燃料節減 効果とほぼ一致した値が得られている。

(D) NOx について

NOxの排出量は表3に示すように,濃度(PPM) で約2倍に増加した。しかしレキュペレータを装 着することにより燃料使用量は約35%減少した ので,実際には約1.3倍の増加となる。この増加 分は当社において開発した低NOx燃焼法(エマル ジョン燃料)によりレキュペレータ装着以前の値 よりも低減できることを確認している。

| XU NUA DHE | 表 3 | NOx | 排出量 |
|------------|-----|-----|-----|
|------------|-----|-----|-----|

| L | キュペレータの装着 | なし  | 有り   | 備考        |
|---|-----------|-----|------|-----------|
| 濃 | 度 (PPM)   | 102 | 205  | ∫ 予 熱 空 気 |
| 排 | 出量增加比     | 1   | 1. 3 | 【温度 410℃  |

(1) 測定値は各バーナの平均値である。

(2) NOx 濃度は3%O2 換算値を示す。

#### 2-2 低温型レキュペレータ

(1) 構造と性能

当社の工業炉用レキュペレータの内,低温ガスの熱回収を主目的としたものであり,650℃以下の排ガス温度でも有効に熱エネルギーを回収できる,その代表性能を図5に示す。構造は一般にコ

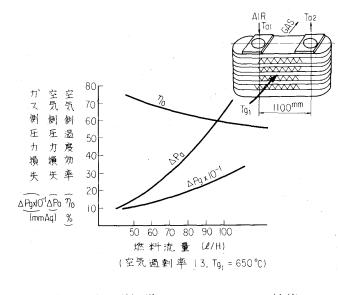



図5 RL型標準レキュペレータの性能 (RL-100, 100ℓ/H)

ンパクト型レキュペレータ(伝熱形態は対流型) と言われているものでプレートフィン型である。 ガス側とエア側に波形伝熱フィンが組み込まれて 一体ろう接されており,その性能はレキュペレー タ製作時にフィンを調節することにより変えられ る。またこのレキュペレータは従来の市販されて いる工業炉用レキュペレータよりも,高伝熱密度 ( $\beta = m^2 / m^3$ )に製作されている。図6にその 一例として燃料 200  $\ell$  / Hの空気予熱用のレキュ ペレータの外観形状を示し,表4にRL型の主要 諸元を示す。 $\beta$ の値はこれ以上にコンパクトする ことは充分可能であるが,ガスタービン用レキュ

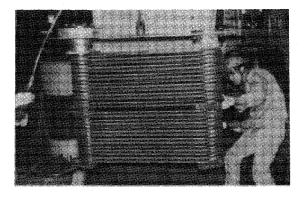


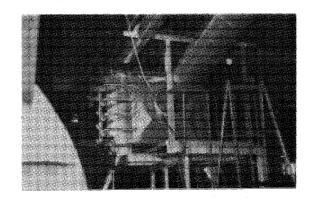

図6 RL型レキュペレータの例

表4 R-L型レキュペレータの諸元

| 機種       | 燃料<br>流量<br>(ℓ/H) | 排ガス<br>温 度<br>(℃) | 予熱空<br>気温度<br>(℃) | 伝熱部<br>重 量<br>(Kg) |
|----------|-------------------|-------------------|-------------------|--------------------|
| RL-100   | 100               | 650               | 350               | 130                |
| RL - 200 | 200               | 650               | 350               | 350                |
| RL - 300 | 300               | 650               | 350               | 450                |
| RL-400   | 400               | 650               | 350               | 600                |
| RL-600   | 600               | 650               | 350               | 700                |
| RL-800   | 800               | 650               | 350               | 900                |

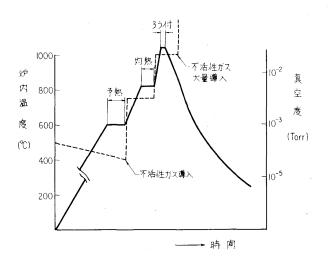
ペレータに比較すると,流体低抗の値がはるかに 小さくおさえられており,また炉へのマウントの 問題や目づまりおよびコスト等を考慮すると現状 では,妥当な仕様であると見込まれている。

(3) 適用事例


上記レキュペレータを実際の金属加熱炉(鋳鉄 焼鈍炉)へ装着して,燃料使用量の節減をはかっ たので,表5へその値を示し,図7に取り付け状 態を示す。排ガス温度が表5に示すごとく低温で も,効率よく燃料節減が達成できている。

**2-3 レキュペレータ製造技術**前述した とおり,熱交換エレメントは一体ろう接構成法を とっているので,ろう接方法に付いて概略説明す る。

工業炉ヘレキュペレータを装置して,燃料節約 を行ない投資コストをすみやかに償却し,かつ利 益を得るためには安価なレキュペレータでなけれ


| 表 5 | 連続焼鈍炉燃料節約率 |
|-----|------------|
|     | (実測値の1例)   |

|                      |       | 測定値                   | 備考       |
|----------------------|-------|-----------------------|----------|
| 炉内温                  | 度(℃)  | 550°℃                 | (1) 炉    |
| レキュペレ-<br>ガス温[       |       | <b>420</b> ° <i>C</i> | 鋳鉄焼鈍     |
| レキュペレータ出口<br>空気温度(℃) |       | 230 <i>℃</i>          | 炉        |
| 圧力損失                 | 空気    | 35                    | (2) レキュペ |
| (mmAq)               | ガス    | 0.5                   | レータ      |
| 燃料流量 (ℓ/H)           |       | 120                   | R-L 200  |
| 燃料節約3                | s (%) | 13                    |          |



### 図7 R-L型レキュペレータ炉装着 (200 ℓ/Hエレメント)

ばならないのは当然である。このため従来のガス タービン用レキュペレータ用ろう材(主としてNi 系)では高価すぎた。そこで当社では独自の高温 用ろう材<sup>(2)</sup>を開発し,このレキュペレータに用い た。この場合ろう材として考慮されなければなら ないのは以下のことである。(1)コスト,(2)耐熱性 (高温強度,高温腐食),(3)母材の浸食の少いこ と,(4)ろう材の流れ性(濡れ性)が良いことであ る。ろう付方法は従来のNi 系ろう材と同じで,炉 中全体加熱方法によった。炉の雰囲気は還元性, 高真空および不活性などがあるが,今回は高真空 ( $10^{-2} \sim 10^{-3}$  Torr)と不活性雰囲気を併用し た。図8にそのろう付熱サイクルを示す。また図 9にろう付後のフィンの見本を示す。



#### 図8 ろう付熱サイクル

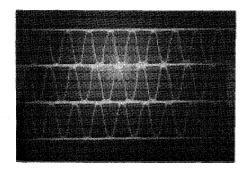



図9 伝熱フィンのろう付

3. まとめ

当社のガスタービン用レキュペレータの技術を 応用して開発した工業炉用レキュペレータは, RH型(950℃max), RL型(650℃max) とも,連続ガス滲炭炉や焼入炉へ装着され,炉の 燃料節減率向上に貢献している。また従来レキュ ペレータを既存炉へ装着する場合にレキュペレー タ本体よりも炉の改装工事費用の占める割合が高 く,投資額の回収に長期間を要したが,本レキュ ペレータは既存炉に取り付けても短時間で投資額 の回収ができるよう,レキュペレータ本体の低コ スト化はもちろん,炉の改装工事が小規模になる ように十分配慮したので,将来種々の工業炉への 設置が可能であると思われる。

### 文献,資料

(1) 宮丸, 吉光:工業加熱 VOL・14, No.3
 ラジアントチューブ用レキュペレー

ターについて

(2) 特願昭50-080518号

# 赤外線放射によるエンジン排気ガスの温度計測

松下技研佛 主幹研究員 山 香 英 三

### 1. まえがき

すべての物質がその温度に対応して光を放射す ることは良く知られていることであり、これを応 用して遠隔から非接触で温度を測定することは以 前から行われてきた。たとえば赤外線放射温度計 はその一例である。ことに人工衛星による観測が 可能となるに及んで,いわゆるリモート・センシ ング計測技術の一環として、赤外線検出器や画像 走査技術は急速に進歩しつつあり、衛星搭載装置 としては勿論のこと、地上でも放射温度計や熱画 像装置として実用化されるに至った。しかし現状 ではこれらの対象物は主として固体であり、それ の大半がしめる常温の近くの物体表面から放射さ れる10µを中心とした赤外線を計測する装置が 多い。この場合物体と装置の間に介在する大気中 のCO<sub>2</sub>, H<sub>2</sub>Oなどの分子はそれぞれに固有の赤 外線領域に放射、吸収を行うので、この領域を避 けるため8から14μのいわゆる「大気の窓領域」 を使用することによって,計測誤差を防ぐ方法が 取られている。

このような物体の温度計測にくらべて気体の温 度を測定することははるかに難しい。その理由を 列挙してみると

### (1) 同じ温度を放射物質の密度が気体では固体 に比してはるかに小さい。

固体の密度は非常に高くかつ赤外線に対する 吸収係数が一般には大きいので,固体表面から 数ミクロン内部にある部分から放射された赤外 線は,それより表面に至るまでの層に吸収され, 装置で検知される赤外線は固体表面層によって 放射されたものであり,これらの表面層は厚み 方向に対しては同じ温度と考えて良い。従って この場合には測定された赤外線量から固体表面 の温度は正確に決定できる。これに反して気体 では高温高密度の場合を除いてこの条件は成立

(昭和52年8月26日原稿受付)

しないので,装置で検出される赤外線量は装置 から見た方向の異った温度をもつ部分からの放 射量の総和となり,一個の測定量から全体の温 度の分布を計算することは出来ない。

(2) 気体では密度の変化が存在する。

たとえばエンジンの排気ガスの温度計測では  $CO_2 や H_2 O ガスの赤外放射が利用されるが,$ 装置から見た方向のこれらガスの密度は一定でないことが,(1)で説明した温度分布とともに解析を一層複雑にする。

 (3) 気体では大気中のCO<sub>2</sub>, H<sub>2</sub>Oガスの吸収 放出を考慮する必要が多い。

固体では前述したように「大気の窓領域」を 用いれば簡単に精度のよい温度計測が可能であ るが、気体ではエンジンの排気ガスのように温 度計測に利用する CO<sub>2</sub> や H<sub>2</sub>O ガスが大気にも 存在する場合が多く、この場合にはエンジンと 赤外装置との距離が長くなるに従って、その吸 収放出を考慮する必要がある。

以上述べてきたように気体の温度計測は固体と 異って温度の分布を取扱う必要があり、それだけ に高級な技術を必要とし実用化されている例は割 にすくない。しかしながらたとえば大気の垂直温 度分布はすでに衛星搭載型や地上設置型が実用化 されているし、その基本となった気体の温度分布 の解析手段は原理的にはエンジンの排気ガスの場 合にも適用される。ただエンジンについては大気 の場合と異って排気ガスの二次元的拡がりや時間 的変化の情報が重要であると考えられ、そのため には高速の赤外画像装置が必要であるが、従来の サーモグラフ装置に用いられている機械的走査の 代りに、電子ビーム走査を利用したパイロビジコ ン装置の開発も進んでいるので、近い将来には高 い精度を必要としない場合エンジンの排気ガスの 温度画像計測がリアルタイムで可能となり、排気 ガスの分布やその拡散に関する情報が得られるも のと思われる。

論説・解説

この解説では以下に気体ガスの赤外放射吸収, 気体温度分布の解析法,赤外画像装置,ジェット エンジンの赤外パターンなどについて概略を述べ ることにした。

### 2. 気体の放射スペクトル

物体の温度に対応して出る放射線は,物体が黒体と見なされるときにはその放射強度の波長依存性は良く知られたプランクの公式によって与えられ,図1に見られるように1000℃程度より下

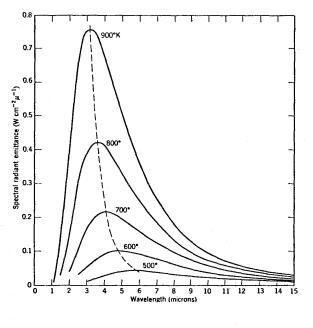



図1 黒体の放射スペクトル

の温度では1μより長波長測の赤外線領域に分布 している。この黒体放射はその温度における物体 の放射強度の最大値を示すが、実際の物体ではそ れよりも小さく、物体と黒体との放射強度の比す なわち放射率 εは1より小さい。 キルヒホッフの 法則によれば放射率は吸収率に等しいので気体の 放射の様相は、その吸収スペクトルを知ることに よってわかる。気体の吸収においては赤外領域で 分子ガスの振動スペクトルがさらに回転スペクト ルによって細かく分裂したものに由来するものが ある。従って気体ではそれに含まれる分子ガスが もつ特有な波長のスペクトル帯に対応した放射が 存在することになる。図2にブンゼン・バーナか らの放射スペクト $\mu^{(1)}$ を示したが、2.7 $\mu$ はH,O と $CO_2$  に, 4.4  $\mu$ は  $CO_2$  などに基因するもの である。燃焼ガスの放射スペクトルは図2に大体

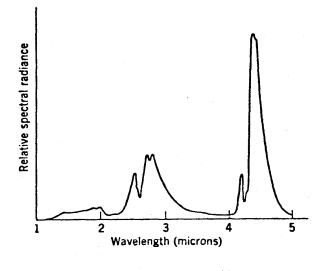


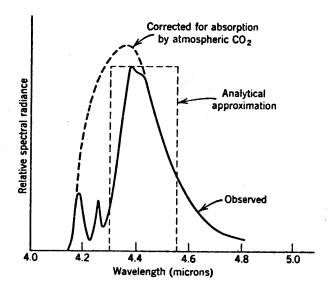

図 2 ブンゼン・バーナー炎の放射 スペクトル

似ているが、細部の強度は燃料によって変る。表 1 に燃焼ガスに含まれる分子と、その吸収帯の中

表1 エンジン排気ガスの放射帯

| 生成<br>分子         | 主たる吸収波長(μ)                                |
|------------------|-------------------------------------------|
| H <sub>2</sub> O | 1.1 4, 1.3 8, 1.8 8, 2.6 6, 2.7 4, 3.1 7, |
|                  | 6.2 7                                     |
| CO2              | 2.01, 2.69, 2.77, 4.26, 4.82, 15.0        |
| ΗF               | 1.29, 2.52, 2.64, 2.77, 3.44              |
| H CL             | 1.20, 1.76, 3.47                          |
| СО               | 1.57, 2.35, 4.66                          |
| NO               | 2.67, 5.30                                |
| ОН               | 1.43, 2.80                                |
| $NO_2$           | 4.50, 6.17, 15.4                          |
| N <sub>2</sub> O | 2.87, 4.54, 7.78, 17.0                    |

心波長<sup>(2)</sup>を示した。


なお燃焼ガスでは塵埃などによる固体の熱放射 が共存することがあり注意を要するが、これは分 子による放射と異って巾の広い放射帯を与える。

### 3. 放射線の伝達

前章で述べた気体分子の赤外放射線が装置に伝達されるまでに、同種類さらには異種類分子の吸収を受ける。たとえばエンジンの排気ガスによる放射線について考えると、排気ガス中の高温 $H_2O$ 分子から放射された2.7  $\mu$ 帯の光は、装置に伝達されるまでに途中に存在する他の高温 $H_2O$ 分子と大気中の低温 $H_2O$ 以外にも、表1からわかる

ように異種分子ことに排気ガスと大気中の CO<sub>2</sub> 分子の吸収を受けることになる。排気ガス中の分 子は高温高圧下にあるから,その放射スペクトル 帯は圧力による線巾の増大と温度による回転モー ド分布状態の変化を受けて,吸収スペクトル帯に 比して帯域の巾が拡がるとともに,全体が長波長 側へシフトする。従って装置に伝達される放射ス ペクトル帯は,同種分子による吸収の場合でも一 様に減衰するのではなくして,中心波長から短波 長側にかけてスペクトル帯の一部が減衰すること になる。

図 3 には CO<sub>2</sub> 燃焼ガスの観測された 4.4  $\mu$ 放 射帯<sup>(1)</sup>を示したが、4.25  $\mu$ に見られる二重ピー



### 図3 CO<sub>2</sub> 燃結ガスの放射スペクトル (大気吸収の影響)

クは大気中の CO<sub>2</sub> 分子の吸収によるものである。 このような同種あるいは異種分子による再吸収は 勿論伝達距離や分子の圧力分布状態によって変化 するので,観測されを放射帯の形状も大きく変化 する。

観測される気体の放射スペクトルを理論計算は 伝達方程式を用いて行われ,原理的には次式で示 される。

$$N_{\lambda} = \int_{0}^{X_{L}} k(\lambda, X) N_{\lambda}^{*}(X) \exp \left[-\int_{0}^{X} k(\lambda, X') dX'\right] dX$$

 $N_{\lambda}^{\star}$  (X) は $\lambda$ , T(X)のプランク函数 k( $\lambda$ , X) は吸収係数

dXは光路程変数で $\rho$ (S)dSに等しい。 (ただし $\rho$ は密度,Sは距離変数)

この式によって放射スペクトルを形成する多数 の振動-回転モードについて N<sub>1</sub> を計算すること は、たとえ各モードの吸収線について強度、形状 や位置の値が正確にわかっていても、膨大な量と なり実際的でない。計算を実行可納にするために 各種の近似計算が提案されているが、k(<sup>1</sup>, X) の λ と T (X) への依存性を別個に取扱うように、 有限巾の波長毎に振動 - 回転モードを分類する方 法を採用すれば、N<sub>1</sub>は光距程Xのみの函数とな り計算が実行可能となる方法があるので、ここで はその例を示す。図4は分光器内の60cm長のガ スセル内に(a)に示すような温度分布,圧力のH2O ガスを充満させたときの放射スペクトルの実測曲 線を(b) に, 理論曲線の一例を(c)に示した。ただし 実測曲線は理論曲線と比べられるように回転モー ドによる微細構造が消える程度に積分してある。

エンジンの排気ガスの放射スペクトルに近い例 として、図5<sup>(4)</sup>にメタンと酸素の炎の実験例を示 した。図の上部曲線は炎のみの放射であり、下部 は10mの大気層を通しての放射である。また滑 らかな曲線は図3と同じ方法による理論曲線であ る。中間の理論曲線は伝達理論式によらないで、 炎の放射曲線と大気の透過曲線との積であるが、 この曲線が近似が良いのは大気層の吸収が小さい 場合に限られ、更に遠距離へ伝達される場合は誤 差が大きくなることが理論考察と計算結果から示 される<sup>(4)</sup>

図2や図4の曲線からわかるように、大気中の  $H_2OやCO_2分子の影響は放射線の中心波長から短波長側にかけて著しく、回転レベルのうち高$ エネルギーのものに基因する両翼波長の放射帯ではあまり減衰を受けないことがわかる。エンジンの排気ガスの温度分布を計測するためには、その高温と拡がりのために排気ガスと装置との間にある程度の距離を必要とするが、その間の大気の影影を避けるためには放射スペクトル帯の両翼部分を用いる必要があることがわかる。

4. 放射観測による大気構造の推算 前章で気体分子からの放射線が光路中の分子に

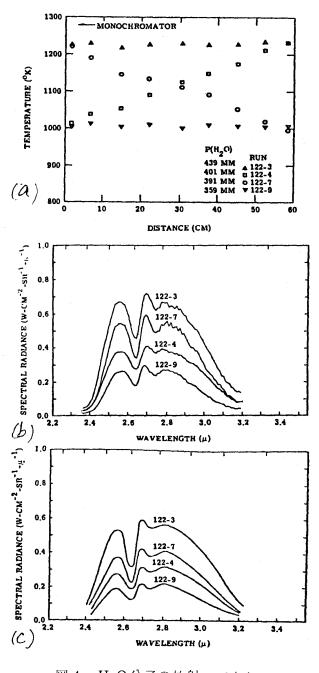



図 4 H<sub>2</sub>O分子の放射スペクトル (a) 温度分布 (b) 実験曲線 (c) 理論曲線

よる吸収を受けて減衰した后に装置で観測される 放射スペクトルは,伝達式を用いて原理的に計算 されることを述べた。このように先づ実験室内で 気体セルあるいはブンゼン・バーナーからの放射 スペクトルを,場合によっては大気層と等価の気 体吸収層の影響を加えた時のものについて測定し, 理論計算と比較した報告は数が多い。しかしこれ らの報告はロケットや航空機のエンジンからの排

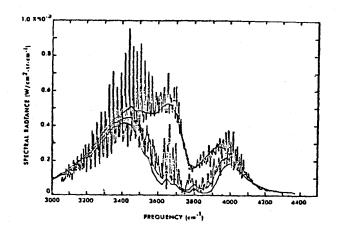



図5 メタンー酸素炎の放射スペクトル

気ガスの放射スペクトルへの応用を意図したと思 われるにも拘らず,ロケットや航空機についての 報告が外国のものも含めて筆者の眼にとまらない のは,これらが多分に軍事目的と関係があり,ま た測定自体も困難な面が多いことによるためと思 われる。

以上のような状態であるから,更にこの章で論 じようとするエンジン排気ガスの温度分布を,測 定した放射スペクトルから逆算推測する試みは恐 らくまだ試みられていないことであろうと思われ る。しかし大気中に含まれる O<sub>2</sub> や CO<sub>2</sub> の放射 スペクトルを測定して,大気の垂直方向の温度分 布を測定する技術は人工衛星搭載用<sup>(5)</sup>あるいは地 上設置型<sup>(6)</sup>として開発されているので,似たよう な手段でエンジン排気ガスの温度分布も解析でき るものと思われる。以下にまづ気温垂直分布解析 法の原理に簡単にふれ,次章で排気ガスの場合と の差について私見を述べることにする。

まず次式の透過率τを導入すると、

$$\tau (\lambda) = -\int_{k}^{X} (\lambda, X) dX$$

前章で述べた伝達式は次のように変形される。

$$N_{\lambda} = \int_{0}^{X_{L}} N_{\lambda}^{\star} (X) \frac{\partial \tau (\lambda, X)}{\partial X} dX$$

この式は観測放射量が気体各層の黒体放射に重 み函数 $\partial \tau / \partial X$ をかけたものを積分したものの和 としてあらわせることを示している。従ってこの 重み函数 $\partial \tau / \partial X$ が高さ、または圧力に対して一 義的に与えられ、時間や温度は対して変らないよ うな安定した大気ガスおよびその波長 $\lambda$ が選定出 来れば、その観測放射量 N $_{\lambda}$ を用いて上式から N $_{\lambda}^{*}$ (X) = N $_{\lambda}^{*}$ (T(X)) さらにはT(X) を計 算出来るようになる。具体的には大気中にはCO $_{2}$ ガスが一定濃度、すなわち約330 pm だけ存在す るので、この目的に合致し、その15 µ帯または 4.3 µ帯の放射スペクトルが用いられる。図6<sup>(5)</sup>

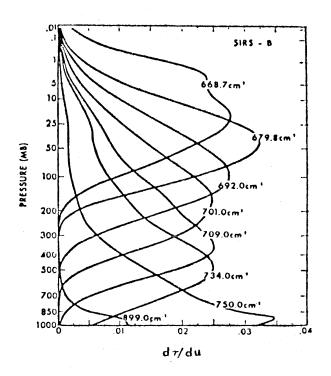



図 6 気温垂直分布測定装置 SIRS-B (Nimbus 衛星)のフィルタの $\partial \tau / \partial X$ 

はNIMBUSに搭載されたSIRS-Bに使用さ れた8個の波長につい $\partial \tau / \partial X$ を示すが,何れ も各々の波長について固有のある高さで最大値を もち,その上下で単調に減少する関数であるから, 上式の積分のうち N<sub> $\lambda$ </sub>にはその高さの N<sup>\*</sup><sub> $\lambda$ </sub>(T)が 最も大きく寄与する。つまり N<sub> $\lambda$ </sub>はその高さの N<sup>\*</sup><sub> $\lambda$ </sub>

(T)すなわち温度の情報を最も多く含んでいるわけで、入を例えば図6のようなものに選ぶことによって各高さの温度が推定できることになる。

上述の気温垂直分布の推定の筋道を数学的に言 えば、Fredholmの第一種積分方程式である伝 達式の被積分函数であるプランク函数  $N_{\lambda}^{\star}$ を求め ることで、所謂"Inversion Problem"と して種々の解法が提案されている 、詳細は文献 (5)を参照されたい。図7にSIRSによる気温分 布とラヂオ・ゾンデの値の比較を示したが、よい

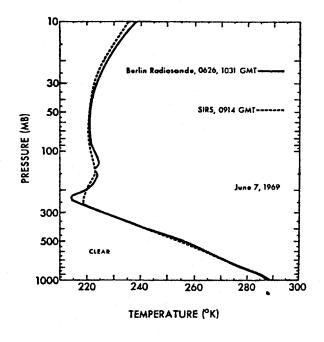



図7 SIRS-B による気温分布曲線と ラヂオ・ゾンデのデータとの比較

一致が見られる。

5. 放射観測による排気ガス構造の推定

大気の垂直分布推定の場合と異って,この場合 には濃度分布が既知であるようなガスは存在しな いので,濃度分布も温度分布と同時に推定するこ とが必要であり,それだけに困難な問題となる。 この問題解決の試みはまだ行われていないようで あるが,排気ガスの場合には大気と異った特殊な 条件があるから,これを上手に利用すれば排気ガ スの三次元構造が非接触で遠隔推測できる可能性 がある。以下にそれについての私見を述べてみた い。

(1) 温度分布,ガス圧分布の軸対称について。
単一エンジンとして他のエンジンとの間隔が
大きいときには,排気ガスの温度分布やガス圧
分布は,排気方向に軸対称と近似的に取扱える
であろう。この場合両者の分布曲線は図7の大
気の場合と異って単調函数になると思われる。
このことは第4章に述べた積分方程式の安定し
た解が得られる可能性が大きい。
(2) 放射線の測定波長の選択

エンジンの場合には高温の排気ガスと低温の 大気ガスとからなる複雑な構造の気体中の伝達 を考えねばならない。しかし後者による影響は 図 3 や図 5 で見たように放射スペクトル帯の両 翼では小さいから,計測装置に問題がない一定 距離で測定することとし,使用波長は両翼部分 を使用すれば,大気分子の吸収と放射は排気ガ スの放射量に比して小さく,その影響は一応無 視出来ると思われる。図 8 にはブンゼン・バー ナーの直径 2.5 cmのメタン酸素炎からの 2.7  $\mu$ 

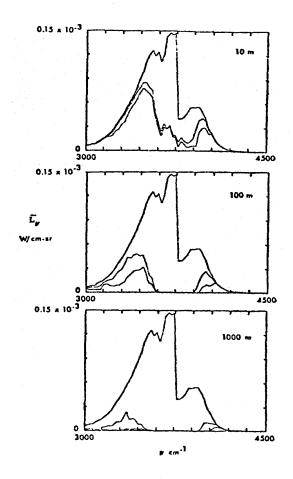



図8 メタンー酸素炎の2.7 μ帯放射スペク トルの空気(R.H.50%)による減衰

帯放射量が,湿度50%の湿度をもつ大気層に よって減衰される様子を示したもので,この場 合には測定距離を約10mまたはそれ以下にす れば影響が小さいことがわかる。

(3) 温度, 圧力分布の境界条件

航空機のジェット・エンジンの場合排気ガス

温度(EGT)はエンジン内の熱電対で測定され操縦席のメータに表されるが,排気/ズル後方の膨脹したガスの温度はEGTの約0.85倍<sup>(7)</sup>で与えられる。従って排気ガス流を側面から測定する時には,排気/ズル後方ではガス圧の半減,温度の15%減という条件が加わり,より正確な温度分布を得ることになる。

(4) 実測値による回帰法

大気の温度分布解析法でも多数のラヂオ・ゾ ンデと放射測定装置の同時観測があれば,理論 によることなく,放射量と温度分布との相関式 を求めることが可能であり,この式を用いて精 度よく放射量から大気の温度分布を推定するこ とが可能であることが示されている。<sup>(5)</sup>それと同 様の手段で排気ガス内の適当な場所での温度, 圧力と装置による放射量が同時に計測できれば, 有用な相関式が求められるであろう。 (5) 半定量的温度分布の近似法

排気ガスの場合排気ノズル軸上ではその位置 で軸へ直角な方向よりも,温度,圧力ともに大 きいと近似的に考えられる。従って排気ガスを 側面から観測する場合には,ノズル軸上近くの 高温ガス以外のガスからの放射量は無視され, 軸上のガス温度が放射量から近似的に計算され る。

### 6. 二次元赤外画像撮影装置

排気ガスの温度分布は三次元的(軸対称を仮定 すれば二次元的)な拡がりと,速い時間的変化に 関心がある点が、大気の温度分布と異る点であろ う。後者は測定地点の垂直方向の情報のみで間に 合うことが多く,時間変化も遅いので測定時定数 は長くてもよく, また必要があれば装置の視野方 向を傾斜させることによってその方向の気温分布 を推算することも可能である。従ってこの場合は 装置は赤外放射計の使用波長を変化させたものと 等価であればよいことになる。これに反し排気ガ ス用の装置は二次元赤外画像を撮影できることが 必要であり,しかも使用波長を変化させる事が望 ましい。これは赤外画像装置の現状から見ると必 ずしも容易な技術ではないが、排気ガスが高温で あるために、大気ガスの吸収を低く保てば排気ノ ズル近傍の温度分布像を高速で追跡することは近 い将来可能であろうと思われる。

二次元赤外画像装置に限って言えば現在のところ排気ガスの温度分布に使用可能な装置は二種類 しかない。

すなわち機械走査式光学系と点状光電式赤外検 出器の組合せである「サーモグラフィ装置」と, 電子ビーム走査方式の焦電ビジコン装置である。

(赤外CCDは現状では二次元装置は未完成で, 将来の実用化が期待される段階である。)前者は 機械走査であるためにフレーム数や画素数が少な く空間分解能が悪く,検出器に液体窒素を必要と するために殊に屋外使用に不便であるが,温度分 解能が良いという特長がある。後者は熱検出器に 属する焦電材料をウェハーに使用したビジコン管<sup>(8)</sup>であるために,走査は電子ビームによる標準T V方式であり,TVモニター,VTRなどのTV 機器が流用可能であり,冷却剤を必要としない点 もあって屋外用携帯型も開発されている。(写真 1)



写真1 ポータブル型焦電型赤外カメラとVTR

7. 航空機ジェットの排気ガスの測定例

前章で述べた焦電ビジコン装置を用いて離陸中 の種々の航空機のジェット・エンジンの排気ガス の赤外放射パターンをTVRに録画したことがあ るので,それについて簡単に述べる。使用した赤 外レンズは口径50mm,明るさ0.8のもので,航 空機までの距離は約50mで 排気ガスのパター ンは概ね側面から録画されたが,上述のレンズで は画角が広すぎて排気ガスのパターンが小さいという欠点があった。

写真2はエヤ・バスの翼右下のエンジンの排気 ガスの赤外放射パターンのVTR録画像の1フレ ーム分をTVモニタ上にプレイバックしたもので ある。画面の中央よりやや上で右上りの黒い線状 部分は,翼前面の縁により反射された天空のほぼ 垂直方向からの赤外放射で,これが黒色であるの は機体のその他の金属部分によって反射される放 射は滑走路やフィールドの常温物体からの反射で あるのに反し,天空からの放射は低温ガスに対応 しているからである。

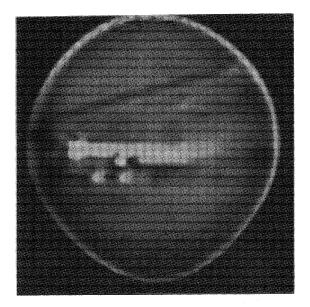
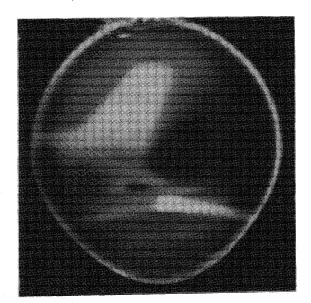


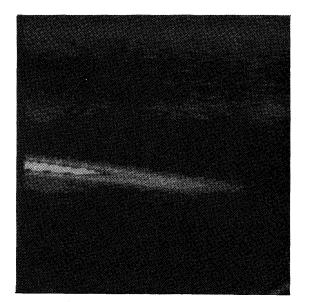

写真2 エア・バスの翼右下エンジンの 排気ガスの赤外放射パターン

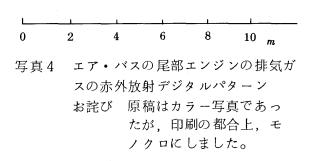
また排気ガスの下に見える2個の円形高温パタ -ンは離陸のため滑走中に加熱された車輪である。

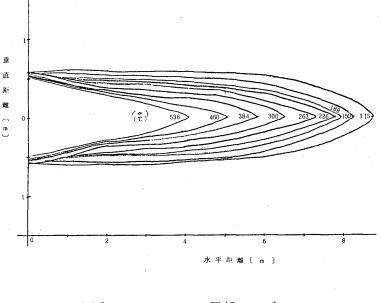
排気ガスより相当温度の低い筈の車輪の信号強 度が排気ガスのそれと同程度であるのは,勿論固 体を気体との分子密度の差に基因している。写真 3 に全じエアバスの尾部エンジンの排気ガスの赤 外放射パターンを示した。

写真2や3の白黒アナログ・パターンは直観的 にはわかりにくいので,アナログ信号を4ビット でデジタル化し,256×128のRAMメモリ に記憶させ,その上部3ビット分の信号強度を適 当な組合せのでカラー化し,カラー,モニタ上で 観察すると,温度分布パターンの時間的経過がよ





写真3 エア・バスの 尾部エンジンの排 気ガスの赤外線放射パターン


り見易くなり,また等温分布面積などの信号処理 も容易となる。<sup>(8)</sup>写真4は別便の尾部エンジンの排 気ガスのカラー化・デジタル・パターンである。


これらの赤外放射パターンから排気ガスの温度 分布パターンを推算することは, 第5章で 述べたような理由により理論推算は現在ま だ試みていないし、また静止エンジンから の排気ガスの熱電対との同時測定もまだ実 行の機会がないので、実験よりの推算も出 来ない。ここでは次下に述べるような手段 により間接的な較正を行って温度分布パタ -ンを近似した。すなわち長さ約1mの電 気炉中に内径約65mmの石英管を挿入し, 中心部に CO, ガスを毎分2ℓの量で噴出 させ、温度を変化させたときの軸方向への 赤外放射量を、焦電ビジコン装置で計量す ることにより、信号を温度に対して較正し た。図9はこのような近似によって得られ たエヤ・バスの尾部エンジンの排気ガスの 温度分布パターンである。

### 8. あとがき

最近の二次元赤外画像装置の開発は顕著 なものがあり,また測定された気体分子の放射量 からその光路方向の気体の温度分布を計算する技 術も進んできた。従って近い将来には大気垂直温 度分布が人口衛星に搭載されたり,地上設置型と







### 図9 エア・バスの尾部エンジン 排気ガスの温度パターン

して実用されているのと同様に,エンジンの排気 ガスの温度や圧力の分布も短時間に二次元的映像 としてとらえる事が可能となるよう期待したい。 おわりに筆者はエンジン関係には門外漢で,その知識がなく本解説にも誤ったことを書いている おそれがある。大方の御叱正,御批判をお願いす る次第である。

### 文 献

- E.K. Plyler, J. Research Natl. Bur. Standards, 40 (1948)113
- (2) J. Lycas その他, Intrared Military Systems. Port 1, (1971).

- (3) 例えば、F.S. Simmons, Applied Optics, 5(1966)1801.
- (4) F.S. Simmons その他, Applied Optics, 9(1970)2792.
- (5) 解説として青木忠生,山本義一,天気,(1973) 477.
- (6) 中村邦雄,山香英三その他; National teeh.Report.22(1976)577
- (7) R. D. Hudson, Jr; Intrared System
   Engineering (1969)88, Wiley
   Interscience.
- (8) 寺西昭男, 高橋憲一その他; National Teeh.Report 22(1969)569.

|        | GT         | SJN     | ックナン  | バーのお知            | らせ   |          |                                               |  |
|--------|------------|---------|-------|------------------|------|----------|-----------------------------------------------|--|
|        |            |         |       |                  |      |          |                                               |  |
|        | 立即使なった時    | ムナルナナ   | 伽圣伯   | <b>ヘナル *チャ</b> リ | 体人士》 | F3-70-   | +                                             |  |
|        | 前刷集等の在庫    |         | 。御布皇  | の方は达科,           | 八金を約 | ふえて日ノ    | <b>ФЛ                                    </b> |  |
|        | までお申し出下    | ·       |       |                  |      | (        |                                               |  |
|        | ン学会誌Na1~   | No. 1 8 | 500円  | (送料別20           | 0円)  | (No. 2 / | 尺号)                                           |  |
| ○セミナー前 |            |         |       |                  |      |          |                                               |  |
| No. 1  | 送料共 2,     | 7 00円   |       |                  |      |          |                                               |  |
| No. 2  | // 3.      | 200円    |       |                  |      |          |                                               |  |
| Na 3   |            | 20011   |       |                  |      |          |                                               |  |
| No. 4  | 4,         | 000円    |       |                  |      |          |                                               |  |
| 。定期講演会 | 前刷集        |         |       |                  |      |          |                                               |  |
| No. 1  | 欠号         |         | ·     |                  |      |          |                                               |  |
| Na. 2  | 送料共 2      | 100円    |       |                  |      |          |                                               |  |
| No. 3  | <i>"</i> 2 | ,000円   |       |                  |      |          |                                               |  |
| No. 4  | // 2       | 200円    |       |                  |      |          |                                               |  |
| No. 5  | <i>"</i> 2 | 200円    |       |                  |      |          |                                               |  |
| 0アニュアル | レポート       |         |       |                  |      |          |                                               |  |
| 1973   | ;年版 送料共    | ÷ 80    | 0円    |                  |      |          |                                               |  |
|        | 年版 "       |         |       |                  |      |          |                                               |  |
|        | 年版 ″       | 1, 0 0  |       |                  |      |          |                                               |  |
|        | 年版 ″       | •       | ) 0 円 |                  |      |          |                                               |  |
|        |            |         |       |                  |      |          |                                               |  |

# ミネソタ大学のフィルム冷却研究

### 航空宇宙技術研究所 吉 田 豊 明

昭和50年9月より2年間,機会を得てミネソ タ大学機械工学科の伝熱研究室に滞在し,タービ ン翼のフィルム冷却に関する基礎研究に従事した。 同伝熱研究室はDr. Eckertをはじめ,著名な教授 陣を容し,多岐にわたる伝熱研究が進められてき ている。このため日本の伝熱屋さんで同大学を訪 ねられた方は多数あり,筆者の滞在中も平均する と二ケ月に一度は誰かが来訪された。本稿ではミ ネソタと大学,伝熱研究室全般について簡単にふ れた後,一連のフイルム冷却の基礎研究について その経過と概要をこの機会にまとめてみたい。

ミネソタは大陸の中央より少し東寄り、北をカ ナダに接し五大湖の一つスペリオル湖の西側に位 置する緑と湖の州である。ミシシッピ川は州の中 央北部に端を発し州の東南部にある双子都子ミネ アポリスとセントポールを通り抜けて東のウィス コンシン州,南のアイオワ州に至る。日本の本州 とほゞ同じ面積のプレーリーに約380万人の人 口で北欧系の種族が多い。ミネソタ大学は州立で 約5万5千人の学生と約2万人のスタッフがミネ アポリスの主キャンパスの他4ケ所に分散してい る。緯度は双子都市で北海道の稚内とほぶ同じ、 冬は大変寒く夜が長く,77年の冬は筆者の住む アパート戸外で零下35℃を記録した。大学は実 験室も含め建屋全体が暖房されるので、実験は真 夏以外はゞ同じ室温条件で行なえる。大気圧は平 地にもかかわらず平均約740mmHg で最初は 指示計の故障かと思ったほどである。およそ10 月下旬から3月末までが冬,5月上旬から8月末 までが夏で春と秋はこの間にあわただしく、華麗 に変化する。夏も結構暑くて30℃を超す日が多 く、無数の湖、川のために湿度も米大陸の中では 高い方であるが60%前後で日本の太平洋岸ほど ではない。夏至のころの日没はサマータイムで10

(昭和52年10月31日原稿受付)

時すぎ,夏の間は長い冬のとじこめを取り戻すべ く,一日の労働,夕食の後も遅くまで戸外で遊ぶ 人が多い。

さて伝熱研究室の現陣容(77年7月)は以下 の通りである。Professor Emeritus : E.R.G. Eckert, Professor: R.J. Goldstein, E.M. Sparrow, E. Pfender, W. E. Ibele, Assoc. Prof. : C. J. Scott, S. V. Patankar, Assis. Prof.: J. W. Ramsey. 大学院生はおよそ20 名,15名前後が外国人で大変国際的である。こ の他常時1~3人のVisiting Researcher が1 ~2年の滞在期間で研究されている。Eckert は 講義はほとんどされず,直接指導をされる大学院 生もいないが毎日のように外からの来客,スタッ フ,学生と会って討論され,又御自身の研究活動 も継続されている。筆者の Advisor, Goldstein は今年6月機械工学科の Head になり多くの学生 は面会をするのにますます大変になった。Goldstein は流れの光学的測定に造詣が深く、水平面上の自 然対流,高温ガスの流れなどへの適用による研究 とフイルム冷却の研究は60年代より先生の2本 の柱であったが最近は太陽エネルギ関係のプロジ ェクトに重点が移行しつつある。 週6日早朝より 午後8時すぎまで全力投球の名物教授 Sparrow の最近は熱交換器,太陽エネルギの利用に関連し た基礎研究が多い。プラズマ伝熱で著名なPfender はアーク 放電における 伝熱現象の 理論的,実験的 研究,大規模建造物におけるエネルギ保持などの 研究を進められている。Ibele は75年7月以来 大学院の Dean を勤められているので学生との接 触は主として講義である。先生は気体の熱力学的 特性の研究に報告,著書が多い。Scott の主要な 研究は超音速流のはく離、旋回流の理論的、実験 的研究である。Patankar は75年初期にミネソ タ大に移籍された。過去にイギリスのインペリア ルカレジに在籍され差分法による流れ場,温度場

の数値解析で D. B. Spalding 教授との共同研究, 共著 がある。先生の紹介された一連の数値解析法 は燃焼反応、相変化、乱流などを含み工学上適用 範囲が広いため学生の間にブームを呼び、これに 立脚して Advanced な解析をする研究者が続出 している。 Ramsey は過去にフイルム冷却の研究 をされたが最近の数年は太陽エネルギ利用に関す る研究のいくつかのプロジェクトを進められてい る。伝熱研究室ではHeat Transfer Laboratory Technical Report が刊行されており, 1951 年より現在までで約160号になっている。これ は学会発表のペーパ類と違って詳細な記述を含ん でいる。また76年発行の Measurements in Heat Transfer (McGraw-Hill)は伝熱研究 室教授陣の共著の様相を呈し、各執筆者の得意な 分野がよく分る。

ミネソタ大学の伝熱研究室は51年 Eckert の 着任以来資料が整理されており,タービン翼の冷 却に関しても当初から報告が見られる。Eckert は NACA 時代から Sweat - Cooled Wall の研 究報告があり,50年代を通じて対流冷却の研究 と共に数多くのトランスピレーション冷却の研究 をJ.N.B.Livingood, J.P. Hartnett, P.J. Schneider らと共同で進められた。 中でも Livingood との共著 "対流, トランスピレーシ ョン,フィルム一冷却の三種の冷却効果の比較"1) はその後のタービン翼冷却の研究に有用な指針を 与えたと思われる。60年前後よりフィルム冷却 の基礎研究が始められ、以後時代の要請、加工技 術の進歩とあいまって研究が進展した。当時から 現在に至るまでにフィルム冷却の研究はPublications 約40件, Technical Reports 9件を数 え Ph. D. 取得者は 6人, M.S. は 4 人出ている。

初期のフィルム冷却研究としてはスロットから 乱流境界層への吹出しについて,スロット形状の 効果,圧力勾配のある場合についてなどが発表さ れている。(2), 3), 4), 5実験は低速風洞(断面  $13 \text{ cmH} \times 25 \text{ cmW}, 風洞 I とする)で行なわ$ れた。

ー方スロットからの吹出しで主流が超音速(マ ッハ数3)の場合について,シュリーレン写真に よる可視化,断熱壁温度の測定が行なわれ,冷却 効率の定式化,音速以下の主流の場合との違いな どが発表された。<sup>6),7)</sup> この実験は超音速風洞 (測定部断面 2.54 cmH× 6.35 cmW, 風洞II) で行なわれた。低速風洞 I ではその後多孔質セク ションからの吹出しが行なわれ,冷却効率の予測 式,スロットからの吹出しの結果との比較等がな された。<sup>8),9)</sup> この実験のテストセクションの 設計,製作に際しては Ramsey と共に石黒先生 (北大)も参加された。67年東京でのSemi-International Symposium では、平板,圧力 勾配ゼロ,二次元吹出し,非圧縮性の乱流境界層 などの条件で冷却効率の予測を解析的にまとめ, 実験値との比較をした研究が発表された。10)

超音速の流れに多孔質セクションからの吹出し をした場合の実験も引続いて行なわれ,結果の予 測式との比較もされたが,さらに主流,二次流間 の温度,密度の大きな違いによる影響を追求すべ きことが提示された。11)後にヘリウム,フレオ ンの吹出しによる実験も行なわれ,従来のパラメ タを用いた予測式でかなりよい一致が得られるこ とが確かめられた。12)この超音速風洞 II はその 後断熱壁上にヒータが附置され,熱伝達率の測定 が行なわれ,解析的な考察もなされた。13)

60年代中頃にはスロット,多孔質からの二次 元的吹出しばかりでなく三次元的な吹出しを研究 するため新たに低速風洞が設計製作された(断面 20cm×20cm,風洞Ⅲ)。これは吹出しセク ションをスパン方向にスライドできるもので、以 後種々の吹出し孔配置についての研究が始まった。 この風洞による最初の研究報告は断熱壁面に対し て垂直と主流の流れ方向に35°傾斜のある単一 円孔からの吹出しについてである。14),15) そ の後35°傾斜の単一円孔,及び一列円孔(隣接 する穴の中心間隔は穴の直径の3倍,以後本稿の 一列円孔はすべて同じ配備)からの吹出し、また 単一孔が断熱壁面に対しスパン方向に15°と35° 傾斜した場合についての実験研究がなされた。16) 単一円孔からの吹出しではタフト、ドライアイス による流れの可視化,流れの温度,速度,乱れ強 さの測定も行なわれた。17) 単一円孔からの垂直 吹出しは熱エネルギのポイントソース,ラインソ ースのモデルを適用した計算がなされ、実験値と の比較がされた。18)

71年にはGoldstein がいわばフイルム冷却研 究の総論を出された。19) これは冷却効率の予測, 平板上のフイルム冷却の実験的研究の総括などを 含み,その後のフイルム冷却研究にとって大変重 宝な資料になったと思われる。

さて風洞 III はその後断熱壁上にステンレスのフ ォイルヒータがつけられ,冷却効率ばかりでなく 熱伝達率の測定も行なわれるようになった。以前 から研究の対象とされてきた単一円孔垂直吹出し と傾斜角 3 5 °の単一円孔,一列円孔からの吹出 しについての研究が Eriksen によって集成され た。20)後にこの結果と文献 13)とから一列円孔 からの吹出しについてスパン方向の平均熱伝達率 の吹出しのない場合に対する変化が考察されてい る。21)

一方密度差の冷却効率に与える影響が多孔質セ クションと一列円孔からの吹出しについて,吹出 し流体にヘリウム,炭酸ガス又はフレオンと空気 との混合気を使って実験解析された。22) この実 験では壁面上の混合気を吸引し,異質ガスの定量 分析からアナロジにより冷却効率を算定する方法 がとられた。これは完全な断熱状態の値が得られ, 事後の分析を別にすれば,熱伝達による方法より も短時間のうちにできる特徴がある。なおこの実 験は Pedersen により別の低速風洞(断面30cmH × 61 cmW,風洞Ⅳ) で行なわれた。

吹出し孔の断面形状が円形から主流への吹出し 直前で四隅の丸い台形に末広状に広げられた形状 の一列配備についての報告が74年に出された。23) この研究は風洞Iで行なわれ,円孔との違いがド ライアイスによるジェットの可視化と冷却効率に より明確にされた。

風洞町ではその後 Jabbari が二列千鳥配列の 円孔からの吹出しについて,主流に圧力勾配のあ る場合も含めて冷却効率と熱伝達率を実験解析し た。<sup>24)</sup>一列円孔からの吹出しについてはナフタ リンの昇華法により,円孔の周囲と後流側近傍の 熱伝達率が風洞IVにより解析された。<sup>25)</sup>Ito は 一列円孔吹出しについて曲率の冷却効率に及ぼす 影響を,低速翼列風洞による翼列実験で解析する と共に,吹出しによる空力損失の評価を理論と実 験とから考察した。<sup>26)</sup>冷却効率の測定には異質 ガスの物質伝達による濃度測定法が使われている。 平板上の一列円孔吹出しはさらにKadotaniによ て,乱れ強さ,乱れのスケール,境界層厚さ,圧 力勾配の冷却効率,熱伝達率,断熱壁上の流れ場, 温度場に及ぼす影響が解析された。27)この実験 は風洞皿に乱流格子,ブリスタを附加して行なわ れた。これまで述べた研究はすべて乱流境界層中 への二次流の吹出しであったが,筆者は風洞皿で, 一列円孔について,吹出し孔直前の境界層が層流 の場合を実験解析した。ここに示す写真は製作以 来約10年数人の研究者に奉仕してきた風洞皿と 筆者である。

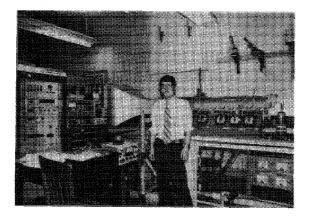



写真 フィルム冷却研究用低速風洞(Ⅲ)と筆者

フィルム冷却研究のWorkshop は広く世界の フィルム冷却研究者が集まり、ミネソタ大で過去 3回1年おきに開かれたと聞いているが、75年 5月に開かれたのが最新であり、残念ながら討論 を知る刊行物はない。話題にされた研究の多くは それぞれ別途に世の中に出されていると思われる。

Eckert は過去, 度々フィルム冷却研究の概論 を時代に即してされているが, 71年の AGARD Conference 以来見られないのは淋しい思いがす る。

さて以上の研究経過の中から主要な結果を抽出 して定性的に箇条書すれば以下のようになる。こ れらは筆者の判断によるものであり,代表的と思 われるものの断片であることを断わっておきたい。 1) 三次元吹出しは二次元吹出しよりも同じ吹出 し面積で低い冷却効率となる。

2) 吹出し流れの主流方向への傾斜角は小さいほ

論說·解説

ど良い冷却効率をもたらす。

 3) 一定の吹出し流量で吹出し孔の断面積を大き くとることは高く,かつスパン方向により一様な 冷却効率をもたらす。(末広がり形状,千鳥配列)
 4) スパン方向に傾斜した吹出し流れはそうでな い場合に比べて孔の近傍では広い領域で良好な冷 却効率をもたらす。

5) 吹出し流れの主流に対する質量速度比はある 一定の値まで,大きくなるにつれて冷却効率が良 くなる。一定値をこえると吹出し孔の近傍では冷 却効率が下り遠い下流の冷却効率は上昇する。

6) 吹出し流れが主流側の境界層にとどまるよう な範囲では,境界層排除厚さが大きいほど吹出し 孔の中心線に沿った下流の冷却効率は下るが,ス パン方向の平均値はあまり変らない。

7) 吹出し流れの主流に対する密度比は大きいほ ど質量速度比が大きい値まで冷却効率は上昇の傾 向を示す。過大な質量速度比に対しては低い速度 比の範囲では冷却効率は減小するが,高い速度比 では上昇しつづける。

8) 翼の背側に相当する凸の曲率では逆の腹側の 凹の曲率に比して,質量速度比が小さいとき冷却 効率は高く,質量速度比が大きいとき,冷却効率 は低い。

9) 主流の乱れ強さが大きくなると質量速度比が 小さいとき冷却効率は低下するが,大きい質量速 度比では逆に高い冷却効率をもたらす。

10) 主流が増速流の場合,吹出し孔の中心線に 沿った下流での冷却効率は穴の近傍では増速の度 合が強いほど良くなるが遠い下流ではあまり変化 しない。一方隣接する吹出し孔の中間部に沿った 下流では,遠い下流で冷却効率が増速の度合と共 に低下するが孔の近傍ではあまり変らない。

11) 吹出し流れの主流にあたる直前の速度分布 は一様なほど高い質量速度比まで壁面に付着して いる。このため吹出し孔近傍の冷却効率が極大値 を示す質量速度比はジェットの速度分布によって 異なる。

12) 吹出し流れが主流境界層内にとどまって境 界層厚さを大きくする質量速度比では熱伝達率は 吹出し孔のない場合のそれに比して低いが過大な 質量速度比に対してはその増大と共に高くなる。 しかし吹出し孔のごく近傍では熱伝達率は吹出し 流れの増加につれて大きくなる。

13) 単一円孔で得られた冷却効率の重ね合わせ による一列円孔の場合の冷却効率の予測は質量速 度比が0.5付近ではいくらか実測値より高く,大 きい質量速度比では低い。

14) 冷却効率の下流方向に関する予測式は主として低い質量速度比で実測値と良く一致する。

これらの記述は今ではごく当り前の感がするも のが多くある。また筆者の思い違いが混入してい るものがあるかもしれない。いずれにせよ記述さ れていない様々な成立条件がそれぞれの中にはあ り,その確認と定量的な考察は各々相当する文献 で検討していただければ幸である。

あとがき 日本にはミネソタ大のフィルム冷却研 究をよく御存知の伊藤定祐氏,門谷院一氏をはじ め先輩がたくさんおられる中で僣神を顧みず,間 違いを恐れず起草させていただきました。

ホットなニュースということで御容赦をいただ き,御意見,忠告,問合せなどいただけましたら 筆者の望外の喜びです。

#### References

- E.R.G. Eckert and J.N.B. Livingood, NACA Report 1182, 1954.
- 2. J.P. Hartnett and E.R.G. Eckert, Trans. ASME Vol.79 P.247, Feb.1957.
- J.P. Hartnett, R.C.Birkebak, and E.R.G. Eckert, J. Heat Transfer, ASME C 83 P.293, 1961.
- J.P.Hartnett, R.C.Birkebak, and E.R.G. Eckert, International Developments in Heat Transfer Part IV Section A Paper No.81 P.682, 1961.
- 5. E.R.G.Eckert and R.C.Birkebak, Heat Transfer, Thermodynamics and Education (Boelter Anniversary Volume) New York, Mc Graw-Hill, 1964, or Univ.of Minn. Heat Transfer Laboratory Technical Report No. 41, March 1962.
- R.J.Goldstein, F.K.Tsou, and E.R.G.
   Eckert, U of M HTL TR No. 54, Dec. 1963.

- R.J. Goldstein, E.R.G. Eckert, F.K. Tsou, and A.Haji-Sheikh, AIAA J.Vol.4 No.6 P.981, June 1966, or U of M HTL TR No.60, Feb. 1965.
- R.J. Goldstein, G.Shavit, and T.S.Chen, J. Heat Tranfeer, ASME C 87 P.353, Aug. 1965.
- R.J. Goldstein, R.B.Rask, and E.R.G. Eckert, Int. J.Heat Mass Transfer, Vol.9 No.12 P.1341, Dec. 1966.
- 10. R.J. Goldstein and A. Haji-Sheikh, J SME Semi-International Symposium Tokyo, Vol. I, Sept.1967.
- 11. R.J. Goldstein, E.R.G.Eckert, and D.J. Wilson, J. Engng.for Industry, ASME B 90 No.4 P.584, Nov.1968.
- R.J. Goldstein and M.Y.Jabbari, AIAA J. Vol.8 No.12 P.2273, Dec.1970.
- R.J. Goldstein and D.J. Wilson, J. Heat Transfer, ASME C 95 P.505, Nov. 1973.
- 14. R.J. Goldstein, E.R.G.Eckert, and J.W. Ramsey, NASA CR-54604 (HTL TR No.82), May 1968.
- R.J. Goldstein, E.R.G.Eckert, and J.W. Ramsey, J.Engng. for Power, Vol.90 No.4 P.384, Oct.1968.
- 16. R.J. Goldstein, E.R.G. Eckert, V.L. Eriksen, and J.W. Ramsey, NASA CR-72612(HTL TR No.91), Nov.1969, or Israel J. Tech., Vol.8 No.1-2 P.145, 1970.
- 17. J.W. Ramsey and R.J. Goldstein, NASA CR-

72613 (HTL TR No. 92), April 1970, or J. Heat Transfer, ASME C 93 P.365, Nov. 1971.

- J.W. Ramsey, R.J. Goldstein and E.R.G. Eckert, Proceedings 4 th Int. Heat Transfer Conference, Vol.3 FC 8.5, 1970.
- R.J. Goldstein, Advances in Heat Transfer 7, Academic Press, 1971.
- 20. V.L.Eriksen, NASA CR-72991 (HTL TR No.102), Aug. 1971, or J. Heat Transfer, ASME C96 No.2 P.239, May1974, J. Engng. for Power, Vol.96 No.4 P.329, Oct.1974 (also ASME 74-GT-6).
- D.J. Wilson, V.L. Eriksen, and R.J. Goldstein, J. Heat Transfer ASME C 96 No.2 P.258, May 1974.
- 22. D.R. Pedersen, Univ. of Minn. Ph. D. Thesis, March 1972.
- R.J. Goldstein, F. Burggraf, and E.R.G. Eckert, Int. J. Heat Mass Transfer, Vol.17 No.5 P.595, May 1974.
- 24. M.Y. Jabbari, Univ. of Minn. Ph. D. Thesis, Dec. 1973, or ASME Paper 77-GT-50, March 1977.
- 25. G.R. Taylor, Univ. of Minn. M.S. Thesis, Dec. 1975.
- 26. S. Ito, Univ. of Minn. Ph. D. Thesis, Dec. 1976, or 1977 Tokyo Joint Gas Turbine Congress Paper No.3.
- K. Kadotani, Univ. of Minn. Ph. D. Thesis, Dec. 1975, or 1977 Tokyo Joint Gas Turbine Congress Paper No.5 - A and -B.



# 高温燃焼ガスの物性値とその検索〔1〕

### 慶応義塾大学工学部 長 島 昭

1. はじめに

高温燃焼ガスの物性値について2回にわたり述 べるわけであるが、第1回には一般の純粋ガスの 高温における性質について、その検索法と推算法 を説明し、第2回に、ガスタービンに関係の深い ガスおよび高温燃焼ガスの性質へと話を進めるこ とにしたい。

高温ガスの物性値の研究は、宇宙開発や原子力 開発とともに飛躍的に活発になったが、最近のエ ネルギー問題への関心にともなって、ガスの種類 や温度範囲は拡がる一方である。ガスタービン自 体の発達で高温域へ拡がるだけでなく、MHDや 核融合など新しい応用も研究開発され、ガスの分 解・解離も考慮に入れて物性値を考えなければな らない場合もある。

高温ガスの性質について,信頼度の高いデータ を知ることにより,動力機器の効率向上や,経済 性や安全性の高い設計,適確な運転制御を行なう ことができる。この講義では,必要な物性値をい かにして探し出すかという検索法と,それを補う 意味で簡単な推算法について述べることとした。

### 2. 高温ガスの性質の考え方

気体を蒸気とガスとに区別して扱うことがある。 もちろん明確な境界があるわけではないが,熱力 学では,気液間の相変化をあらわす飽和蒸気圧曲 線に近い状態にある場合を蒸気,これから十分隔 った状態にある場合をガスと称している。ガスタ ービンなどに関係する高温燃焼ガスは,一般には 上記の意味でガスの状態である。

いわゆるガスの状態の特色を考えてみる。まず 気液の飽和状態や臨界点からは十分に離れており,

(昭和52年9月2日原稿受付)

圧力も低い(高圧のクローズドサイクル・ガスタ ービンなどを除く)ので密度も低い。ということ は理想気体に比較的近い挙動を示し,気体分子運 動論や統計力学などの理論によっても,ある程度 はその物性値を定量的に推算することができる。 臨界温度以下では,簡単な理論で表わせるのは極 く低圧の場合に限られるが,温度が高温になるに 従って,図1の扇状の領域のように,比較的高圧

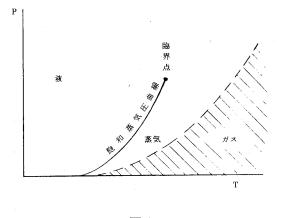



図 1

までこれが可能になる。現状では,高密度気体や 混合ガスについては理論計算は難しく,物性値は 実験的に定めなければならない。

燃焼ガスに関しては次回で扱うが,特に難しい のは,第1に複雑な組成の混合ガスが多いこと, 第2に温度によって単純な分子への分解やイオン への解離をともなうことである。高温であるので, 実験測定も極めて難しい。

気体や液体の物性値を求める場合には若干の基礎知識が大きな助けになることが多い。たとえば ヘリウムの10 bar における粘性係数を知りた いのに1 bar における値しか見付からない場合, 気体の粘性係数が低圧では圧力依存性が極めて小 さいことを知っていれば、安心してその値を10 barにも使うことができる。多種多様な燃焼ガス のすべてについて実測データをそろえたり、解説 したりすることは、もとより不可能であるので、 このような一般的かつ実験的な基礎知識をできる だけ簡便な形に述べてみる。

3. 高温ガスの物性値の検索

ガスの物性値を必要とする場合,通常は次のス テップを順次試みることになる。

(1) 汎用の便覧, データブックを見る。

- (2) 権威はあるが,膨大で読みづらい物性値表(Int. Crit. Tables など)で探す。
- (3) 文献検索で測定データ原報を探す。

(4) 理論的または経験的推算法で求める。

以上でどうしても求まらなければ実測を試みる以 外ない。

データおよび文献の検索方法についてそのやり 方と注意すべき点を述べてみよう。推算法につい ては第4節以下で説明する。

なお,物性値検索法の一般的解説としては文献 (1)(2)がある。

**3-1** 便覧,ハンドブック等について 現 在発行されている便覧、ハンドブックは膨大な数 にのぼるが、その多くは物質の物性値データを多 かれ少なかれ記載している。それらのデータを利 用する場合には次のような点に留意する必要があ る。最初に、それらのデータの批判検討を行なっ て編者がまとめ値したものであるか(A),原文献を 明示してデータをそのまま引用したものであるか (B), それとも, そのいずれとも不明のものである か(C)ということである。もちろん最も望ましいの はAで,安心して使用できる。Bの場合は,デー タの信頼度を知りたければ原文献にさかのぼって 確かめることが可能である。残念ながら最も多い ケースはCであって、中には、それ以前に発行さ れた他の便覧類から無批判に孫引きしたと思われ るデータも見受けられる。孫引きを繰り返すと何 10年も前のデータが掲載されることになるが、 物性値は年々新しい測定が行なわれて改良されて いるので、古いデータは誤っている場合も多い。 特に熱伝導率などにこの傾向が顕著である。便覧 類のうちでガスの物性値について記載がていねい

なもの,あるいは年々の改訂が加えられているものとしては,例えば次の諸書を挙げてよいだろう。

(1) Chemmical Engineers' Hand -

book, Perry, J.H., McGraw-Hill.

- (2) 伝熱工学資料,改訂第3版,日本機械学会, 1975.
- (3) Handbook of Heat Transber, McGraw-Hill, 1973.

**3-2**物性値専門のデータブックについて 物性値データの最も権威ある集積は次の2書が 有名である。

- (4) International Critical Tables,
  (全8巻), Mc Graw-Hill, 1939.
- (5) Landort Bornstein: Physikal ische - chemische Tabellen, (旧版 全8巻,新版全4巻), Springer, 1936, 1950.

これらは(5)の新版を除いて、いかにも古い感を免 かれず、引き方も煩雑である。しかし限られた範 囲では今でも参考になる。

高温ガスのデータを多く記載したデータブック としては次のものが挙げられよう。

- (6) Keenan, J.H., and Kaye, J., Gas Tables, John Wiley, 1948.
- (7) Rossini, F.D.ほか, Selected
- Values of Chemical Thermodynamic Properties, NBS Circular 500, 1952
- (8) Hilsenrath, J. ほか, Tables of Thermodynamic and Transport Properties, NBS Circular 564, 改訂してPergamon より出版, 1960.
- (9) Din, F., Thermodynamic Functions of Gases, (全3巻), Butterworth, 1956~1961.
- Toulokian, Y.S., Thermophysical Properties of Matter -TPRC Data Series, (全13巻), Plenum Prees, 1970.
- (1) Vargaftik, N. B., Spravochnik po Teplofizicheskim Svoistvam Gazovi Zhidkostei,第1版 1963,第2版1972, Moskva.

これらのうち,(6),(7)は広く世界中で用いられ たが、一部のデータはかなり古くなっている。(8) は8種類のガスの物性値を広い温度・圧力範囲に ついて無次元化した表で示している。(9)は各巻ご とに数種類づつのガスを選んでデータブックを作 ってある。(10)は Purdue 大学の熱物性値研究セ ンター(TPRC)の膨大な収集文献をもとに作 られたデータ集である。TPRCの発表資料はい ずれも過去の全データの平均値的な値を集めてお り、原データの信頼度評価を行なっていないのが 欠点である。印は広範囲な気液の性質をハンディ な形にまとめたものとしてユニークなもので、現 在は英訳も和訳も出版されている。第2版はSI 単位に統一されているが、在来の単位での値を探 す時は第1版も便利である。強いて難を言えば原 文献にソ連のものが多く,入手困難で精度は確か め難い。

**3-3 文献検索の方法について** ある高温 ガスの物性値データを探して、それがデータブッ ク等にない場合には、過去の雑誌のバックナンバー を調べて、測定研究の原報を検索しなければなら ない。この文献検索がいかに大変な仕事であるか は、御経験のある方も多いことであろう。

現在,最も助けになるのは次の検索書を利用す ることである。

- (12) Retrieval Guide to Thermophysical Properties Research Literatures, (全2巻), McGraw-Hill, 1960-1963.
- (13) Thermophysical Properties Research Literature Retrieval Guide, (全3巻), Plenum Press, 1967.
- (14) 同 -Supplement I (全6巻), Plenum Press, 1973.

これらはいずれも前記TRRCの編集による文 献検索書である。(12)は旧版で,これを含めて第2 版である(13)が作られた。(13)には1964年7月ま でに世界中で発表された物性値文献3万報以上を コード化して整理し,物質別,物性値別,著者別 に14万項目の索引にまとめてある。また(14)には 同様に1964年から1970年までの文献が整 理してある。引き方に慣れるまでは少々厄介であ るが、コンピューターを使わない検索としては最 も効率のよい検索手段を提供している。

これ以外には、よく知られた文献検索誌として Chemical Abstracts がある。最近ではこ れは雑誌として印刷したもののほか、コンピュー ターのテープ化したものも発売されていて、コン ピューター検索も可能である。しかし Chemical Abstracts では、物質名からの索引には 便利であるが、特定の物性値データが含まれてい るかどうかということは索引からわかり難く、か なり手間がかかる。

**3-4 物性値データ専門誌について** 最近 は物性値データの研究論文のみ,あるいはそれを 重点として掲載する雑誌が発行されている。

- J. of Chemical & Engineering Data (米国化学会発行)
- J. of Chemical Thermodynamics (Academic Press)
- J. of Physical and Chemical
- Reference Data (NBS, 米国物理 学会, 米国化学会共同発行)

最も注目に価するのは上記3番目のもので、その 分野の専門家によって評価検討された標準データ を掲載することを目的とし、個々の測定研究等は 扱わない。Int.Crit.Tablesを雑誌の形にし たようなもので、各種物性値の最新の状況を批判 的に知るものに有益な論文が多い。

日本では、やや毛色の違ったものとして「物性 定数」という、各年ごとの物性値データ研究のま とめを紹介する本が、丸善から毎年刊行されてい る。

**3-5**物性値に関する照会サービスについて 日本にはまだ残念ながら,高温ガスの物性値デ ータに関して,専門のデータセンターあるいはデ ータバンクといったものはできていない。外国で は、この種のサービスを商業ベースで行なってい るのは、前述のTPRCをはじめ幾つかある。

文献検索については、Chemical Abstracts によるコンピューター検索サービスが東京 大学大型計算センターで行なわれ、また日本科学 技術情報センターではJICST理工学文献検索 サービスとして照会に応じている。

熱物性値データ検索については、日科技研のJ

USE-AESOPPという照会サービスがあり, 物質名,物性値名,条件(温度,圧力)を指定し て申込むと推算値を回答するようになっている。<sup>(3)</sup>

## 4. 熱力学的性質とその推算法

熱力学的性質, すなわち密度(比容積), エン タルピー, エントロピー, 比熱, ジュールトムソ ン係数, 音速などといった物性値は, いずれも熱 力学的に定まる相互の関係があるので,状態式(お よび若干の定数)がわかっていれば計算すること ができる。しかしながら, 温度と圧力の広い範囲 を表わすように作られた状態式であると, 一般に その形は複雑で, 求める量が陰関数になっている こともある。(例えば, 比容積 vを求めたい時に, P = f(v, T)の形の状態式が与えられている場 合)。そこで高温ガスに限定して, できるだけ簡 単な方法から順に考えてみる。

熱物性値の一般的推算法に関しては, Reidら による「物性値推算法」<sup>(5)</sup>がある。さらに理論的 な裏付けなどについても調べたい場合には, Hirschfelder ら<sup>(6)</sup>, Rowlinson<sup>(7)</sup>などの本が 参考になるであろう。

**4-1 理想気体の状態式の限界** 例えば低 圧におけるガスの密度を求めたいような場合は, 当然ながら理想気体の状態式

$$\mathbf{P} \, \mathbf{v} = \mathbf{R} \, \mathbf{T} \tag{1}$$

から求められる。ここでPは圧力、vは比容積 ( $v = 1/\rho$ )、Rはその気体のガス定数、Tは絶 対温度である。これらの変数の定義の仕方によっ

表1 理想気体の状態式のいろいろな形 Pv = RT Pv = (R<sub>o</sub>/M)T Pv<sub>m</sub> = R<sub>o</sub>T PV = nR<sub>o</sub>T P'V = GR'T PV = m RT P: 圧力(Pa), P': 圧力(k<sub>p</sub>/m<sup>2</sup>), v: 比容積 (m<sup>3</sup>/kg), T: 温度(K), v<sub>m</sub>: モル比容積(m<sup>3</sup> / k<sub>mol</sub>), n: モル数(k<sub>mol</sub>), G: 重量(k<sub>p</sub>), M:分子量, R<sub>o</sub>: 一般ガス定数 8.3143×10<sup>3</sup>

〔J/k<sub>mol</sub>K〕, R:個々の気体のガス定数R<sub>o</sub> /M〔J/kg K〕, R':個々の気体のガス定数R<sub>o</sub> /M〔k<sub>pm</sub>/k<sub>p</sub>K〕, V:体積〔m<sup>3</sup>〕, m:質量〔kg〕 て式(1)の形は変わるが、代表的な例を表1に示す。 問題はこの式をどの位の圧力まで用い得るかとい うことであるが、圧縮係数

 $Z = P \mathbf{v} / R T \tag{2}$ 

を圧力に対してプロットした例を図2に示す。圧 力係数は式(2)でわかるように,理想気体では1に なる。図2は273Kの等温線であるが,その左

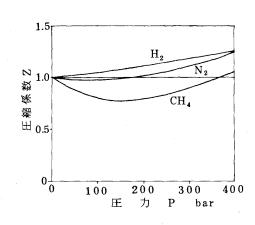



図2 273Kにおけるガスの圧縮係数<sup>(7)</sup>

半分を見ると、 $H_2$  は圧力とともに単調増加し、 CH<sub>4</sub> は反対に減少している。 $N_2$  は1付近にあ る区間が長くて、理想気体に近似できる範囲が広 いことを表わしている。これらの傾向はもちろん 温度が変われば変化する。

**4-2 ビリアル状態式** ビリアル状態式は, 比容積に関する多項式として

$$Z = \frac{P \mathbf{v}}{R T} = 1 + \frac{B}{\mathbf{v}} + \frac{C}{\mathbf{v}^2} + \dots \dots$$
(3)

と表わすものである。ガスの場合,右辺第2項の 第2ビリアル係数Bの項まで用いれば,かなり広 い圧力範囲まで表わすことができる。ビリアル係 数の数値については成書もあり<sup>(8)</sup>,伝熱工学資料 (改訂3版)<sup>(9)</sup>にも幾つかの気体についての値が 記載されている。ビリアル状態式について文献<sup>(10)</sup> などがある。各種ガスの第2ビリアル係数を図3 に示す。

**4-3** ファン・デア・ワールス式 この式 は広く知られているわりに,定量的な応用計算に は中途半端でほとんど使われない。しかし,この 式

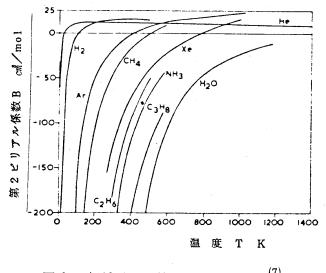



図3 各種ガスの第2ビリアル係数<sup>(7)</sup>

 $(P + \frac{a}{v^2}) (v - b) = RT$  (4)

で、物質の種類によって変わる定数はaとbの2 個だけなので、少数の実験値を元にして広い範囲 の傾向を類推したい時には役に立つ。すなわちそ の実験値でa, bの値を決定し、必要な範囲の計 算に用いる。

4-4 対応状態原理の応用 各種推算法の うちで最も実用になっているのは対応状態原理に よる方法である。多くの熱力学の教科書にあるよ うな簡単な方法から出発し,現在までにいろいろ な拡張が試みられている。 PvT 関係については, 圧縮係数 Z = Pv / RT を換算温度  $Tr = T / T_c$ と換算圧力  $Pr = P / P_c$  について表わした一般 対応状態線図が多くの研究者により発表されてい る。誤差は数%以内程度である。炭化水素どうし の間など,類似の物質間だけにこの方法を適用す るとさらに精度がよくなる。

圧縮係数ばかりでなく,第2ビリアル係数やエ ンスコーク関数などを換算状態量に対して一般化 線図として表わしたもの<sup>(11)</sup>など,幾つもの拡張が 発表されている。

**4-5** その他の方法 個々の物質については、状態式や線図など多く発表されているが、紙面の都合で省略し、高温燃焼ガスまたは混合ガスの取扱いについては次号で触れる。

## 5. 輸送的性値とその推算法

流体の粘性係数については Golubev<sup>(12)</sup>が,
 実験装置の解説なども含めて成書にまとめており,

熱伝導率については Tsederberg<sup>(13)</sup>の本, また これら両性質について蒔田<sup>(14)</sup>が推算法などもまと めて紹介している。

5-1 高温ガスの粘性係数 高温ガスは理 想気体に近ずくので、単純な理論でも参考になる ことがある。例えば、気体分子運動論によるなら ば、低圧ガスの粘性係数は圧力に依存しないこと になっている。大部分の実在気体でも50 bar 以 下の圧力では大気圧での値からの差は数%以下で ある。また大気圧におけるガスの粘性係数は、温 度とともに単調に増加し、温度の1次式または2 次式でかなり広い温度範囲を表わせる。さらに詳 しく表わす場合には Sutherland の式

$$\eta = \frac{\mathrm{K}\,\mathrm{T}^{-3/2}}{\mathrm{T}+\mathrm{C}} \tag{5}$$

が適切であることがよく知られている。この式の 定数Kおよび Cは文献<sup>(15)など</sup>に与えられている。

## 5-2 低圧ガスの輸送的性質の理論計算

大気圧あるいはそれぞれ以下の圧力におけるガ スについては, Hirschfelder<sup>(6)</sup>による次の理 論式

$$\eta = a \frac{\sqrt{M\varepsilon/k}}{\sigma^2} \cdot \frac{\sqrt{k T/\varepsilon}}{\Omega}$$
(6)

によって、近似値を求めることができる。定数 a は、粘性係数  $\eta$ の単位を kgw・s / m<sup>2</sup> にとれば a = 2.7 2×10<sup>-7</sup> であり、右辺の 2 種類の関数を各 種ガスについて求めた値を表 2 a と 2 b に示す<sup>(6)</sup>

熱伝導率の場合は,理論式による値は実験値と の差が大きくて実用にならない。これは理論的解 明の不十分な分子の回転および振動エネルギーが, 特に熱伝導率の方に大きく影響するためと考えら れる。

5-3 密度の影響の推算 ガスの粘性係数  $\eta$ および熱伝導率 $\lambda$ に関しては、各データごとに その温度で理想気体(実用上は大気圧下)におけ る値、 $\eta_1$ および  $\lambda_1$ との差を、密度 $\rho$ に対してプ ロットすると、広い温度・圧力範囲のデータが1 本の曲線上にのることがわかっている。すなわち

$$\eta - \eta_1 = f(\rho), \quad \lambda - \lambda_1 = g(\rho)$$
  
(7 a) (7 b)

 $f(\rho)$ および  $g(\rho)$  は  $\mathbb{Q}4^{(1)}$ のような 単調な曲線で、一般に  $\rho$ の 2 ~ 4 次程度のべき 乗式で表わ

|   |   | ~ |
|---|---|---|
| ( | а | ) |

表 2 式 (6) の 関 数

| 気          | 体       | €∕k       | $\frac{\sqrt{M\varepsilon/k}}{\sigma^2}$ | 気           | 体          | €∕k          |       | €∕k<br>.2  | 気                       | 体  | ε∕k     | $\frac{\sqrt{M \varepsilon/k}}{\sigma^2}$ |
|------------|---------|-----------|------------------------------------------|-------------|------------|--------------|-------|------------|-------------------------|----|---------|-------------------------------------------|
| アセ         | チレン     | 185       | 3.895                                    | 酸           | 素          | 1 1 3.2      | 5.1   | 07         | プロパ                     | ン  | 254     | 4.1 3 2                                   |
| 亜硫         | 酸ガス     | 2 52      | 6.906                                    | 酸化          | 窒素         | 1 1 9        | 4.9   | 63         | ヘリウ                     | Д  | 6.0 3   | 0.6 <b>7</b> 3 9                          |
| アル         | ゴン      | $1\ 2\ 4$ | 6.024                                    | 四塩化         | 炭素         | 327          | 6.48  | 85         | ベンゼ                     | シ  | 440     | 6.6 7 6                                   |
| 一酸         | 化炭素     | 1 1 0.3   | 4.3 1 3                                  | 水           | 素          | 3 3.3        | 0.9   | 301        | メタ                      | ン  | 1 3 6.5 | 3.1 0 5                                   |
| n- オ       | トクタン    | 320       | 3.4 4 4                                  | 炭 酸         | ガス         | 190          | 5.7   | 26         | メチルクロライ                 | イド | 855     | 1 8.2 4                                   |
| 空          | 気       | 97        | 4.054                                    | 窒           | 素          | 9 1.4 6      | 3.7 3 | 36         | メチレンクロラ                 | イド | 406     | 8.199                                     |
| (b)        | )       |           |                                          |             |            |              |       |            |                         |    |         |                                           |
| <u>k</u> T | √kT∕€   | k         | $T \sqrt{1}$                             | <u>κΤ/ε</u> | <u>k</u> T | <u>√kT</u> ∕ | ε     | <u>k</u> T | $\sqrt{kT/\varepsilon}$ |    | kТ      | √ <u>k T∕</u> ε                           |
| ε          | Ω       |           | ε                                        | Ω           | ε          | Ω            |       | ε          | Ω                       |    | ε       | $\Omega$                                  |
| 0.4        | 0.254   | 0 1       | .8   1.0                                 | 99.9        | 3.2        | 1.7 5 7      | 3     | 4.6        | 2.2888                  |    | 1 0.0   | 3.866                                     |
| 0.5        | 0.3 1 3 | 4 1       | .9   1.1                                 | 529         | 3.3        | 1.798        | 3     | 4.7        | 2.323 7                 |    | 1 0.5   | 3.993                                     |
| 0.6        | 0.375   | 1 2       | .0 1.2                                   | 048         | 3.4        | 1.838        | 8     | 4.8        | 2.3 5 8 3               |    | 20      | 6.063                                     |
| 0.7        | 0.438   | 4 2       | .1 1.2                                   | 558         | 3.5        | 1.878        | 9     | 4.9        | 2.392 6                 |    | 30      | 7.880                                     |
| 0.8        | 0.5 0 2 | 5 2       | .2 1.3                                   | 057         | 3.6        | 1.918        | 6     | 5.0        | 2.4 2 6 4               |    | 40      | 9.488                                     |
| 0.9        | 0.566   | 6 2       | .3 1.3                                   | 547         | 3.7        | 1.9 5 7      | 6     | 5.5        | 2.5 9 1                 |    | 50      | 1 0.9 5 8                                 |
| 1.0        | 0.632   | 0 2       | .4 1.4                                   | 028         | 3.8        | 1.996        | 2     | 6.0        | 2.7 5 1                 |    | 60      | 1 2.3 2 4                                 |
| 1.1        | 0.692   | 8 2       | .5 1.4                                   | 501         | 3.9        | 2.0 3 4      | 3     | 6.5        | 2.9 0 4                 |    | 70      | 1 3.6 1 5                                 |
| 1.2        | 0.754   | 4 2       | .6 1.4                                   | 962         | 4.0        | 2.071        | 9     | 7.0        | 3.0 5 3                 |    | 80      | 14.839                                    |
| 1.3        | 0.8 1 5 | 1 2       | .7   1.5                                 | 417         | 4.1        | 2.1 0 9      | 0     | 7.5        | 3.197                   |    | 90      | 16.010                                    |
| 1.4        | 0.874   | 4 2       | .8 1.5                                   | 861         | 4.2        | 2.145        | 7     | 8.0        | 3.3 3 7                 | 1  | 00      | 17.137                                    |
| 1.5        | 0.932   | 5 2       | .9 1.6                                   | 298         | 4.3        | 2.182        | 0     | 8.5        | 3.473                   | 2  | 00      | 26.80                                     |
| 1.6        | 0.989   | 4 3       | .0 1.6                                   | 728         | 4.4        | 2.218        | 0     | 9.0        | 3.6 0 7                 | 3  | 0 0     | 3 4.8 1                                   |
| 1.7        | 1.0 4 5 | 3 3.      | .1 1.7                                   | 154         | 4.5        | 2.253        | 6     | 9.5        | 3.7 3 8                 | 4  | 0 0     | 4 1.9 0                                   |

せる。成立範囲は、 $T/T_c > 1.3$ の温度範囲( $T_c$ は臨界温度)であれば、ほとんどのガスについて 成り立つ。いろいろなガスに対してf( $\rho$ )、g

(*ρ*)の図または式が発表されているが,多くの 物質に対して一般化して表わした試み<sup>(18)(19)</sup>もある。 目的のガスについて,この図または式が見当らな い場合には,何点かの実験値を探して図4のよう に曲線を描けば,あとは任意の状態の値をこれか ら求めることが可能になる。

輸送的性質についても、対応状態原理によって 実際的な推算を行なうことができる。粘性係数に 関する一般対応状態線図として有名な Hougen と Watson の線図や Shimotake とThodos の線図は各種のハンドブック等に再録されている (9)(5) 5-4 エンスコーク式による方法 これも 密度の影響を推算する方法であるが、理論的裏付 けのある方法としては、実用になる唯一の方法と いってよいであろう。Enskog によれば、粘性 係数 $\eta$ ,熱伝導率 $\lambda$ および拡散係数Dについて、 密度の影響は次式で表わされる $_{0}^{6}$ 

$$\eta / \eta_{o} = b \rho (1 / b \rho \chi + 0.8 + 0.7 6 1 4 b \rho \chi)$$
(8)  
$$\lambda / \lambda_{o} = b \rho (1 / b \rho \chi + 1.2 + 0.7 5 7 4 b \rho \chi)$$
(9)  
$$\rho D / (\rho D)_{o} = b \rho (1 / b \rho \chi)$$
(10)

ここで添字Oは理想気体状態を表わす。b は分子の大きさ、 $\chi$ は衝突確率にそれぞれ関係した量であるが、 $b\rho\chi$ はPvT関係から次のように求める

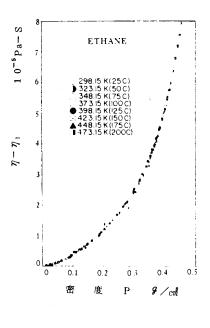



図 4  $\eta - \eta_1$ と 密度の関係<sup>(7)</sup>

ことができる。

もともとは剛体球分子について導かれた式である が,拡張して使用することができ,例えば文献<sup>(20)</sup> <sup>(21)</sup>を参照されたい。

5-5 拡散係数について 拡散係数は,ガ スの物性値のうちでも最も研究の遅れているもの のひとつであるが,近年,大気汚染問題への関心 のたかまりとともに,データの要求が増してきた。

拡散係数データの最も総括的な収集・検討は Mason ら<sup>(22)</sup>によってなされ、比較的使い易い形 にまとめられている。その一部は伝熱工学資料<sup>(9)</sup> にも引用してある。Mason らは各種のガスにつ いて現存のデータを検討した結果、最も信頼でき ると思われるデータを簡単な表示式に表わしてい る。

データが見付からない場合には、Hirschfelderら<sup>(6)</sup>の式や、前述のエンスコークの方法に よって、粘性係数のデータから定めたパラメータ を利用するなどして、半理論計算した値を用いる ことになる。(続)

## 文 献

(1) 小谷正雄(監修),科学データ…活用と検索,日

本ドクメンテーション協会,昭和48.

- (2) 佐藤一雄,物性値の検索,実験化学講座(続)1,
   丸善,1966.
- (3) JUSE-AESOPP プログラム利用の手引き,日本科学技術研修所.
- (4) Reid, R.C., ほか2名, Properties of Gases and Liquids, 3rd edition, (1977), McGraw-Hill.
- (5) 佐藤,物性值推算法,(昭29),丸善.
- (6) Hirschfelder, J.O. ほか2名, Molecular Theory of Gases and Liquids, (1954), John Wiley.
- Rowlinson, J.S., Liquids and Liquids Mixtures, 2nd edition, (1969), Butterworths.
- (8) Dymond, J.H., & Smith, E.B., The Virial Coefficients of Gases, (1969), Clarendon.
- (9) 伝熱工学資料,改訂3版,(昭50),日本機械学会.
- Mason, E.A., & Spurling, T.H., The Virial Equation of State, (1969), Pergamon.
- (1) Veeramani, H., & Thodos, G., Canad.
   J. Chem. Eng., 44 (1966), 166.
- (12) Golubev, I.F., Vyaskosti Gazov i
   Gazovyv Smesei, (1959), Moskva,
   (英訳もあり).
- (13) Tsederberg, N.V., Teploprovodnosti Gazov i Zhidkostei, (1963), Moskva, (英訳もあり).
- (14) 蒔田,粘度と熱伝導率。
- Licht, W., & Stechert, D.G., J.
   Phys. Chem., 48 (1944), 23.
- (16) Bromley, L.A., & Wilke, C.R., Ind.
   Eng. Chem., 43 (1951), 1641.
- (17) Makita, T., ほか2名, Rev. Phys. Chem. Japan <u>44</u>-2(1975), 53.
- (18) Jossi, J.A., ほか2名, AIChE J., <u>8</u>-1(1962), 59.
- (19) Stiel, L.I., & Thodos, G., AIChE J., 10-2 (1964), 275.
- (20) 岩崎, 東北大非水研報告, 9-2(1960), 143.
- (21) 長島ほか2名,日本機械学会講演論文集,700-21(1970),121.
- Marrero, T.R., & Mason, E.A., J.
   Phys. Chem. Ref. Data, <u>1</u> (1972),
   3.



東 京 都 立 大 学

## 熱機関工学研究室動力工学研究室

東京都立大学・工学部 平 山 直 道 前 田 稔 幸

害ガス排出特性およびその制御等が研究されてい る。また自動車工学の総合的な研究も行われてい る。

## 2. 人員構成

| 熱機関工学研究室   | 動力工学研究室    |
|------------|------------|
| 現職教官       | 現職教官       |
| 教授 平山直道    | 教授 前田稔幸    |
| 助手 志村和泰    | 助手 山口 元    |
| 助手 森棟隆昭    | 助手 太田正広    |
| 助手 池口 孝    | 大学院生5名,卒論学 |
| 主事1名,大学院生5 | 生9名        |
| 名,卒論学生7名,研 |            |
| 究生1名       |            |

3. 主な設備・装置

低乱れ風洞1(風速40m/s,吹出し口 400mm × 200mm)

低乱れ風洞1(風速40m/s,吹出し口 200mm × 100mm)

| 主 | 高圧空気源   | 往復圧縮機(2台,30ps,10ata)             |
|---|---------|----------------------------------|
| 設 | (間欠風洞用) | 二葉圧縮機(1台15.6m <sup>3</sup> /min, |
| 備 |         | 2 atg)                           |

【空気槽(4m<sup>3</sup>1基,8m<sup>3</sup>1基)
高圧空気源 遠心圧縮機60ps,圧力比2.7,

風量 0.3 Kg∕s

真空回流装置 真空ポンプ(油回転)(1600ℓ/ (変圧風洞) min)

真空タンク (5.3 m<sup>3</sup>)

## 実験装置

平板上の吹出し吸込み境界層実験装置 曲面上の吹出し吸込み境界層実験装置

## 1. 沿革

本学熱機関工学研究室の誕生は昭和25年,東 京都立大学工学部が新制度の大学として発足の時 にさかのぼる。当時,東京帝国大学第二工学部か ら当大学に転任された石川政吉教授(昭和36年 本学退官,後宇都宮工業短大学長,宇都宮大学工 学部長を歴任,現在,ボイラ協会会長) によって 開始された。当時の研究主題は主としてボイラ関 係であったが,昭和27年に筆者の一人(平山) が東大工学部から講師として着任し、タービンの まわりの流れを研究目標として、流体工学的研究 が始まった。始めは主として機械の中において強 制的に作られた乱流の中で作動する翼の性能が研 究の目標であったが、その後超音速タービン翼列 の設計法およびその性能を論ずること、および湿 り蒸気中の翼性能を求めることなどに発展してい る。また、昭和30年より筆者の一人(前田)が 浸出冷却ガスタービン翼の流体特性の研究を目標 として 吹出し 境界層,続いて 吸込み 境界層の研究 に着手し、平板上の流れから翼列曲面上の境界層 へと発展している。昭和49年動力工学研究室が でき,前田が教授としてこれを担任した。一方, 排気ガスタービンの流れの究明を目標として流体 機械あるいは流体機械要素の非定常特性を研究題 目として取上げている。またターボ機械の真空機 械への応用を目標として低レイノルズ数における 遠心機械の性能あるいはその基礎として高マッハ 数,低レイノルズ数の流れの研究も取上げている。 その他,省エネルギ,環境工学的な基礎研究とし て高熱負荷伝熱管、あるいは都市ごみ焼却炉の有

(昭和52年10月31日原稿受付)

高速風洞によるタービン翼後流測定装置 高速風洞による平板境界層測定装置 高速風洞によるタービン翼列実験装置 分岐・合流管を通る非定常流計測装置 真空中における遠心圧縮機の性能測定装置 真空機械内部流れ実験装置 脈動流中の排気タービンの性能測定装置

## 4. 研究内容

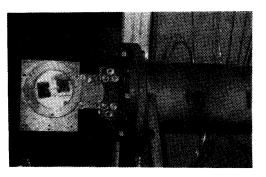
熱機関工学研究室

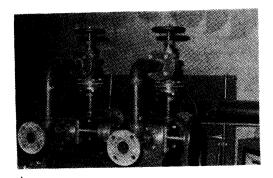
(1) 超音速反動翼列に関する研究

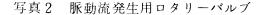
超音速反動翼列の設計法は現在確立されておら ず,本研究では,超音速反動タービン翼の性能向 上のために新しい設計法を提案し検討する。

(2) 超音速翼後縁に関する研究

超音速翼列の実用化に際して諸損失の減少が望 まれるが,後縁の最適形状を得ることにより,流 体のエネルギ損失を減少させようとする研究であ る。(写真1)





写真1 超音速風洞


(3) 管内非定常流の研究

エンジンの排気管内流特性の研究の一環として, 分岐・合流管内の非定常流の特性を調べ,損失値 を求め定常流での値と比較検討している。また, 温度の異なる気体の合流特性についても検討する。 (写真2)

(4) 管内高速流動の研究

最近,高圧・高速化する傾向の著しい各種プラントの配管内に使用する曲り管,急拡大管,分岐・ 合流管内の高速流動特性を研究している。(写真 3)





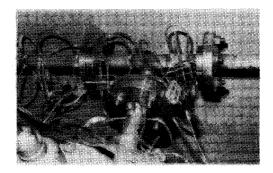



写真3 分岐・合流部配管装置

(5) 凝縮を伴う超音速流の研究

大型蒸気タービンや軽水炉用タービンで観察される均一凝縮に着目し,凝縮を伴う流れ場の解析や,相変化時における熱損失を検討している。

(6) 希薄気体流れの研究

ウラン濃縮を遠心分離法で行う場合,遠心分離 器のラディアルディフューザ内の低圧流れを二次 元的に解析し,ディフューザ性能の向上を検討し ている。

(7) 流動層型熱交換器に関する研究

ガスの強制対流熱伝達にくらべ十数倍の熱伝達 率を有する流動層に着目し,流動層型熱交換器模 型を作製してその伝熱特性を検討している。(写 真4)

(8) 清掃工場の性能向上に関する研究

都市ごみ焼却炉での排ガス,排水中の有害物質 を規準値以内におさえ,かつ未燃分なしに燃焼さ



写真4 流動層実験装置

せるため焼却炉の最適条件を検討している。 動力工学研究室

(1) 乱流境界層に関する基礎研究

(1・1) 乱流境界層の制御に関する研究

ターボ機械の翼列性能の向上を目的とした基礎 研究の一環として,主流に逆圧力こう配がありポ ーラス平板壁面からの一様吸込みを行った場合の 乱流境界層の速度分布,境界層特性値,乱流構造 に関する実験的,理論的研究を行っている。(写 真5)

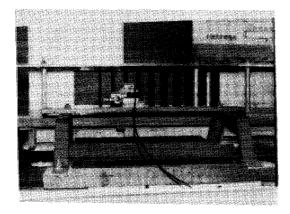



写真5 平板境界層実験装置

(1・2) 凹面,凸面上の吹出し,吸込みのあ る乱流境界層の特性に関する研究

曲率を有するポーラス壁から一様吹出し, 吸込 みを行い, 乱流境界層の速度分布, 境界層特性値, 乱流構造に及ぼす曲率の影響,吹出し,吸込みに よる境界層の制御効果に関する研究を行っている。 (写真6)

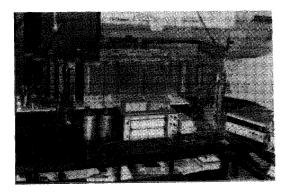



写真6 曲面境界層実験装置

(2) 翼列損失に関する研究

効率の良いガスタービン翼列を開発するための 基礎研究として,ガスタービン翼後縁の境界層特 性値から翼型損失を推定するための関係式を明ら かにすることを目的とした理論的・実験的研究を 行っている。

(3) 真空ポンプに関する研究

(3・1) 遠心圧縮機の真空ポンプへの適用に関する研究

低・中真空領域において大排気速度,高圧縮比 の真空ポンプを開発するための基礎研究として, 低密度,密閉回路管路内に在来の遠心圧縮機を設 置し,真空ポンプに適用した場合の圧縮機性能, 真空ポンプ性能に関する実験的研究を行っている。 (写真7)

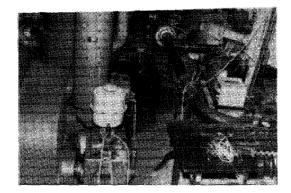



写真7 低密度·密閉回流管路実験装置

(3・2) 高速ベーンディフューザに関する基 礎研究

高圧縮比の遠心圧縮機および遠心真空ポンプを 開発するための基礎研究の第一段階として,高レ イノルズ数,高亜音速流のディフューザにポテン シャル理論と境界層理論を応用して直線ディフュ ーザ,曲りディフュザを設計,製作し,理論と実 験との比較と側壁効果の影響を検討している。(写 真8)また,真空機械内の圧力が低下し,流れの

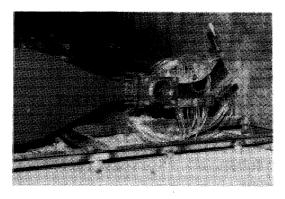
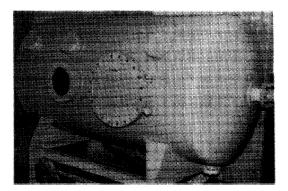



写真8 高速曲りディフューザ

希薄化の影響があらわれる真空領域での理論的, 実験的研究を行っている。(写真9) (4) 自動車工学に関する研究


実車風洞実験などによる流体力学的な分野から の研究をはじめ,内燃機関の燃焼,吸排気系,冷 却系などの基礎研究,省エネルギ,低公害エンジ ンなどの開発研究,機械力学,振動工学分野の各 種研究などを総合的に行っている。

## 5. 将来の方向

今後とも,流体工学による流体機械の基礎性能 の解析に重点をおくが,現在進行中の熱機関工学 研究室における,超音速の境界層と後流を含んだ タービン翼流れの解明と非定常の分岐・合流を含 んだターボ機械の研究,動力工学研究室における 吹出し,吸込みによる境界層の制御,真空機械に 関する基礎研究に引きつづき力を入れたい。

なお現在,機械学会の研究協力による「大形タ ーボ機械の性能予測と相似則」の研究分科会の幹 事校になっており,特に軸流機械の相似則の基本 的事項について研究を行う予定である。

また近年,特に熱交換や燃焼を含んだ流れの方 に興味をもつ。このような熱流体的機器の研究に 流体の研究者が乗り込むことは非常に重要である と考えている。



## 写真9 高真空タンク

## GTSJガスタービンセミナー(第5回)のお知らせ

"ガスタービン高温化 の 諸問題"を総合テーマに第5回GTSJガスタービンセミナー を下記の通り開催致しますので奮ってご参加下さい。

1. 日 時:昭和53年1月27日(金)9:40~16:45(受付開始9:00)

2. 会 場:日比谷三井ビル8階ホール TEL 03-580-6366

千代田区有楽町1-1-2

- 地下鉄:日比谷線·千代田線·6号線「日比谷」駅,有楽町線「有楽町」 駅下車
- 国 鉄:「有楽町」駅下車
- 3. セミナー内容

|    | 項                        | <b>∃</b> ∧ | 時       | 間     | 講         | 師  |     |
|----|--------------------------|------------|---------|-------|-----------|----|-----|
|    | 開会の挨拶                    |            | 9:40-   | 9:45  | 石川島播磨重工業株 | 飯島 | 孝氏  |
| 1. | ガスタービン                   | 高温化の趨勢     | 9:45 -  | 10:55 | 航空宇宙技術研究所 | 鳥崎 | 忠雄氏 |
| 2. | ガスタービン<br>の諸問題           | 高温化の意義と開発上 | 10:55 — | 12:05 | 東京大学工学部   | 平田 | 賢氏  |
|    | 昼                        | 食          | 12:05 - | 13:00 |           |    |     |
| 3. | 冷却タービン                   | の設計上の諸問題   | 13:00-  | 14:10 | 石川島播磨重工業株 | 伊藤 | 源嗣氏 |
| 4. | 高 <b>温</b> ガスター<br>現状と将来 | ビン部品の精密鋳造の | 14:10 - | 15:20 | 小松ハウメット㈱  | 近江 | 敏明氏 |
|    | 休                        | 憩          | 15:20-  | 15:35 |           |    |     |
| 5. | 高温ガスター<br>セラミックス         | ビン部品としての耐熱 | 15:35 - | 16:45 | 東京芝浦電気鉄   | 米屋 | 勝利氏 |

上記講演時間には質疑の時間も含まれます。

- 4. 参加要領
  - 1) 聴講会費:正会員 期限内申し込み1名7500円,当日申し込み1名8000円, (共に資料代含む)。

学生員 1名5000円(資料外含む)。

資料のみ購入希望の方 1冊4000円。

- 2) 参加資格:会員に限る。但し当日の会場でも入会受付(入会金500円 年会費 2000円)。
- 3)申し込み方法:所属氏名を明記の上,郵便振替,現金書留にて下記事務局迄お申し 込み下さい。
- 4)申し込み締切:昭和52年12月20日(消印)。期限内申し込み者には資料を送付します。
- 5) 事務局:〒160 新宿区新宿 3-17-7 紀伊国屋ビル5階
  - (財)慶応工学会内
  - (社) 日本ガスタービン学会 TEL 03-352-8926

## 第6回 定期講演会講演募集

日本ガスタービン学会主催,第6回定期講演会を次のとおり開催致しますので講演論文 を募集致します。何とぞふるってお申込み下さい。

。開催期日:昭和53年6月2日(金)

- ・場 所:機械振興会館(東京・芝)
- 。論文内容:(1) テーマは、ガスタービン(排気タービンを含む)及びその応用に関連する理論及び技術を扱ったもの。
  - (2) 最近の研究で、未発表のもの。一部既発表のものを含む場合は、未発表 部分が主体となるものに限ります。

。申 込 者:日本ガスタービン学会会員

- ・申込方法:(1) 申込者は、はがき大の用紙に「第6回定期講演会申込」と題記し、下記
   事項を記入し、本会事務局宛申込んで下さい。
  - (a) 講演題目
  - (b) 発表者名及び勤務先
  - (c) 通信先(会社,学校などの場合は所属部所を明記)
  - (d) 100~200字程度の概要

。申込期限:昭和53年2月10日(金)

- ・講演論文集:(1) 申込者には本会より講演論文集用原稿用紙をお送りします。
  - (2) 論文は1,292字詰用紙6頁以内とします。
  - (3) 原稿提出期限 昭和53年3月31日(金) 事務局必着
  - (4) 本講演会の全論文をまとめて,講演論文集を発行致します。
- 。講演時間:一題目につき,討論時間を含め約30分の予定です。
- ・採 否:講演発表の採否は本会に御一任願います。
- 。その他:尚 講演会当日は,特別講演,懇親会などを計画する予定でおります。

## 第18回航空原動機に関する講演会プログラム

- **企 画**:航空原動機部門委員会
- 共 催:日本機械学会・日本ガスタービン学会
- **期 日**:昭和53年2月24日(金)
- 会場:航空宇宙技術研究所管理部講堂 (調布市深大寺町1880 電話0422-47-5911)
- 参加費:不要

#### 一般講演

- プログラム(講演15分,討論5分,○印が講 演者)
  - 9:20~10:40 [座長 中村洋一君 (防衛庁 技本)]
  - (1) 広帯域吸音材の設計法
     佐々木良平(防衛庁技本),石沢和彦,
     宇山道熙,○東 勝美(石川島播磨重工)
  - (2) 空力騒音に及ぼす熱拡散の諸問題(そのI)
    - 舞田正孝(航技研)
  - (3) 空力騒音に及ぼす熱拡散の諸問題
     (そのII)
     舞田正孝(航技研)
  - (4) 赤外線パターン温度計による冷却タービンの冷却効率測定(翼列試験)
     〇小林英夫,勝又一郎(石川島播磨重工)
  - 10:50~12:10[座長 蓑田光弘君(航技研)]
- (5) ターボ機械の羽根車についての綜合研究
   (第2報 航行線羽根を有する3次元羽根
   車)
  - 徳永匡順
- (6) ファンー圧縮機つなぎダクトの空力模型 試験
  - 永野 進, 〇千葉 薫, 工藤 誠 (石川 島播磨重工)
- (7) 多重円弧翼型の遷・超音速2次元翼列実験(そり角6°,そり比0.25の場合)
  - ○坂口 一, 高森 晋(航技研)
- (8) 円形翼列の非定常力特性(周期的な一様 変動流れの場合)
  - 西岡 清(防衛大)
- 13:00~14:00[座長 高田浩之君(東大工)]
- 特別講演 最近の民間航空における燃料節減対 策について
  - JT9Dエンジンを中心として
  - 日本航空株式会社
  - 取締役 平沢秀雄君
  - 14:10~15:50[座長 上野博志君(三菱重工)]

(9) ガスタービンにおける水素燃料の利用に 関する研究(第2報 予冷サイクルにおけ る湿度の影響)

辻川吉春, 沢田照夫(阪府大工)

- (10) アフタ・バーナ付2軸ターボファン・エンジンのリアル・タイム・シミュレーション
   ○青木照幸,長谷川 清(三菱重工)
- (11) 固体推進薬を燃料とするラムジェット 辻角信男(防衛庁技本3研)
- (12) 液体水素用ターボ・ポンプの試作 平社博之、〇長谷川恵一、吉田祐宣 (三菱重工)
- (13) ファン中空翼の構造強度に関する基礎研究
  - 〇池田為治,宮地敏雄,小河昭紀,祖父江 靖,藤沢良昭(航技研)
- 16:00~17:40 [座長山本伸一郎君(川崎 重工)]
- (14) 一次元容器内の火炎伝播の解析(第3報)
   竹野忠夫(東大宇航研),〇飯島敏雄 (東海大工)
- (15) 水素混焼によるガスタービン燃焼の基礎的研究

広安博之, 〇養祖次郎, 新井雅隆, 角田 敏一(広島大工)

- (16) 旋回火炎燃焼器における汚染物質の挙動
   辻 廣, ○堀 守雄, 安里勝雄,
   園田章人(東大宇航研)
- (17) ガスタービン燃焼器のスワーラと組合せた場合のうず巻噴射弁の噴霧角
   鈴木邦男(機械技研),小倉五郎, 黒沢要治(航技研),北原一起(川崎重)
- 工) (18) 航空用気流微粒化方式燃焼器の研究開発
- (第2報)
  〇江口邦久,石井浅五郎(航技研),鈴
  木邦男(機械技研),北原一起,中越元
  行(川崎重工)
- 講 演 前 刷集:1部1,500円(送科200円) をそえて昭和53年2月4日(土) までに下記へお申込みの方には郵 送いたします。 また当日会場受付においても頒布 します。
- 前刷集申込先:日本航空宇宙学会〔〒105 東京 都港区新橋1-18-2
  - 航空会館分館 電話 03-501-0463 〕



ガスタービンの講義をするよう命じられて, 恐る恐る教壇に立ったのは昭和42年の秋であ った。本物のガスタービンというのがどんな物 かも分らぬままに講義をするのであるから、最 初の年はガスタービンのサイクル論をひと通り やるのが精一杯であった。2時間の講義がとて も長く感じられるので、黒板で実際に数値計算 をやって見せて、時間をかせいだものである。 もっともらしい数値を与えて熱効率を計算して みると高々25%程度にしかならない。熱効換 器を入れても30%になるかならないかといっ た値しかでてこない。何しろタービン入口温度 を750℃にして計算していたのであるからしか たがない。それでも陸・船用の非冷却タービン としては750℃というのは当時としては高い方 であった。熱力学の教えに基づく計算であって, 講義している本人のせいではないのだけれども、 蒸気タービンやディーゼルエンジンの熱効率が 40%以上であるのと比べると何としても低い 値である。がっかりしたような顔をして見てい る学生を前にして、「このようにガスター ビンの熱効率が低いのは耐熱材料がなく、ター ビン入口温度を高くすることができないからだ」 と、何となく人のせいにしたようないい方をせ ざるを得なかったことを思い出す。

その後の10年間に、ガスタービン界に大き な変化が生じた。冷却翼の技術が確立するにつ れタービン入口温度が年々急速に高くなってい ったことは周知の通りである。さらに最近にな って、超耐熱合金やセラミック系の耐熱材料が、 夢ではなく現実の問題として、話題になつてく ると事情は一変したようになった。原油が安く エネルギーを使い捨てていた時代には、熱効率 が低いとしてガスタービンは特別な用途以外に は使用されなかった。ところが、原油が高価に なり、またエネルギーの有限性とエネルギーの 節約とが強調される時代になって、エネルギー

## 編集理事 葉 山 眞 治

を最も有効に利用し得るものとして,ガスター ビンが脚光を浴びるようになったのであるから, 世の中はまさに皮肉なものである。このような 技術の変革に対して,学生諸君は実に敏感な反 応を示す。その証拠に,数年前までは小生の講 義を受講する学生は20名にも満たなかったの が,朝一番の講義であるにもかかわらず年々受 講者が増え,今年はついに50名を越す盛況と なった。これはまさにガスタービン時代の到来 を告げる吉兆とみるべきであろう。こうなって くるとガスタービンの講義を担当する者として も,自然に講義に熱が入ってくるというもので ある。遠い未来の夢のような話しでなく,非常 に現実的なものとしてガスタービンの講義がで きるようになつたのはとてもうれしいことである。

余談になるが一つの実話を付け加える。講義 に出ないで、人のノートを写しただけで試験を 受けるという学生は何人か必ず居るもので、こ の点は昔も今も変りはない。このような学生の 答案には実に傑作なものがある。試験問題の一 つに言葉の説明を求める問題を出す。その中に 「部分負荷」というのを入れて置く。すると 「部分負荷とはガスタービンの各構成要素のそ れぞれに別々に負荷をかけることである」とか、 「部分負荷とはガスタービンの運転中に各構成 要素が受け持っている負荷のことである」とい った答案に必ずお目にかかる。実に苦心の作で あると思う。部分負荷特性の講義のとき、笑い 話しとしてこの2つを学生に話し、間違いのな いようにと念をおした上での話しである。

partial load に「部分負荷」という日本 語訳を与えたのもけだし傑作であったものと思 う。

さて、本会誌も新しいガスタービン時代にふ さわしいものにしたいと編集子一同努力してい るところである。会員諸賢のしった(叱咜)激 励をいただければ幸いである。



# gas turbine newsletter

GAS TURBINE DIVISION-THE AMERICAN SOCIETY OF MECHANICAL ENGINEERS

VOL. XVIII

## CHAIRMAN'S COMMENTS

## By DR. PAUL F. PUCCI

I sincerely believe that the Gas Turbine Division of A.S.M.E. is truly **the** international gas turbine society. This stature has been achieved by maintaining an open platform for the dissemination of the wide spectrum of gas turbine developments. This recognition is the result of the dynamic growth of our division, attributable in no small measure to our desire to respond to the rapid development of our technology by changing our organizational structure to meet new needs. Each succesive change has had a common goal: improve the Gas Turbine Division's effectiveness for service. The current Executive Committee is continuing this search for better service and outreach, focusing its attention on the administrative structure of the Division.

We have a very active member participation in our Technical Committees. This, indeed, is the main reason for our success. It is this personal response to meet our professional responsibilities to the technical community of which we are a part, that has led to this success. To those of you who desire to contribute in this manner, I invite you to write to the Chairman of the Technical Committee of your specialty, or to me, offering your services. In this way, we will continue our dynamic growth and expand our capability to meet our responsibilities as a society.

## THE LONDON CONFERENCE

Dear Gas Turbine Division Member:

Our Division has long recognized the importance of the international nature of our technology and has periodically held our annual conference in technological centers around the world. Next year, The International Gas Turbine Conference will be held at the new Wembley Conference Centre, London, England, between April 9th and 13th, 1978. The conference will be co-sponsored with our sister society, The Institution of Mechanical Engineers. (Continued on Page 3) October, 1977

## 1977 GAS TURBINE FORUM

PRESIDER: Paul E. Pucci

Chairman, Gas Turbine Division, ASME The 7th Annual Gas Turbine Forum will be held during the 1977 Winter Annual Meeting on Monday, November 28, in Atlanta, Georgia.

In an effort to bring the Division membership up to date on the status of gas turbine technology, each technical committee of the Division will present a five to six-minute report highlighting the technical advances within their area of concern that have occurred during the past year.

All members of the Gas Turbine Division and their guests are cordially invited to attend. Dinner will be served at 8:00 p.m. preceded by a dutchtreat social hour at 7:00 p.m. Tickets may be picked up at the meeting. For

further information contact:

Wendy A. Lubarsky Meetings Coordinator ASME, Gas Turbine Division 34 Bauer Place Ext. Westport, CT 06880 203-255-3998 or 914-592-4710

## TURBINE BLADES SHORT COURSE AT WAM

Gas turbine blades are simple beams. However, their simplicity is deceiving, and some of the most sophisticated technology has been required to provide reliable long life and high performance. This Blade Teach-In traces the life of blades from a mechanical standpoint beginning with their conceptual start to final us in field service. The Teach-In intends to acquaint gas turbine engineers with techniques used in blade design, development and trouble shooting. Ample references will be given to anyone who needs to dig deeper. The Teach-In will be taped for later distribution. The Teach-In will be offered Friday, December

The Teach-In will be ottered Friday, December 2, 1977 in Atlanta during the ASME Winter Annual (Continued on Page 3)

ASME GAS TURBINE DIVISION

のご好意により複写の許可を得ました。

Quoting THE WALL STREET JOURNAL — Monday, Sept. 12, 1977.

No. 4

North Sea Bonanza

## BRITAIN SEES OIL WEALTH AS OPPORTUNITY TO END LONG NATIONAL DECLINE

#### **Benefits Galore**

Certainly, the rapidly increasing flow of oil and oil revenues—already is making highly significant changes in the British picture:

Dispassionate analysts agree that the potential is there. In the 1980s, the oil should be flowing so abundantly (at an estimated two million barrels a day), as to make Britatin one of the "rare" industrial countries able to meet all its own energy needs, says the Paris-based Organization for Economic Cooperation and Development. If the technical estimates are right, there is about \$350 billion of oil, at present prices, under Britain's North Sea zone, equal almost to two years of Britain's gross national product, or total output of goods and services.

Nevertheless, the conseúsus, is that Britain is bound to be better off with North Sea oil than without it. "The scale of it is too large to be dissipated," one adviser says.

THE 23rd ANNUAL INTERNATIONAL GAS TURBINE CONFERENCE WILL BE AT THE WEMBLEY CONFERENCE CENTER LONDON ENGLAND

(Continued on Pages 2 - 6 - 7 - 8)

PAUL F. PUCCI, Chairman Edward S. WRIGHT, Vice Chairman R. A. HARMON, Editor

NANCY POTTER, Publisher's Secretary

Official publication of the Gas Turbine Division of the American Society of Mechanical Engineers published quarterly.

PUBLISHER — R. Tom Sawyer, Nauset Lane, Ridgewood, N. J. 07450

SECOND CLASS postage paid at Ridgewood, N. J.

POSTMASTER: In the event magazine is undeliverable, please send Form 3579 addressed to R. Tom Sawyer, P.O. Box 188, Ho-Ho-Kus, N. J. 07423.



Mr. Nakamura (Toyota), R. A. Harmon (Editor of Newsletter) and R. Tom Sawyer (Div. Treasurer) looking at turbine installation in Hybrid Vehicle at Toyota Technical Center, Higashifuji, Japan—May 1977.

## WINTER ANNUAL MEETING GAS TURBINE SESSIONS

#### Nov. 28, Mon. A.M .-**Combustion Diagnostic Methods**

Measurement of Particulate Size by In-Situ Laser-Optical Methods: A Critical Evaluation Applied to Fuel-Pyrolyzed Carbon.

Practical Considerations for Laser Light Scattering Diagnostics.

Log-Normal Distribution of Particulate Measurements from a Gas Turbine Exhaust.

Fuel Hydrogen Content as an Indicator of Radiative Heat Transfer in an Aircraft Gas Turbine Combustor.

Oxidation and Pyrolysis Products from Vaporizing N-Hexadecane.

Mon. A.M.—Aero-Thermadynamic Developments in Steam and Gas Turbine Systems

Aerodynamic Design and Verification of a Two Stage Turbine with a Supersonic First Stage.

Throughflow Calculations for Transonic Axial Flow Stream and Gas Turbines. Moisture Measurements in Low Pressure Steam

Turbines Using a Laser Light Scattering Probe. Steam Bottoming Plants for Combined Cycles.

A New Look at the Optimum Design of Centrifugal Compressor Impeller Inlets. An Analysis of the Non-Stable Flow Mechan-

isms in a Radial Compressor Impeller.

Mon. P.M.-Flow Induced Rotor Whirl in Steam and Gas Turbines

Air Model Tests of Labyrinth Seal Forces on a Whirling Rotor. Flow Excited Vibrations in High-Pressure Tur-

Flow Excited bines (Steam Whirl). Poter Whirl in Turbomachinery. Mechanism,

Analysis and Potential Solutions. Measurement of Nan-Steady Forces in Three

Turbine Stage Geometries Using the Hydraulic Analogy.

#### Mon. P.M.--Gas Turbine Combustion

Fuel Hydrogen Content as an Indicator of Radiative Heat Transfer in an Aircraft Gas Turbine Combustor.

Oxidation and Pyrolysis Products from Vaporizing N-Hexadecane,

Nov. 29, Tues. A.M.—Gas Turbine Fuel Injection

Effect of Airstream Velocity on Mean-Drop-Diameters of Water Sprays Produced by Pressure and Air-Atomizing Nozzles.

The Influence of Liquid Film Thickness on Airblast Atomization.

Experimental Evaluation of Premixing-Prevaporizing Fuel Injection Concepts for a Gas Turbine Catalytic Combustor.

Development of a Catalytic Combustor Fuel/Air Carburetion System.

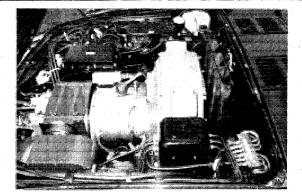
#### VEHICULAR GAS TURBINE PANEL TO HIGHLIGHT WAM Tues, P.M.-See photos above.

Mr: Roy Kamo, Cummins Engine Company, has organized a blue ribbon panel to discuss the background, current status and future outlook for vehi-cle turbines. The gas turbine, hybrid electric vehi-(See photos) to be discussed by Mr. Nakamura of Toyota Motor Company are of particular interest.

The following is a list of panelists and their topics of discussion:

Roy Kamo, Chairman and Session Organizer, Cummins Engine Co.

#### Tues., P.M.—Gas Turbine Component Structural Analysis and Test


Effect of Slip on Response of a Vibrating Compressor Blade.

An Example of Additive Damping as a Cost Saving Alternative to Redesign.

Application of an Eigenfunction Expansion to the Determination of Stress-Intensity Factors.

Nov. 30, Wed. P.M.---Failure Criteria for Ceramics

Panel Session on the following subjects: High Frequency Ultrasonic Evaluation of Cer-



Gas turbine installation in hybrid Toyota showing turbine driving generator for battery charging. The car is driven by both the turbine and a motor powered by the batteries and generator.

> John J. Jones, Keynote Speech, Williams Research Corporation

> George J. Huebner, Jr., Future Outlook, Research Institute of Michigan

H. Barrett, Two Shaft Turbines, Detroit Diesel Allison Division

K. Kinoshita, Two Shaft Turbines, Nissan Motors Company S. O. Kronogard, Three Shaft Turbines, United

Turbine AB K. Nakamura, Turbine Hybrid Systems, Toyota

Motors Company

G. Peitsch, Heat Exchangers, For Motor Co.

H. Schelp, Components, AiResearch Co. Walzer, Ceramic Applications, Volkswagen.

amics for Gas Turbines.

Effects of Service Conditions on Proof Testing of Silicon Nitride. Structural Designing with Ceramic Materials.

Designing with Ceramics to Achieve Structural Reliability.

Time Dependent Response of Silicon Nitride. Dec. 1, Thurs. A.M.—Ceramics Design Technology

Panel Session with one paper: Characterization of Commercial Ceramic Materials for Turbine Engines.

TURBINE CONCEPT car with a new dramatic aerodynamic design to go with the Upgraded Engine has been built for the U.S. Department of Energy by Chrysler Corp. The base car, a Chrysler LeBaron, was restyled as shown. Photo obtained by Bob Harmon at DOE Contractors meeting.

### GAS TURBINE NEWS



Headquarters for the London Conference at the Wembley Conference Centre for all Exhibits and all Technical Papers.

#### Short Course-WAM

(Continued from Page 1)

Meeting. Six lectures will be given as follows: • Design Considerations For Blades by Clayton L.

- Smith, Detroit Diesel Allison (Subject to Approval) • Blade Vibration—Theory and Practice by Don J. Leone, University of Hartford
- Blade Flutter—Design Principles by L. E. Snyder,
- Detroit Diesel Allison
- Three Dimensional Perception by J. W. Tuma-
- vicus, Perceptor CompanyBlade Development and Testing by H. Stargard-
- ter, Pratt & Whitney Aircraft (Subject to Approval) Field Problems—Failure and Prevention by W. Jansen, Northern Research

The Teach-In will also be repeated with some modifications at the 1978 Gas Turbine Conference in London. For further information contact:

H. Stargardter

Structures and Dynamics Committee

Eng. Bldg. 2H Pratt & Whitney Aircraft

- East Hartford, CT 06108 203-565-7517

## SPECIAL COURSES AND SEMINARS-1977

• Sixth Turbomachinery Symposium December 6-8, 1977; Sponsored by Gas Turbine Laboratories, Texas A&M.

This year the meetings and exhibits will be at the Hyatt Regency Hotel in Houston, Texas. The Symposium will consist of lectures, discus-

sion groups, and tutorials. Each attendee can at-tend all of the lectures and six out of the eight discussion groups or tutorials.

The object of the Symposium is to provide interested persons with the opportunity to learn the applications and principles of various types of turbomachinery, to enable them to keep abreast of the latest developments in this field, and to provide a forum wherein those who attend can exchange ideas. In this exchange of information, users, manufacturers, basic design engineers, and technicians will get together and discuss problem areas. They will also attend lectures that will inform them of the latest developments in the area of turbomachines and related equipment.

The Fifth Symposium attracted over 100 engineers and technicians from all over the states and different foreign countries. A product show with 60 exhibitors was part of the Symposium. The exhibits ranged from large turbomachinery parts to various types of monitoring and maintenance devices. The majority of the attendees were large users of turbomachinery. Sixty (60) exhibitors are expected to take part in the product show. Early

registration is suggested to ensure room reservation and participation in the discussion group desired.

The lectures and discussion groups will include the following: Lectures:

- Torsional Analysis of High Speed Rotating Equipment
- Survey of Torque Measurement Devices
- Dynamic Simulation of Centrifugal Compressor Systems
- Design and selection of Large Fans
- Large Fans for Corrosive Services
- High Speed Gearing Design and Selection
- High Efficiency Thrust Bearing Design
- Pivotal Shoe Journal Bearing Dynamic Characteristics
- Reliability of Lube Oil Supply and Control Fluids in Industrial Steam Turbines
- Design Characteristics of a New High-Pressure Gas Compressor
- Economics of Machinery Surveillance
- Failure Investigation in Preventive Maintenance • Case Histories of Turbomachinery Problems
- Pump Selection and Design Design of Supporting Structures for Centrifugal Trains
- Concrete Foundation Repair Techniques
- Discussions:
- Tutorium on Mechanical Seals for Compressors and Turbines
- Tutorium on Mechanical Seals for Pumps
- Tutorium on Fluid Film Bearing Design
- Pump Selection, Operation and Maintenance Compressor Maintenance and Operation
- Gas Turbine Operation and Maintenance Steam Turbine Operation and Maintenance
- Shop Techniques for Repair and Maintenance of Turbomachinery

The above is a tentative program and subject to change. A final program will be mailed to the registrants by September 1, 1977. For further information, registration forms, etc.

contact:

- Dr. M. P. Boyce
- Gas Turbine Labs: (Turbomachinery Symposium) Department of Mechanical Engineering Texas A&M University

College Station, Texas 77843 • Four-Day Short Course on Energy Conservation Four-Day Short Course on Energy Conservation Through Cogeneration and Total Energy Systems, December 12-15, 1977, George Washington University, Washington, DC Cogeneration, total energy, selective energy

and heat recovery systems save substantially in fuel usage by the recovery of waste heat for heating, cooling and domestic hot water. Fuel effi-ciencies as high as 80% are realized. Further

#### London Conference (Continued from Page 1)

The London Conference will provide for most of us who reside in North America a unique oppor-tunity to meet with our European colleagues and to share our technology in a direct and personal way

The technical program is already well under way, with our usual broad coverage from the practical applications found in offshore, piping, power generation, industrial, marine, aircraft, and vehicular use, to the basic research and development of components and materials.

As your Chairman, I sincerely encourage you to make plans to join me in London next April. You will be receiving more detailed plans of the conference as they develop. In the meantime, if I may be able to assist you in any way, please do not hesitate to call me.

Very truly yours, DR. PAUL F. PUCCI, Chairman, GTD Mechanical Engineering Department Naval Postgraduate School Monterey, California 93940 408-646-2363, -2586

## A SPECIAL COURSE ON THE GAS TURBINE AT LONDON

An orientation course far attendees at the Gas Turbine Conference is being presented for the third time. The course description for the session follows:

### Introduction to the Gas Turbine

Thermodynamics of gas turbine cycles, including cycle variations, open- and closed-cycle characteristics, comparison with other heat engines, regenerative cycles, and combined cycles. Component and accessory design fundamentals. Characteristics, advantages, and problems relative to specific applications such as aircraft, vehicular, marine, electric power, process industries, oil and pipelines, total energy. Characteristics of gas tur-bine materials, including alloys, ceramics. Combustion and emission characteristics. Common exotic fuels, including distallated, residuals, metha-nol, gaseous, coal, solar, nuclear. Reliability and maintenance considerations. Anticipated future developments and the future potential of the gas turbine.

The course is particularly suitable to newcomers to the gas turbine field, particularly in the user category. In addition, specialists in gas turbine engineering will find this overview broadening and interesting and a useful experience yielding maximum benefit from attending the conference which follows.

The cost is low per attendee. Interested parties will find complete details in our January Newsletter or in January you can contact:

Edward S. Wright

United Technologies Research Center 400 Main Street East Hartford, Connecticut 06108 Phone 203-565-4658

benefits accrue from the integration of these systems with utilities services, such as waste treatment and water supply.

This is a two-part course in which the first two days will cover the analysis and design of cogeneration systems. The next two days will cover the integration of cogeneration with solid waste incineration and water conservation through examination of published feasibility studies.

For further information, please write to Direc-Continuing Engineering Education. George Washington University, Washington, DC 20052, or call 202-676-6106 or toll free 800-424-9773.

3

4

#### FUTURE CONFERENCES

The following is an up-dated list of the gas turbine conferences and the conferences wherein the Division plans and supports one or more sessions on gas turbine technology. Please note that papers must be in for review by the date listed below as \* or \*\*.

- 1977-ASME Winter Annual Meeting,\* Atlanta, Ga., Nov. 27-Dec. 2, Hyatt Regency and Atlanta Hilton Hotels.
- 1978—23rd Annual International Gas Turbine Conference\*\* and Products Show, London, England, April 9-13, Wembley Conference Centre.
  - American Power Conference, April 24-26, Chicago, III., Palmer House. –Joint Power Generation Conference, Dallas,

  - Texas, Sept. 10-14, Sheraton-Lincoln. –ASME Winter Annual Meeting,\* San Fran-cisco, Dec. 10-15, San Francisco Hilton.
- –24th Annual International Gas Turbine 1979-
  - Conference\*\* and Products Show, San Diego, Cal., Mar. 11-15. American Power Conference, April 23-25,
    - Chicago, III., Palmer House. -Joint Power Generation Conference, Sept., Raleigh, N.C.
    - –ASME Winter Annual Meeting,\* New York, N.Y., Dec. 2-7, Statler Hilton.
- 1980-25th Annual International Gas Turbine Conference\*\* and Products Show, Rivergate, New Orleans, La., Mar. 9-13. -American Power Conference, April 21-23,
  - -Joint Power Generation Conference, Sept. 28-Oct. 2, Phoenix, Az., Hyatt Renecy.

  - -ASME Winter Annual Meeting,\* Nov. 16-21, Chicago, Ill., Conrad Hilton.
- 1981—26th Annual International Gas Turbine Conference\*\* and Products Show, Albert Thomos Convention Center, Houston, Texas, Mar. 8-12.
  - Americon Power Conference, April 27-29, Chicago, III., Palmer House. Submit paper before June 1st for re
    - view. The green sheets should have been sent in before Feb. 1st. \*\* Submit paper before October 1st for re-
    - view. The green sheets should have been sent in before June 1st.

#### PROGRAM CHAIRMEN

- 1977 Winter Annual Meeting LESTER C. SULLIVAN Asst. Chief Engineer Trunkline Gas Co. 3000 Bissonnet Ave Houston, Texas 77005 713-664-3401
- Home: 713-667-7789 1978 Conference

## A. A. MIKOLAJCZAK

Manager, Aerodynamic, Thermodynamic and Control Systems Pratt & Whitney Aircraft Group 400 Main Street, Adm. 1N East Hartford, CT 06108 203-565-4174 Home: 203-677-2272 1978 Conference, Chairman of Local Committee

W. RIZK, Managing Director GEC Gas Turbines Ltd. Cambridge Rd., Whetstone Leicester LE8 3LH, England

#### FOR FURTHER DATA ON FUTURE CONFERENCES CONTACT

Executive Secretary THOMAS E. STOTT, Pres. Stal-Laval, Inc., 400 Executive Bld. Elmsford, N.Y. 10523 Office: 915-592-4710 Home: 413-528-2679

## **GAS TURBINE NEWS**

### "NO-COST" ASME MEMBERSHIPS AVAILABLE

'No-cost' memberships are available in ASME. Here's how to do it.

1) Apply for ASME membership.

inas.

21

Pay your \$30 annual dues, Apply for \$24,000 life insurance through ASME. 31 You will find that the substantial dividend credit awarded annually on your ASME life insur-ance will probably, at least, cover the cost of your annual dues. Check the table below for your sav-

#### Premium Contributions for \$24,000 Policy -ASME Life

| Member's<br>Age | First<br>6 Months | Second<br>6 Months* | Your<br>Savings |
|-----------------|-------------------|---------------------|-----------------|
| Under 30        | \$20.00           | \$0                 | \$20.00         |
| 30-34           | 23.30             | 0                   | 23.30           |
| 35-39           | 32.00             | 0                   | 32.00           |
| 40-44           | 50.00             | 0                   | 50.00           |
| 45-49           | 81.00             | 0                   | 81.00           |
| 50-54           | 126.00            | 0                   | 126.00          |
| 55-59           | 195.00            | 0                   | 195.00          |
|                 |                   |                     |                 |

\*Based on 50% dividend credit awarded for four of the last 5 years.

Incidentally, you should compare the cost of what you are currently paying for mortgage insur-ance versus cost of ASME life insurance. Typically, ASME life insurance will cost only one-half as much per \$1000 as conventional mortgage insurance does, so cancel your mortgage insurance and replace it with ASME life insurance and pocket additional profits!

So talk up ASME membership among your professional acquaintances. They will appreciate your interest, ASME membership, and low cost member life insurance!

## IF YOU'RE READING THIS NEWSLETTER YOU OUCHT TO BE A MEMBER OF THE GAS TURBINE DIVISION And We Would Like To Have You Join Us

It's that simple. If you are interested enough gas turbine industry to be reading this newsletter, you should be interested in joining and participating in the Gas Turbine Division.

Our Newsletter covers only the highlights of what's going on in the industry. And what's going on with the Gas Turbine Division.

To get a more complete industry picture, you have to be there. And that kind of participation

## CALL FOR COMPANY REPORTS INCLUDING ALL EXHIBITORS

The Gas Turbine Division's 1978 Annual Report will be printed and distributed to its members, about 7000, in the January Newsletter.

You are cordially invited to submit a report of your organization's latest activities for consideration. To aid in preparing your report, please note the "Guidelines" pertaining to type, length and due dates. Your cooperation in adhering to these "Guidelines" will be greatly appreciated.

All material should have been sent no later October 1, 1977 to the following address:

- Gas Turbine Division
- Annual Report
- 34 Bauer Pl. Ext.
- Westport, CT 06880

IDELINES TO ASSIST IN PREPARATION OF MATERIAL FOR GAS TURBINE DIVISION 1978 ANNUAL REPORT WERE LISTED ON PAGE 4 OF AUGUST NEWSLETTER

## LETTER TO PUBLISHER

I am a member of the ASME Turbomachinery Committee. Unfortunately while going through your Gas Turbine Newsletter, August 1977, No. 3, Vol. XVIII, page 15, I do not find my name. I would appreciate it if this omission could be taken care of in the next newsletter.

Sincerely, Dr. R. Raj, Turbomachinery Laboratorry, City College of New York.

is best obtained through active membership in GT Division programs.

Division membership brings you in closer contact with the industry-with benefits such as technical information updates, career and technical stimulation, participation in Division activities.

It also provides tangible benefits. Like reduced fees at conferences, discounts on technical papers, substantial savings with group life, health and accident insurance programs. To mention only a few.

Why not take a few minutes now to fill in the form attached and send it along to us. We'll re-spond with a free booklet outlining ASME GI Division membership benefits, information on how you qualify for membership and an application form.

We would like to have you join us.

| Clip and mail to: | THE EXECUTIV   | VE SECRE | TARY, THO | DMAS E.   | STOTT,  | Pres. |       |
|-------------------|----------------|----------|-----------|-----------|---------|-------|-------|
|                   | Stal-Laval, In | ic., 400 | Executive | Blvd., El | msford, | N.Y.  | 10523 |

| I'm interested in joining the Gas Turbine Division of ASME. | l'm | interested | in | joining | the | Gas | Turbine | Division | of | ASME. |
|-------------------------------------------------------------|-----|------------|----|---------|-----|-----|---------|----------|----|-------|
|-------------------------------------------------------------|-----|------------|----|---------|-----|-----|---------|----------|----|-------|

...... Send me your free booklet on ASME membership.

|  | Enclose | a | membership | application | form. |
|--|---------|---|------------|-------------|-------|
|--|---------|---|------------|-------------|-------|

| Name                     |                   |
|--------------------------|-------------------|
|                          | Company           |
|                          |                   |
|                          |                   |
|                          | Extension Country |
| Home Address, if desired |                   |
|                          | Zip Code          |

| tha <b>n</b> Oo | Savings | 6 Months* | Months  |  |
|-----------------|---------|-----------|---------|--|
|                 | \$20.00 | \$0       | \$20.00 |  |
|                 | 23.30   | 0         | 23.30   |  |
|                 | 32.00   | 0         | 32.00   |  |
|                 | 50.00   | 0         | 50.00   |  |
| GUI             | 81.00   | 0         | 81.00   |  |
|                 |         |           |         |  |

## SPECIAL COURSES AND SEMINARS-1978

Three-Day Seminar on Turbomachinery Vibra-tions, March 7-9, 1978, San Diego, California. Mechanical Technology Incorporated will pre-

sent a three-day Seminar covering the basic aspects of rotor-bearing system dynamics. The course provides:

A fundamental understanding of rotating machinery vibrations

- An awareness of available tools and techniques for the analysis and diagnosis of rotor vibration problems
- An appreciation of how these techniques are applied to correct vibration problems.

The Seminar is scheduled for March 7-9, 1978, in San Diego, California. Contact Mr. John E. Travers (213-799-0919) for further information on this regional session.

#### DAY 1

Fundamentals of Vibration Theory will be reviewed and their relevance to rotor vibrations demonstrated. The particular significance of bearings as elastic and dissipative elements in the vibrating system will be identified. Fluid-Film bearing design will be covered in detail, including performance data for common bearing geometries Lecture titles are:

Machinery Vibration Fundamentals Lateral Vibration Characteristics

Fluid Film Bearings

Rotor Bearing System Dynamics

DAY 2

A description of torsional vibrations, their causes, analysis and prevention will be reviewed. Rolling element bearing design and performance will be covered. The complete rotor-bearing system will be emphasized. The sources of laterial excitation will be identified and rotor response to these mechanisms will be described. The subject of rotor instability will be presented. Techniques for rotor balancing will be covered. Lecture titles are:

Torsional Vibrations

Rolling Element Bearings

Rotor Response to Various Forcing Mechanisms Rotor Instability Rotor Balancing

#### DAY 3

Concentration on the subject of Vibration Instrumentation. Instruments for sensing vibrations will be described, followed by a demonstration of instruments utilized by MTI for the analysis of vibration data. Signature analysis will be covered and the course will conclude with a discussion period devoted to trouble-shooting procedures. Lecture titles are: Vibration Sensing Instruments

Data Analysis Instruments Signature Analysis Techniques Machine Vibration Diagnosis

Instructors will be:

Robert H. Badgley, Manager, Machinery Dr. Dynamics Center Dr. Anthony Smalley, Asst. Mgr., Machinery

Dynamics Center Mr. Stanley Malanoski, Supervisor, Analysis Mr. Robert Hamm, Supervisor, Field Services

Mr. Leo Winn, Manager, Applied Tribology

Any questions regarding this seminar may also be directed to Mr. Paul E. Babson, Marketing

Manager, Machinery Diagnostics, MTI, 518-785-2371.

> TO GET THIS NEWSLETTER **REGISTER IN THE** GAS TURBINE DIVISION

## VON KARMAN INSTITUTE **LECTURES IN 1978**

#### OFF-DESIGN PERFORMANCE OF GAS TURBINES (January 30-February 3, 1978)

The aim is to review the present state of the art in this subject area. A first group of lectures will treat the problem of component behaviour at nonoptimal operating conditions for two and three dimensional configurations, and will include on assessment of current calculation methods. Subsequent lectures will be devoted to an analysis of the complete gas turbine (component matching, bleed, variable geometry, unstable flow regimes, etc.) and to the dynamic behaviour of industrial compressor circuits with reference to a typical example.

#### COMBINED CYCLES FOR POWER GENERATION (April 24-28, 1978)

The world energy crisis has stimulated the development of combined cycles for power generation because of their great potential for improving cycle efficiency. The programme will include the following types of combined cycle: open gas turbine/steam turbine with unfired and fired boiler, open gas turbine/steam turbine with integrated coal gasification, closed cycle gas turbine/steam turbine with organic fluid bottom cycle M H D/ steam turbine.

The cost of each lecture is 8,000 B.F. (about \$225.00). Those requiring further information about above programmes are requested to write to: The Director, von Karman Institute for Fluid Dynamics, Chassee de Waterloo 72, 1640 Rhode Saint-Genese, Belgium. Please give your full name and company name and address and nationality.

### NEW YORK CITY BLACKOUT

The September issue of "Access to Energy" was practically all devoted to this subject. One inter-esting statement was: "This issue discusses some aspects of the July New York blackout. Utilities outside New York can afford to lose a line or two without disaster; New York can't. The bureaucrats and sham-environmentalists who killed the Storm King Project, shut down several coal-fired plants, made construction of further nuclear plants impossible, and did their utmost to shut down Indian Point, too, are the real culprits; they now call for the blood of Con Ed---more blood that is."

Solar's Energy Spectrum, #2-77, had one page devoted to this subject which included: East side and west side and all around the town over 160 Solar turbine-powered generator sets were standing by July 13 when the call came for omer-gency power." "N.Y. Telephone Co. handled 29 gency power." million calls during the first 4 hours of the emer-gency alone due to 100 Solar generator sets." Solar also covered the New York Hospital, Central City Police and Fire Communications Center, com-puters "in major banks and stock brokerages," the RCA Global network in N.Y. City etc. Mr. Doug Mollema, Solar's N.Y. District Power Support Mgr. said, "We were very pleased with the performance of our generator sets during the black-

## NEW GAS TURBINE MOVIE AVAILABLE FOR VIEWING

ASME's Director of Public Relations has available copies of the new ASME film dealing with the gas turbine engine for viewing by interested parties. The film was produced by a professional organization with film clips provided by a number of manufacturers. It deals with the fundamentals and applications of the gas turbine in a nontechni-cal manner suitable for general audiences and

## 1978 WINTER ANNUAL MEETING SYMPOSIUM ON POLYPHASE FLOW IN TURBOMACHINERY

#### CALL FOR PAPERS

Novel pumping problems arising in the context of nuclear and geothermal energy generation have created renewed interest in the complex problems of the operation of turbomachinery in polyphase flows. In the past, there has been a lack of appropriate forums where engineers concerned with these problems have been able to come together to compare experiences and exchange ideas and viewpoints. Such a forum will be held in the Winter Annual Meeting of the ASME in 1978. Objective

The objective of the Symposium is to provide a forum for the presentation and discussion of experience and studies of polyphase flow in turbomachinery. The Symposium will address a wide range of problem areas and all fluid mechanical aspects of polyphase flow in turbomachinery, in-cluding both steady and unsteady flows, cavitation, gas/vapor/liquid gas/droplet flows, etc. gas/vapor/liquid flows, gas/partcile, and Mechanics

Acceptance of presentations for the symposium will be on the basis of completed papers or 500 word abstracts, submitted in triplicate. Papers should not exceed 24 pages total, including double-spaced typewritten text, all figures and references. Figures should appear at the end of the paper.

Abstracts should include:

- 1. Complete title of proposed paper.
- 2. Author(s) name(s), title, company or university affiliation, and complete address, including zip code.
- 3. A concise statement of the problem (and possibly its genesis) or the objective covered.
- indication of the scope and methods and a 4. An summary of important conclusions with a state-ment as to whether the material is new or whether similar results have been obtained or published elsewhere.

5. Significant results.

Please transmit abstracts and author identification to:

Dr. Paul Cooper

Ingersoll-Rand Research, Inc. P.O. Box 301

Princeton, New Jersev 08540

Closing date for submission is March 1, 1978. Notification of acceptance will be mailed by May 1, 1978. Author prepared mats of the complete paper ready for reproduction must be submitted to the same address by July 1, 1978. Completed papers must conform to ASME standards as published in the Journal of Fluids Engineering.

Organizers for the Symposium are: Professor Brennen, Division of Engineering and Applied Science, California Institute of Technology; Dr. Peter W. Runstadler, Jr., Creare Incorporated, and Dr. Paul Cooper, Ingersoll-Rand Research, Inc.

## Auspices

Fluids Engineering Division, Polyphase Flow and Fluid Machinery Committees, American So-ciety of Mechanical Engineers.

would be useful for introducing the subject at meetings, television talk shows, management briefings, social occasions, etc.

Members desiring the loan of a copy of the film should contact the Director of Public Relations directly at the following address. Copies are also for sale at \$100 each. The film is 16mm, color, and is in sound. Running time is eight minutes.

Director of Public Relations, ASME

345 East 47th St., New York, N. Y. 10017

## Wembley Conference Centre, London, England April 9-13, 1978

Preliminary travel notice of the 1978 Gas Turbine Conference scheduled for the Wembley Conference Centre, London, England, April 9-13, 1978.

If you are a member of the Gas Turbine Division you do not have to send these forms in as you will be receiving the complete instructions. If you are a Non-Member from North and South America only, please send these forms to:

ASME COORDINATORS

I.C.C.A. VACATIONLAND-TRAVELTOURS, Inc.

25 West 43rd Street, New York, N. Y. 10036

If you are a Non-Member of ASME and located outside of North and South America, please send these forms to:

I. Mech. E. — General Arrangements Committee

1, Birdcage Walk, Westminster

LONDON, SW1H 9J5, England

The ASME Travel Coordinators have planned a basic program in London which will include air transportation, hotel accommodations, transfers, breakfast, service charge and a sightseeing tour of London.

In addition to the basic Congress program there will be offered post Congress tours to Great Britain and the Continent as indicated in the survey below.

In order to help us plan the most convenient and economical travel arrangements, please indicate your travel interest on shart survey below and mail it to us as soon as possible.

ASME TRAVEL COORDINATORS I.C.C.A.-International Congress and Convention Association or I. Mech. E.

I would like to receive more information on

Post Congress Program: .....Scotland & Wales .....Ireland

......France --- Paris & Chateaux de Loire Valley .Germany --- Cologne, Rhine River, Heidelberg, Romantic Road, Munich Zurich

Copenhagen Independent travel (F.I.T.). 1 am interested

Please return this survey with the other request at your earliest convenience to: International Congress and Convention

Association (ICCA) or 1. Mech. E.

| Name                                          |
|-----------------------------------------------|
|                                               |
| Address                                       |
| City                                          |
| State Zip                                     |
| Country                                       |
| Telephone (Home)                              |
| (Office)                                      |
| Number of persons expected to travel:         |
| Adults Children                               |
| I want to stay a total of days on this trip.  |
| I would like to receive more information on:  |
|                                               |
| My gateway for my flight will be:             |
| New York Boston Philadelphia Washington Miami |
| Chicago Detroit Los Angeles Montreal Toronto  |
| (Please circle.) or                           |

## AMERICAN NUCLEAR SOCIETY

They asked many energy experts about the future of nuclear power, and published many replys all stating we must have nuclear power plants. The following is quoting from 3:

Dr. Bernard Cohen, Professor of Physics, Uni-versity of Pittsburgh . . . "The calculations indicate that if we ran nuclear power in this country for

a million years, you would still have less than one fatality per year resulting from nuclear wastes." Ronald Thomas, Head, Wind Power Office, NASA Lewis Research Center (Ohio) . . . "I'm not looking for windmills to replace nuclear or any that routing directly but routing the devalue other source directly, but really to develop the alternative forms of technology and energy that are available and use them where it makes sense." Dr. Norman Rasmussen, Professor of Nuclear Engineering at MIT . . . 'I think it would be a serious mistake to stop the building of nuclear power plants at a time when the enery crisis is so critical.''

## A. N. S.

The American Nuclear Society recently sent an interesting statement to its members (I was one of 50 who helped form the ANS over 20 years ago): 'You are not alone—Ten thousand other pro-

fessionals share your dedication to progress in the nuclear industry."

R. Tom Sawyer, Publisher (IF YOU WISH ANY FURTHER INFORMATION, CONTACT ME)

## "GASOLINE"

Why use gasoline when diesel or jet fuel is excellent for the gas turbine car—not a dangerous

fuel carll "GASOLINE IS DANGEROUS—Is it worth risk-ing your life and your car. Motorists who carry an extra 5 gallons of gasoline in the car trunk are exposing themselves to the danger of explo-sion and fire." Quoted—Fire Dept. Quoted-Fire Dept.

## PAY YOUR OWN WAY OVER AND BACK TO ENGLAND AND/OR AUSTRALIA

We knew a man whose boss said we have a short job for you in Australia, do you want to go and the man said sure. The boss then said t should have said, you will have to pay your own way over and back and the man said O.K. and he went.

Onward and upward with gas turbines, The finest kind of power of them all; Small ones and large ones

The simplest kind of units to install. Now there are turbines on the ocean On the land and in the air They're even used in outer space Turbines, turbines every place! Onward and upward with gas turbines; We love to hear their gentle, quiet call The greatest kind of power of them all! Now we are building combined cycles, With energy from any kind of fuel;

All easy to run ones

| "ONWARD | AND | UPWAF  | ND WI | τн | GAS | TURBINES" |  |
|---------|-----|--------|-------|----|-----|-----------|--|
|         | by  | Arthur | Kent, | AS | CAP |           |  |

| Please Send me<br>Gold Lapel Button<br>Yes   No  <br>\$15.00 | <ul> <li>*Onward and Upward With Gas Turbines</li> <li>No □</li> <li>Please send me a 45 RPM record — \$1.0</li> <li>Yes □</li> <li>the official Gas Turbine Division Son</li> </ul> |
|--------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Type <b>Member</b>                                           | Name                                                                                                                                                                                 |
| For Lapel Button                                             | Company                                                                                                                                                                              |
|                                                              | Address                                                                                                                                                                              |
| 111                                                          | CityZip                                                                                                                                                                              |
| Mail to: R. To                                               | m Sawyer, Box 188, Ho-Ho-Kus, N. J. 07423                                                                                                                                            |

We're making projections In many directions That turbine power's gonna be the rule. This is a vision of the future,

For centuries to come; Turbine cars are so complete

All the rest are obsolete!

Perfect solution to cut pollution,

We love to hear their gentle, quiet call, Gas turbines are the greatest of them all!

6

Austria-Switzerland — Vienna, Salzburg, .Scandinavia — Bergen, Oslo, Stockholm,

in visiting the following cities:

..... ..... .....

TECHNICAL PROGRAM – 1978 GAS TURBINE CONFERENCE 50% USER ORIENTED SESSIONS (SHADED SESSIONS ARE USER ORIENTED)

|            |                                     |                                                            |                                                                                          |                                                                                                          |                                                                                         |                                                              | and a state of the |                                                                            |
|------------|-------------------------------------|------------------------------------------------------------|------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|--------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|
|            | APRIL 13, 1978<br>THURSDAY – A. M.  | TURBOMACHINERY<br>Flow instabilities<br>in Turbomachines   |                                                                                          | ELECTRIC UTILITIES<br>Operating and<br>Maintenance<br>Experience                                         | PROCESS INDUSTRIES<br>Operating<br>Experience                                           | <u>MARINE</u><br>Gas Turbine<br>Development                  | COMBUSTION &<br>FUELS<br>Emissions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | AIRCRAFT<br>Propulsion<br>Technology                                       |
|            | APRIL 12, 1978<br>WEDNESDAY – P.M.  | TURBOMACHINERY<br>Flow Instabilities<br>in Turbomachines 1 | TURBOMACHINERY<br>Radial Turbo-<br>machinery - 11                                        | ELECTRIC UTILITIES<br>Fuels                                                                              | PROCESS INDUSTRIES<br>PANEL: Heat Reco-<br>very Application<br>and Experience           | MARINE<br>Marine Gas Turbine<br>Future Prospects             | COMBUSTION &<br>FUELS<br>Combustors                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | EDUCATION<br>Education in Gas<br>Turbines                                  |
|            | APRIL 12, 1978<br>WEDNESDAY – A. M. | TURBOMACHINERY<br>Geometric Effects<br>in Turbomachinery   | TURBOMACHINERY<br>Radial Turbo-<br>machinery - 1                                         | CLOSED CYCLES<br>Nuclear Closed<br>Cycle Gas Tur-<br>Bines                                               | PROCESS INDUSTRIES<br>PANEL : Impact of<br>Regulatory Acti.<br>vities                   | MARINE<br>Marine Gas Tur-<br>bine Experience                 | COMBUSTION &<br>FUELS<br>Combustion                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | AIRCRAFT<br>Propulsion Systems<br>Integration                              |
|            | APRIL 11, 1978<br>TUESDAY – P. M.   | TURBOMACHIN <u>ERY</u><br>Axial Turbo-<br>machinery - 1V   | VEHICULAR<br>Vehicular Turbine<br>Components - 11                                        | COAL UTILIZATION<br>ELECTRIC UTILITIES<br>PANEL                                                          | PIPELINES &<br>APPLICATIONS<br>PANEL Discussion<br>of G.T. Maintenance<br>for Pipelines | HEAT TRANSFER<br>Heat Transfer in<br>G.T. Hot Section<br>11. | COMBUSTION &<br>FUELS<br>Fuels                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | AIRCRAFT<br>Propulsion Mainte-<br>nance, Overheul &<br>Life Cycle Cost     |
| אוואריר אר | APRIL 11, 1978<br>TUESDAY – A. M.   | TURBOMACHINERY<br>Axial Turbo-<br>machinery - 111          | EDUCATION PANEL<br>Education to meet<br>Manpower Needs of<br>the Gas Turbine<br>Industry | COAL UTILIZATION<br>The Coal fired Gas<br>Turbines as a Peak<br>Load Intermediate<br>or Base Load Device | CLOSED CYCLES<br>Closed Cycle<br>Turbomachinery                                         | HEAT TRANSFER<br>Heat Transfor in<br>G. T. Hot Section<br>1. | CONTROLS &<br>AUXILIARIES<br>Aircraft Gas<br>Turbine Controls                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | AIRCRAFT<br>Advanced Small<br>Engine Systems                               |
|            | APRIL 10, 1978<br>MONDAY – P.M.     | TURBOMACHINERY<br>Axial Turbo-<br>machinery - 11           | VEHICULAR<br>Vehicular Turbine<br>Components - 1                                         | COAL UTILIZATION<br>Open Cycle Gas Tur-<br>bine Operating with<br>a Coal derived Fuel                    | PIPELINES &<br>APPLICATIONS<br>Economic Evaluation<br>Practices for G.T.<br>Selection   | STRUCTURES &<br>DYNAMICS<br>Aeroelasticity                   | CONTROLS &<br>AUXILIARIES<br>Industrial Gas<br>Turbine Controls                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | A IRCRAFT<br>V/STOL Seminar                                                |
|            | APRIL 10, 1978<br>MONDAY – A.M.     | <u>TURBOMACHINERY</u><br>Axial Turbo -<br>machinery – 1    | VEHICULAR<br>European Turbine<br>Developments                                            | COAL UTILIZATION<br>Conversion of Coal<br>to Useful Gas Tur-<br>bine Fuel                                | PIPELINES &<br>APPLICATIONS<br>Gas Turbines as<br>Pipeline Compres-<br>sor Drives       | STRUCTURES &<br>DYNAMICS<br>General                          | CERAMICS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | AIRCRAFT<br>Aeroproplusion<br>Technology to<br>Meet Future<br>Energy Needs |

## GAS TURBINE NEWS

7

## EXHIBITORS - 1978 LONDON PRODUCTS SHOW

AAR Technical Service Center ACMI Industrial Division, American Cystoscope Makers, Inc. AEG---Kanis Turbinenfabrik GmbH A.E. Turbine Components Ltd. Alfa-Laval/DeLaval American Air Filter Co., Inc. The American Society of Mechanical Engineers, Membership Dev. The American Society of Mechanical Engineers Paper Sales Associated Engineering Group A.E. Turbine Components Ltd. The Glacier Metal Co., Ltd. Baird Atomic, Inc. BBC-Brown, Boveri & Co. Ltd. BBC-Brown, Boveri & Co. Ltd. BEAMA-British Electrical and Allied Manufacturers' Association Limited Bell & Howell Electronics & Instrument Group Bently Nevada Corp. Bescon Div. of the Plenty Group Brush Electric Machines Ltd. Burnley Engineering Products Ltd. Ceagfilter und Entstraubungstechnik GMBH GMBH Chemtree Corp. Cooper Energy Services Curtiss-Wright Corporation Dana Corporation-Turbo Products Divisioon Diesel and Gas Turbine Progress Diesel and Gas Turbine Progress Donaldson Europe S.V. Daniel Doncaster and Sons, Ltd. Doncasters Blaenavon Ltd. Doncasters Monk Bridge Ltd. Hingley Rings Ltd. Doncasters Blaenavon Ltd. Doncasters Monk Bridge Ltd. Elliot Co. Elliot Co. ETSCO, Ltd. Power Services, Inc. Energy International Environmental Elements Corporation GKN Farr Filtration Ltd. Fern Engineering Co., Inc. Fiat Termomeccanica E Turbogas S.P.A. Firth Brown Ltd. The Firth-Derihon Stampings, Ltd. Fluidyne Instrumentation The Garrett Corp. AiResearch Manufacturing Co. of Arizona Div. Gas Turbine Publications, Inc. have changed—see Turbomachinery Publications Turbomachinery Publications GEC, Gas Turbines Ltd. General Electric Co. Gilbert Gikes & Gordon, Ltd. Glacier Metal Co. Ltd. Gloster Saro Ltd. Harrison Radiator Div. GM Corp. Hawker Siddeley Dynamics Engineering, Ltd. Hawker Siddeley Group Ltd. Brush Electrical Machines Ltd. Gloster Saro Ltd.

## GAS TURBINE NEWS

## 1978 INTERNATIONAL Constitution of the second invites your firm PRODUCTS SHOW to participate at INTERNATIONAL GAS TURBINE WEMBLEY CONFERENCE CENTER LONDON, ENGLAND, APRIL 9-13, 1978

For information on the Products Show please contact: J. W. Sawyer, Exhibit Director, Gas Turbine Division, ASME 24 WALNUT COURT, HENDERSONVILLE, N. C. 28739 one: 704-693-0188 Telex: 899133 WHITEXPO

-Telephone: 704-693-0188

Hawker Siddeley Dynamics Engineering Ltd. High Duty Alloys Forgings Ltd. F. N. Herstal, Div. F.N. Formetal High Duty Alloys Forgings Ltd. Hingley Rings Ltd. Hollymatic Corp. Howmet Turbine Components Corp. Industrial Acoustics Co., Ltd. The Institution of Mechanical Engineers IRD Mechanalysis (UK) Ltd. John and Firth Brown Ltd. Firth Brown Ltd. Firth Derihon Stampings Ltd. River Don Stampings Ltd. Kahn Industries Inc. KEYMED (Medical & Industrial Equipment) Ltd. & Olympus Corp. of America Kingsbury, Inc. Kongsberg Gas Turbine and Power Systems or Kongsberg Vapenfabrikk/NATCO Kraftwerk Union A.G. Kulite Semi Conductor Products, Inc. Kuinte Semi Conductor Products, Inc. Lucas Industries (Lucas Aerospace) MAAG Gear-Wheel Co. Ltd. MAL Tool & Eng. Co. Maschinenfabrik Paul Leistritz GMBH Metrix Instruments Co. Noel Penny Gas Turbines Orion Corp. Pequot Publishing Co. Gas Turbine World Petrolite Corporation Power Services, Inc. Projects, Inc. River Don Stampings, Ltd. River Don Stampings, Ed. Rolls-Royce Limited Industrial and Marine Division Ruston Gas Turbines Ltd. Serck Heat Transfer Simmonds Precision Products Inc. Herman Smith Ltd. Solar Turbines International of International Harvester Co. International narvester Co. A.P.V. Spiro-Gills Ltd. SSS Gears Ltd. Stal-Laval Turbin AB Sulzer Brothers Ltd. TRW Defense & Space Systems Group Turbomachinery Publications Turbomachinery International

Turbomachinery International Turbomachinery Catalog & Work Book

Ultra Electronics, Ltd. U.S. Dept. of Energy, Div. of Transportation Energy Conservation United Technologies Corp. Utica Division, Kelsey-Hayes Co. Vosper Thornycroft (UK) Ltd. James Walker Ltd. Westinghouse Electric Corp. Henry Wiggins & Co., Ltd. Woodward Governor Company

## SUMMARY OF PRELIMINARY **PROGRAM FOR** LONDON CONFERENCE

ASME Headquarters and also I. Mech. E. will be sending this preliminary program out to all members of the Gas Turbine Division and others members of the Gas lurbine Division and others interested in gas turbines. This program may not go out for another month but if you have not received your copy by January 1st, I suggest you request a copy from Nancy Potter, Publisher's Secretary, P.O. Box 188, Ho-Ho-Kus, NJ 07423

The program for the London conference be the largest this division has ever had. There be the largest this division has ever had. There will be over two hundred papers plus six panel sessions. For the first time in history, it looks as though we will be using four full days, which includes Thursday afternoon for the presentation of papers. The preliminary program will not show the Thursday afternoon but the final program will because many of these toreings have a general. because many of these sessions have as many as 12 or 13 papers which of course is entirely too many for one session.

It is interesting to note that most of the au-thors listed in this same space in the August newsletter, are from overseas and have had a great deal of experience with the closed cycle gas tur-bine. For example, Mr. Deuster, who is presenting a paper on the Oberhausen No. 2 plant, was in charge of the Oberhausen No. 1 plant ten years ago. At that time when Tom Sawyer visited the plant, powdered coal was being blown into the boiler which contained air in the tubes and the extra heat was used to heat a large row of apartment buildings giving an overall efficiency of 80 %.

All types of gas turbine papers are being pre-sented and this is a conference that will be very well worth attending.

## Recent Exhibits in U.S. and Overseas

Gloster Saro Ltd.

| Necejii Exhibits in O.          |                  |                |            |        |           |             |              |
|---------------------------------|------------------|----------------|------------|--------|-----------|-------------|--------------|
|                                 | 1971             | 1972           | 1973       | 1974   | 1975      | 1976        | 1977         |
| Location                        | Tokyo            | San Francisco  | Washington | Zurich | Houston   | New Orleans | Philadelphia |
| Number of Exhibitors            | 40               | 111            | 121        | 106    | 122       | 100         | 102          |
| Number of Booths                | 60               | 267            | 277        | 260    | 259       | 230         | 2782         |
| Attendance                      | 3630             | 2210           | 2556       | 3210   | 2836      | 2800        | 224          |
| Number of Companies Represented | 566(67)b         | 674 (93) a     | 663 (94) a | 714    | 802(124)a | 774 (170) a | 640(140)a    |
| Number of Countries Represented | 17               | • 1 <b>9</b> 🔨 | 21         | 43     | 24        | 22          | 29           |
| a. Organizations Outside U.S.A. | b. Outside Japan |                |            |        |           |             |              |
|                                 |                  |                |            |        |           |             |              |

## 学会誌編集規定

- 原稿は依頼原稿と会員の自由投稿による 原稿の2種類とする。依頼原稿とは、会よ りあるテーマについて特定の方に執筆を依 頼するもので、自由投稿による原稿とは会 員から自由に投稿された原稿である。
- 原稿の内容は、ガスタービンに関連のある論説、解説、論文、速報(研究速報、技術速報)、奇書、随筆、ニュース、新製品の紹介および書評などとする。
- 3. 原稿は都合により修正を依頼する場合が ある。
- 4. 原稿用紙は横書き400字詰のものを使 用する。
- 5. 学会誌は刷上り1 頁約1800字であって,

1 編について, それぞれ次の通り頁数を制 限する。

 論説4~5頁,解説および論文6~8頁, 速報および寄書3~4頁,随筆2~3頁,
 ニュース1頁以内,新製品紹介1頁以内,
 書評1頁以内

- 6. 原稿は用済後執筆者に返却する。
- 7. 依頼原稿には規定の原稿料を支払う。
- 8. 原稿は下記の事務局宛送付する。
   〒160 東京都新宿区新宿3-17-7,
   紀伊国屋ビル,財団法人慶応工学会内
   日本ガスタービン学会事務局

(Tel 03-352-8926)

## 自由投稿規定

- 1. 投稿原稿の採否は編集幹事会で決定する。
- 2. 原稿料は支払わない。
- 投稿は随時とする。たじし学会誌への掲載 は投稿後6~9ヶ月の予定。
- 4. 原稿執筆要領については事務局に問合せること。

日本ガスタービン学会誌 第 5 巻 第19号 昭和 52 年12月 者 岡 崎 卓 編 集 郎 発 行者 入江 Æ 彦 (社)日本ガスタービン学会 **〒160**東京都新宿区新宿3丁目17の7 紀伊国屋ビル(財)慶応工学会内 T E L (03)352 - 8926振替 東京179578 印刷所 日青工業株式会社 東京都港区西新橋2の5の10 TEL (03)501 - 5151 非 売 品



٠.

1