

自動車用ガスタービンの未来に思う

豊田中央研究所 研究第1部 北 野 正 夫

私どもに随筆を書かせる編集者の意図は、功成り名遂げた先生がたのご高説と違って、現在技術開発の第一線にあって日夜奮闘している私どもの生の声・生の感想から、現在の技術の問題をえぐり出したいため、と推察して浅学の身をも顧りみずあえて筆を取ることにした。私の担当が熱交換器(以下HEと略称)を主としているので、話がHEに傾きがちになるのを御容謝願いたい。

私が自動車用ガスタービンの開発にかかわるよ うになったのは昭和43年で、トヨタ自動車工業 株式会社(以下トヨタ自工と略称)が当時試作研 究を進めていたガスタービンGT-1の回転蓄熱 式HEを豊田中央研究所が中心となって開発して いた頃のことである。当時ガスタービンは航空用 では確立された技術として、さらに性能を向上す べく多数の専門技術者が比較的狭い分野に深く解 析実験研究を進めるという恵まれた状況下にあっ た。しかし自動車用に関してはまったくの揺らん 時代で、研究者も少なくわからない所は手さぐり で開発を進めねばならない段階であった。空力な どのガスタービンの基本的なものは,多少要求は 違うとはいえ航空用で発達した技術を適用できる が、HE特にセラミック製コアを使用した回転蓄 熱式 HEは,英ローバ社がその試験成果を公表し ただけで世界的にも未知の技術であった。HEコ アの伝熱性能は, 伝熱工学の本をひもとけばかな りの程度まで予測計算も可能で、あまりむずかし い所はなかった。コアの製作は米コーニング社が 芸術品と言ってもよいくらいすぐれたものを造り あげており、セラミックコアを国産することはむ づかしすぎて当面は問題にならなかった。 GMと

(昭和53年1月9日原稿受付)

クライスラーは金属製の回転蓄熱式,フォードは 2 SC/IP/RE という複雑なサイクルで圧力 比 1 6 ということから伝熱式HEを用いている時代である。将来タービン入口温度が上昇すること も 考えに入れ,コスト,重量および大きさの点からもセラミックコアを使用した HEを開発しておく必要があった。

問題はシールである。それまでの初期開発の段 階でも駆動法や支持法などは比較的楽に解決され てきたが、シールとなるととても一筋なわで行け るようなものでないのが明らかとなっていた。な にしろかなり大きく,部分的に600~700℃ ぐらいの高温になるのが避けられない所で、空気 の漏れ量を極力少なくしかつ潤滑油なしで長時間 の運転に耐えねばならぬ部品である。当時はロー バ社のものが唯一の情報源であったので、ほぼロ - バ社のものと同一構造のものを作り(これを我 々はa型シールと呼んでいた)試験していた段階 にあった。このシールの特徴は板厚 0.0 5 mmの耐 熱鋼製ベローズをステンレス製フランジおよびし ゅう動板にろう付けし、しゅう動板上約1mm厚さ の酸化ニッケル溶射層を摩擦材として持つもので あった。前任者の努力によりその原形はほぼ出来 上っていたが、その間の苦労も大変なものであっ た。例えばろう付け技術だけでも、なんとか使い ものになるのに1年もの開発期間が必要であった。 このシールを少しづつ手直しして行き,約2年間 にa1型からa7型までテストして行った。途中 改良されて行くにつれ空気漏れ量が減って行き、 ついにみかけの漏れ量計測値が負になってしまい, 改めて漏れ計測法を検討し直した上、より精度の 高い方法に切り替えたエピソードもある。

しかしa型はいかんせんベローズの板厚が薄く,

どんなに手を入れても20時間も運転するとベロ - ズにき裂が入り、とてもエンジンに組み込んで テストするという所まで到達できなかった。その 頃エンジン自体の試験もかなり進み,タービンを 回すだけで四苦八苦していた状態から抜け出して, エンジン性能を評価できる状況に達して問題点も 明瞭になっていた。

ここでGT−1の予備的リサーチテストから— 歩進んだ試験に入るため、トヨタ自工でGT-1 を改良した出力125馬力,圧力比4.5のGT-11を試作する決定が下され、我々もGT-11 用のHE開発へと歩を進めることになった。しか も今度は初めから日野RM100型バスにそれを とう載し、実車テストを行なうことも決定された。 我々はGT-11用としてベローズの板厚も厚く し,かつベローズの柔らかさはa型よりも柔らか い 構造の C型シリーズの シールの 開発に取り掛か った。モデルだけの c - 1 型から実機サイズの c - 4型まで進んだ時, 1971年国際ガスタービ ン会議東京大会が開催されることが明らかとなり, トヨタもこのGT-11とう載バスを出品するこ とが決定された。

日野自工のチームを中心にして開発を急ぎ、G Tショウの約3か月前重役立ち会いのもと初めて のHE付きエンジン総合ベンチテスト,約1か月 前車両総合テストと順調にテストは進んで行った。 しかし我々実験部隊は大変で、連日深夜までエン ジン組立、実験、結果検討、対策手配、エンジン 分解と今ではとうてい考えられないくらいの強行 軍で、なんとか車両がまともに動くところまで持 って行ったのである。

この時使用したシールはc-5型であった。こ のシールは、定常状態での性能はすぐれているの だが、温度が急激に変化すると漏れが激増する不 ぐわい点を持っていた。これをなんとかだましだ まし使っていたわけである。その後も引き続きシ ールの改良を重ねて行き, エンジンも G T – 2 1, 150馬力となり、シールがc-21型になって やっとかなり安定して使用できるものに到達した。 それまではエンジンのトラブルがおきると,不ぐ わいの原因はだいたい HEとされてしまうのが常 であり, 50%は当っていた。

この時点で耐久テストを計画し実施してみると,

シールしゅう動面の摩耗のため、なんとわずか 3 0 0~500時間の寿命しかないことが判明し, まだまだ先の長いことが痛感された次第である。 その後の開発経過は1977年国際ガスタービン 会議東京大会で発表した論文¹⁾に詳しく述べたが, 一応の方向が出たというところで, まだまだ完全 なものと言いがたいというのが実情であろう。

自動車用ガスタービンの開発は、その要素の一 つを取ってみても上記のように大変な仕事である ことは明らかであるが、今後解決されねばならぬ おもな点はどんなところであろうか? をはじめ世界の大手の自動車会社が, 営々とその 開発努力をあきらめず続行している理由はどのへ んにあるのだろうか? これらは自動車用ガスタ - ビンを開発する際の基本の問題であって、とて も 私どもが論ずる資格のない 重大事であるとは分 かっているが,私なりに感じていることを述べて みようと思う。

ガスタービン・エンジンの特徴として普通すぐ 言われることは、小型、軽量、大出力、低振動, 低騒音,少ない部品点数,清浄な排気,多種燃料 の使用可能性,自動車用に適したトルク特性など, すぐ10項目ぐらいあげられるが、それでもなお 自動車用として日の目を見ないのは何故かを考え てみると、その問題点の第一にあげねばならぬの は、トヨタ自工中村顧問が常々言われているよう $(c^{2)3}$, 燃費であると思う。それは定格点の燃料消 費率ではなく、車両にとう載して実走行した時の 燃費(km/ℓ)が問題なのである。

自動車の走行燃費は、エンジンについて言えば ほとんどその低回転低負荷域の sfc とアイドリ ング燃費で決まる。これは自動車工業に携わって いる者の常識となっているが、大形、大出力、定 回転が主流のガスタービンの技術者には案外理解 されていない。そのためガスタービン屋が燃料消 費率と言う時は、設計定格点での価をまず持ち出 し、それを下げる方策を考えるのが普通である。 もちろん設計点の sfc を下げることは重要であ るが、それにもまして自動車用で重要なのは低負 荷時とくにアイドリング時の燃費がよいことなの である。このへんを理解してもらうため、少し資 料は古くなるがトヨタ1900cc ガソリンエン ジンの sfc と走行負荷(車重約1トン)を図1

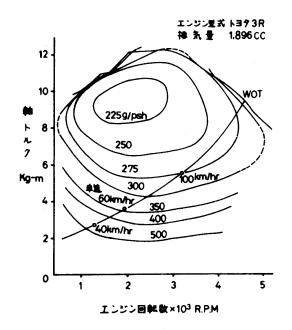


図1 sfc 曲線とR.L.曲線

に示す。 $^{4)}$ すなわち定常 50 km/h で走行している時は、最高出力の約 1/10 の 7 馬力しか使っていないことが分かる。またアイドリング時に消費する燃料の量は、走行時の燃料全使用量の 15% にも及ぶのが普通である。ただガソリンエンジンも sfc は $2209/PS \cdot h$ と言われているが、実走行状態ではそれよりはるかに悪い燃費率の所を使用しているのが実状である。

トラック,バスなどの大型車両については,乗用車より高負荷域の使用頻度が大きいが,やはり比較的低負荷域の sfc とアイドリング時の燃料流量が走行燃費の支配的要因であることには変りない。しかもこの場合競走相手は,部分負荷域での燃料消費率がガソリンエンジンよりたいそうよいディーゼルエンジンである。タービン入口温度が1200℃になっても,ガスタービンがディーゼルより実走行燃費の点で目だってよくなるとは考えられない。この分野ではガスタービンは,例えば観光用デラックスバスなどのごく限られた所にしか使われないのではなかろうか?

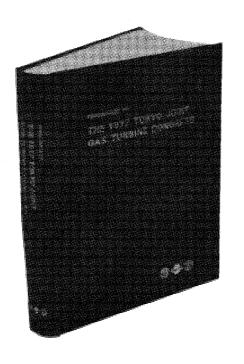
次の問題点は大きさと重量である。HEをやっていて気付いたことであるが、自動車用特に小馬力の乗用車用では、ガソリンエンジンに比べるとガスタービンは大型大重量なのである。その原因は熱交換器にある。伝熱式HEは比較的コンパクトにまとまる可能性があるが、タービン入口温度

の高温化に対し致命的欠点があるし、騒音も問題となる。現在もっとも一般的な円板状セラミックコアを使用した回転蓄熱式の場合、温度効率を90%以上にするとどうしてもガソリンエンジンよりかなり大きくなってしまう。

これを小型化する有力な手段はタービン入口温度の上昇である。 T 4を900℃から1200℃に上げると,各コンポネントの効率が同じなら,同一出力での空気流量は半減しH E も直径を約0.7倍に小さくできる。しかしこのとき圧縮機,タービンも小さくなり効率の低下が避けられない。小型でも高い効率のコンプレッサ,タービンを追求することが重要となるゆえんである。

コストもかなり重要である。GTのうちもっとも金がかかりそうなのがHEである。クライスラーが従来の一般的配置であるメインハウジングの両側に2個のHEということから、今度の性能向上GTでHEを1個にしたのは当を得たことであって、売り出すことが前提のときはHE2個はあって、売り出すことが前提のときはHE2個になったとき、今の円板型コアは何とも配置上ぐわいのの空気漏れを押えるのにさらに一くふうを要すると思われる。1個ならば円筒状のコアのほうがすっきりすると思われるが、そのシールを考えたとき、実用になるシールの開発ができるのだろうかという疑念のほうが先に立つのが実感である。

石谷先生はかって本誌に「動力の真の画時代的 転 換は,かって蒸気機関の発明直前に(中略)動 カ問題で苦しんだのと同等以上の行き詰まりを経 験した上ではじめて来るのかも知れない。」⁵⁾と 述べられたが、自動車について今後20年の間に そのような条件が成立する可能性は多い。石油シ ョック以来にわかに関心を集めているエネルギ問 題は,今後自動車にも深刻な影響を及ぼすのは明 らかである。各界のおおかたの予想をながめて見 ると、1985年頃には石油の相対的不足が顕在 化しそれ以後は燃料はかなり高価格になって行く だろうというのが一般的である。しかも燃料の質 あいわゆるワイドカット化,メタノールブレンド などなど悪化の一途をたどるらしい。すなわち自 動車にとってその燃費および多種燃料の適応性が もっとも重大なポイントとなる時代は目前に迫っ


ていると思ってよいようである。

このような時代になったとき、自動車にとって ガスタービンは現在のガソリンエンジンを凌駕す る性能を発揮し得る代替エンジンの第1候補なの だと思う。 我々はさらに今のガスタービンの改良 に努めて、よりよい自動車用GTを一日も早く仕 上げるのに努力を集中せねばならぬとつくづく思 う。

文 献

- (1) Kitano, ほか3名, 1977 Jokyo Joint GT Congress, paper No.10 (1977)
- (2) 中村健也, JSME, 新型原動機に関するシンポジウム(第3回)資料(昭和51年)
- (3) 中村健也,日本機械学会誌, Vol. 79, Na 694 (昭和51年),859
- (4) 野平英隆, トヨタ技術, Vol. 21, Na 3 (昭和45年), 171
- (5) 石谷清幹, GTCJ 会報, Vol. 1, No. 4 (昭和49年), 3

おしらせ

昨年5月、日本ガスタービン学会(GTSJ)、日本機械学会(JSME)ならびに米国機械学会(ASME)三者共催で開催されました"1977 Tokyo Joint Gas Turbine Congress"において発表されました論文および討論を含めたProceedingsが完成いたしました。当Proceedingsの予約申込を頂いた方々には既に配布いたしましたが、なお若干の残部がございますので、ご希望の方はガスタービン学会事務局にお申込の上、下記銀行宛ご送金下さい。

記

内 容:特別講演2編, 論文(討論付)66編, 会議記録を含め国際版618ページ。 上製本。

代 金: 15,000円 (郵送料込)

申込先:〒160 東京都新宿区新宿3-17-7

紀伊国屋ビル慶応工学会内 (社)日本ガスタービン学会

Tel. 03 - 352 - 8926

振込先:第一勧銀新宿支店普通預金口座

日本ガスタービン学会 066-1423331

輸出ガスタービンの近況

日立製作所 電力事業本部 樗 木 康 夫日立製作所 日 立 工 場 滝 川 和 夫

1. 緒 言

日本国内においてもガスタービンは広く各分野で活躍しているが、日本国内において 生産されるガスタービンは多数輸出もされており世界各地で使用されている。

この輸出ガスタービンは用途,燃料ならびに設置される環境もさまざまで,かつ熱サイクル,容量,形式なども色々なものがあり一様に論ずることはできない。そこで,非常に狭い範囲となるが筆者の属する日立製作所におけるがスタービンの輸出状況を中心に市場の特殊性などについて述べる。

SYRIA (4) PAKISTANG) PAKISTANG) THAILAND(4) PAKISTANG) PARADIZ PARADI

図1 日立-GE型ガスタービンの納入実績

2. 納入実績と引合状況

弊社のガスタービン納入実績と現在の引合い状況から、ガスタービンの輸出市場と、その需要状況を纏めると次の通りとなる。

納入したガスタービンはヘビィーデューティー型単純開放サイクルで、発電用、および、メカニカルドライブ用のパッケージ、ユニットが大部分である。各輸出先と納入台数は、図1の通りであり、世界各地で順調に運転している。また、年度別の納入台数は表1に示す通り、オイルショック

時の世界的な不況で、納入台数が1時的に減少したが、その后、経済情勢の安定とともに、中近東産油国の大規模な経済開発計画により電力需要が急激に増加し、短納期のガスタービン発電設備が多量に発注され納入台数が、増加している。

最近の引合状況を地域別に纒めると表2の通り 納入実績とほぼ同様に中近東、中南米が、主要な 市場であることが明らかである。また、引合内容 は、従来、発電用が主体であったが、メカニカル ドライブ用が増加しつつあると同時に、大容量化 の傾向にある。

(昭和53年2月20日原稿受付)

表 1 累積納入実績(台数)

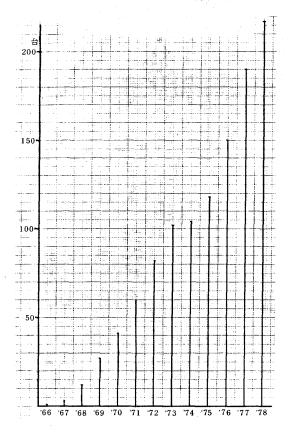


表 2 ガスタービン引合状況

表 2-1 地域別

地域	引合係数(%)
中 近 東	6 0
中 南 米	2 5
アジア	1 3
国 内	2

表2-2 用途別

容量(モデル)	引合件数 (%)	発電用 メカニカル(%) ドライブ用
$\sim 10 \text{ MW} $ (MS-3000)	2 0	0/100
$\sim 25 \text{ MW}$ (MS-5000)	6 0	50/50
$\sim 65 \text{MW} \ (\text{MS}-7000)$	1 5	1 0 0 / 0
~ 9 5 MW (MS-9 0 0 0)	5	100/0

3. 日立- C E 型ガス タービン

3-1 標準仕様 日立ーGE型ガスタービ ンの本体は完全に標準化されており, 用途の多様 化,大容量化及び,短納期体制の確立等,ユーザ の要望に適確に答えるべく準備している。ガスタ - ビンの要目については会誌Na.13(1976.6) を参照されたい。

3-2 メカニカルドライブ用ガスタービン

メカニカルドライブ用2軸ガスタービンは,産 業機械駆動用原動機として長年にわたり広く使用 されて来たが、特に、近年その応用分野のひとつ として、需要が着実に増加しているものに天然が ス圧送用のブースターステイションがある。

この2軸ガスタービンの特長は出力軸が定格速 度の50%から105%の広範囲にわたる速度領 域で、出力特性が1軸ガスタービンに比較して非 常に優れていることである。すなわち,ガスター ビン用圧縮機の速度は圧縮比に応じた最適な速度 に維持しながら, 負荷側はプラントの要求に応じ た最適速度に調整できることである。

たとえば,天然ガスパイプラインのブースター ステイションでは吐出圧力を一定に制御する運転 が行なわれる場合が多い。この時プラントの入口 圧力と流量の関係は図2の点線となる。これに対 して同図上の、1軸ガスタービンと2軸ガスター ビンの運転可能範囲を対比すると, 2 軸機が非常 に広範囲なパイプライン特性に適応できることが 明らかである。すなわち、2軸ガスタービンがメ カニカルドライブ用として,理想的な特性を有し ていると云える。

弊社では, このメカニカルドライブガスタービ ン全般に適用し得るアプリケーション・エンジニ アリングが確立され,システム計画のためのシュ ミレータが完成しており, 今後の計画に柔軟に対 処し,適正なシステム計画,機械構成を作ること が可能となっている。

3-3 付属設備 これらが日立-GE型ガ スタービンの本体に関する標準仕様であるが,納 入先の気象条件,運転状態,燃料の種類によって 付属設備が大巾に違って来る。

都市に設置される場合には,公害対策を十分に 考慮したプラントとして、騒音は境界線で55dB (Aスケール) 以下とすることが可能である。

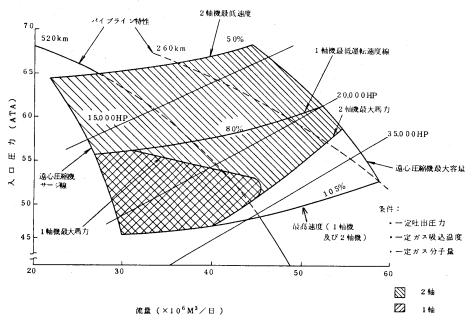


図2 パイプライン圧縮機運転範囲(大気温度15℃)

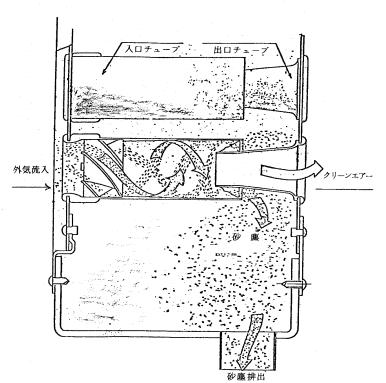


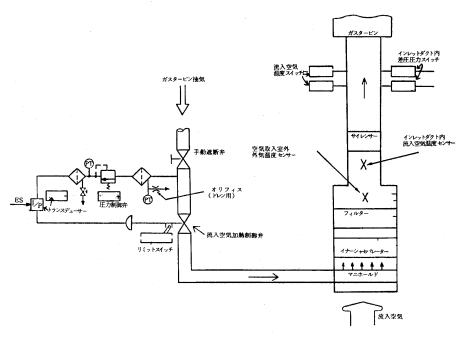
図3 砂塵分離装置

砂漠地域では、空気取入室にサンドストーム時の砂塵分離装置が必要である。この1例を図3に示す。又寒冷地では凍結防止策として図4の系統を採用している。外気温度の高い地域では冷却水系統を始め各部の冷却には、細心の注意が必要で

ある。

ガスタービン用の燃料としては軽油が最も多くのユニットに使用されており、軽油専焼又はガスと軽油焚が標準仕様となっている。しかし、液体燃料については、種類に応いなができる。とによって、原油からナフサまで使用することができる。

以上のごとくガスタービンの標準仕様品と付属設備の選 定組合せによって世界のいか なる地域でも設置し要求に応 じた運転することが可能であ


ガスタービン市場の動き

最近のガスタービン市場は地域別に次の 様な特長を持っているが、一般にこの1~ 2年ガスタービン設備の輸出が、急増して 来た要因は、オイルショック後、産油国で 経済開発計画が次々と立案され、推進され た結果である。とくに, 中近東産油国諸国 では、オイルショックによって獲得した豊 富な外貨によって,石油輸出後の経済自立 を目指して、大規模な経済開発計画を推進 しており, 基礎産業である電源開発, エネ ルギー開発が大きく,クローズアップされ, 砂漠地帯に適したガスタービン設備が注目 されて来た。又、これら諸国の大型プロジ ェクトとして石油精製,石油化学プラント, 海水淡水化プラント等が多数計画されて 居り, これらの電源及び熱源としてガスタ - ビン発電設備が多く輸出されている。

しかし、現地の受入れで港湾設備,内陸輸送 に問題が多く、さらに現地土木、据付工事の未 熟さ、技術者の不足から、フルタンキーベースの

商談が多くなっている。さらに最近では,現地技術者及び運転員の指導教育訓練だけでなく,運転の責任を負わされ運転員までメカー側で供給しなければならなくなって来ている。

4-1 砂漠の中に1000MWガスタービン発

空気取入室凍結防止策の系統

電所を建設ーイランー イランはホワイト・レ ボリューションによって経済開発計画を着実に推 進しつつあり経済成長率も,第5次5ケ年計画 (1973~78年)では25.9%¹⁾と非常に高い 目標を掲げている。この間にガスタービン発電設 備は全発電能力の 2 5.6 %を占め発電容量 1,232 MWとなっている。 $^{2)}$ この $1 \sim 2$ 年の夏に首都テヘ ランでは電力需要が急激に増加したため供給が間 に合わず,停電する地域が出ていた。この対策の ために、テヘラン近郊のレイに一大ガスタービン 発電所が急拠建設されることになり、別のサイト に予定されていたガスタービンを移設すると同時 に新規発注が行なわれている。 レイ発電所には現 在 2 3 MW 級ガスタービンが 1 5 台据付を完了し 稼動中であるが、さらに25 MW級が28台,80 MW級が3台、今年の夏期のピークまでには完成 予定で各メーカが鎬を削っている。この発電所に はガスタービンメーカー5社から納入予定されて おり、日立も18台受注据付中である。その規模 は1,000MWを超え、また工期の画期的な早さ からも記録的な発電所となる。写真1はレイ発電 所で運転中のガスタービンである。尚,次期5ケ 年計画ではガスタービン発電設備を36%増設 (450MW) する計画となっている。しかし、 1983年以后の電力開発計画の主流は原子力で あるが、非常用としてガスタービン発電設備は10 %の伸び率となる見込みであ る。

4-2 社会主義国におけ る東欧メーカとの競合ーイラ クー ガスタービン発電設 備の計画は1970年頃から 始まっており日・欧間の競合 で、わが国からの輸出が実現 したのは1976年からであ る。その後,順調に輸出は伸 びて来たが、社会主義国であ る理由からも,ソ連や東欧諸 国からの輸出が増加しつつあ り, 今后, イラクへの輸出競 争は激化すると考えられる。

写真1 レイ発電所ガスタービン

4-3 重電品は総て輸入 -サウジアラビヤー 中東最大の輸入国であり、1977年には重電 気製品(発変電設備)の64%を米国から、次に 英国から13%, 日本からは12%を輸入してい る。

この電力開発計画に対し、需要が急激に上昇し て居り,首都リヤドの夏期には連日の停電である。 このリヤド市内の主な発電所はすべてガスタービ ンを使用して居り, 停電解消のために新たなガス タービン発電所を建設中である。リヤドに於ては 欧州のガスタービンが70%, わが国が25%, ディゼルが5%の割合で使用されている。

又, サウジアラビヤには大型プラントが, わが

国から多数輸出されているが、この電源設備としてもガスタービンが使用されている。

4-4 天然ガス輸出で経済開発-アルジェリヤー オイルショック後、天然ガスが、先進工業国にとって、低公害エネルギー源として着目され、需要が増大している。アルジェリヤは世界4位の天然ガス埋蔵量を持ち、これをいかに輸出し、経済自立するかが、この国の重要課題となっている。

しかし, この天然ガスは内陸地, 砂漠の油田か ら採掘されるため, この圧送用パイプラインおよ び液化プラントが必要である。 現在, 天然ガス圧 送用ブースターステイションが建設中であり、弊 社もM5262A, 6台を納入している。今后も 大規模なプラントが計画されており、それらの電 源及び熱源用としてガスタービンが計画されてい るが、液化プラント、LNG運搬船の建造コスト が大巾に上昇する等の採算面の悪化等が論じられ 今後の急速な拡大は期待薄であるとの見方もある。 しかし、アルジェリア政府は強力に80年代以降 の欧米諸国の重要なエネルギー源として確固なる 地位を占めることを目標に積極的に政策を実行し つつある。その一つの表われとして従来のフラン ス一辺倒の経済活動から,自由貿易に方針を変更 して居り、わが国からも非常に大きなプラントが 輸出されている。

尚,アルジェリヤはフランス統治時代から熟練 労働者を持っており,教育水準も高く,近代国家 へ発展する要因を備えた国である。ヨーロッパ資 本との競合はあるが,あらゆる部門に亘って進出 の可能性がある。

4-5 エネルギー保有国ーソ連ー ソ連はエネルギーの自給自足が維持できる世界唯一の主要工業国であるとされている。そのエネルギー供給の増加は、シベリア資激開発、なかでも西シベリア地域の開発である。しかし原油、天然ガスの輸送、大量の鋼管需要、厳しい気候条件、開発コストの高騰、技術導入など、多くの問題が生じている。したがって、ソ連のシベリア開発は西側からの資金、技術導入あるいは開発協力が不可欠となり、一段と国際的な傾向を強めている。

シベリアの石油と天然ガスをソ連のヨーロッパ 側の地域に運ぶためのパイプライン建設はすでに 始まっており、この動力源として2軸型ガスタービンを納入している。写真2はブースターステイションの完成予想図である。しかし、東部シベリヤ開発によって、液化天然ガスと石油を日本および米国に輸出する広大な計画があり、尨大なガスタービン駆動のポンプステイションが建設されることになっている。

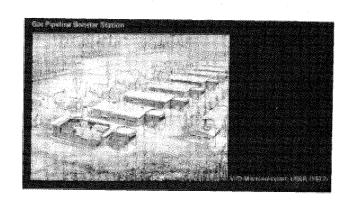


写真2 ブースターステイション完成予想図

4-6 大容量ガスタービンを計画中一東南アジア諸国ー 過去の実績,地理的優位性から多くの納入実績を上げているが,最近東南アジア諸国では経済情勢が悪化しつつある国が増加しており,従来の伸び率を下回っている。しかし,インドネシアは東南アジア最大の産油国であり,石油化学プラント,石油精製プラントの建設が順調に進行して居りこの電源設備としてガスタービン発電設備を輸出している。

東南アジア諸国は、中南米諸国と同様に中近東 諸国に比較し、技術者のレベルが高く計画的な電 源開発を行なっており、ガスタービンの大容量化、 及び効率向上が強く要求されつつある。この解決 策として蒸気タービンとガスタービンを組合せた コンバインドサイクルに興味を持って居り、具体 的な検討を行なっている。

4-7 建設ブームに沸くメキシコー中南米諸国ー 中南米諸国は、経済協力、経済外交がらみの商談が多い。技術者のレベルも高く、安定した経済成長のもとで商取引が行なわれており、ガスタービンの輸出も順調に伸びている。最近のメキシコは、南東部で発見された新油田に刺激されて多くの石油化学コンビナートが増設され、急激

な建設ブームとなって居り、電源設備として、ガスタービン発電設備が輸出されている。

5. ガスタービンプラント輸出の国際競争力の現状

ガスタービンの発電用プラント及びメカニカルドライブ用プラント等の国際競争力は着実にその 実力を養いつつあると考えられる。

5-1 信頼性向上 ガスタービンプラント の信頼性は工場出荷の際に十分な検査、試験によ って確認されるが、現地の苛酷な気候条件の下で, 目的とした機能を十分に発揮できるか否かは、運 転実績によって実証されるものである。したがっ て運転記録は非常に重要な技術情報であるが、輸 出プラントの運転記録を入手することは国内プラ ントと異なり非常に困難である。特に、中近東で は運転員の技術レベルが低いため、運転中の状態 変化を正常か否か、判断できない場合が多く、ガ スタービンが機能を停止するまで運転してしまう 例が多く,後日,技術的な解析が困難な場合があ る。よって、運転記録は常に所定の書式によって 記録し、整理、保存させることを強く指導してお かぬと、貴重なデータが砂漠の真珠となってしま い、技術力養成の芽を摘む結果となる。また、顧 客との情報ルートを常に維持するために、定期的 な巡回サービスによる情報交換が必要で、ここで 収集した情報も技術力養成の重要な鍵である。

ガスタービンプラントの計画立案が、海外のコンサルタントによって行なわれる場合があるが、これは技術力の問題ではなく商慣習によるものと見るべきである。しかし、我々もコンサルタント業務を充分理解し、実力を養う必要がある。

5-2 価格面での国際競争力 オイルショックの後遺症が完全に癒えない所に、円高の影響で、諸外国と対等に応札して行くには相当な努力が必要であり、従来にない激しい競争が行なわれている。コンポーネントの標準化と、仕様の標準

化, さらに工数低減等を細部にわたり徹底し, 激 烈化している国際競争力を養う必要がある。

5-3 アフターサービス 中近東諸国に於ては、フルタンキー・ベースの商談の増加、プロダクト・イン・ハンド方式の要請等によって、ガスタービンプラントの建設のみでなく、運転までもメーカーで責任を持たなければならぬケースが出ている。そのため技術者を製品と共に現地に送り込まなければならず、その人員確保が必要である。

中近東、中南米共にガスタービン輸出台数の増加により、技術サービス及び補修用部品の機動的な供給を行なうとともに現地技術者の養成が必要である。この具体的な手段として、世界各地に技術者を駐在させ、その任に当らせている。その活躍によってガスタービンの稼動率は非常に高くなり、同時に、信頼性向上に役立っている。この好結果は、次期計画への足掛ともなっている。

6. 結 語

ますます激しくなる輸出市場にあってガスタービンもまたその例外ではなく、その設置される環境、用途、燃料などにおける従来の経験を生かしきめの細かいアフターサービスを含めた技術力で国際競争力の低下を幾分でも緩和したいと念願している。

わが国において生産され輸出されているガスタービンは多種多様のものがあり、筆者のガスタービン輸出業務からはその全容を紹介することは困難で主観的見解を含んだ紹介になったかも知れないことをお断りしたい。

参考文献

- 1) 中邑, 海外市場 (昭51-8) 10
- 2) Inan Almanac, 1977

焼 結 耐 熱 合 金(その2)

三菱金属 中央研究所 西野良夫

3.2 鍛造 HIPあるいは、押出しで製造した焼結合金ビレットを鍛造する方法がおこなわれている。高温における合金の強度が高いためと、変形能が低いために、鍛造時の温度低下を防ぐ種々の工夫がなされている。焼結合金ビレットは、前述のように結晶粒度が細い(数十ミクロン)ために、銀造圧力は、Wrought 材よりも低い。(図12)

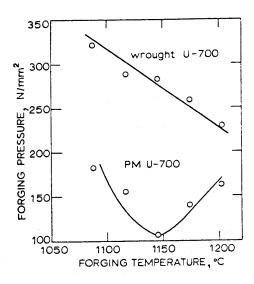


図12 Wrought 材と焼結材の鍛造温度と鍛造圧力の関係

焼結 Re ne '95 合金の変形抵抗を図13に示した。⁴⁾焼結 Re ne '95 の鍛造は,かなり容易におこなえる。

3.3 押出し 押出しは、熱間成形と熱間塑性加工を兼ねたもので、粉末粒子粒界(PPB)を破壊して新らしい粒内結合を生じる特徴がある。焼結合金の場合は、HIPのときと同じように金属カプセルの中に粉末を充填してカプセル内を真空にして封入した後、カプセルごと高温で直接押出しをする。多種類の焼結耐熱合金(Ni 基、Co 基)の棒が押出しで製造されている。また断面が複雑

(昭和52年8月29日原稿受付)

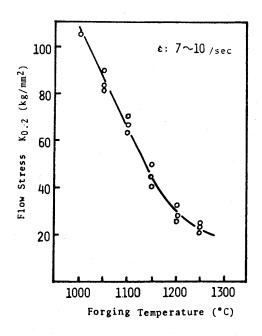
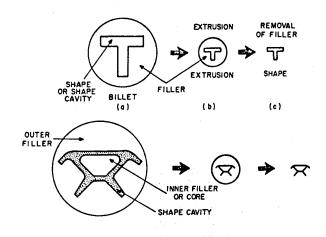
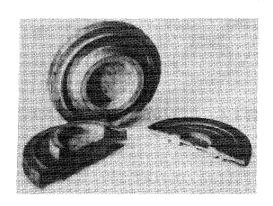


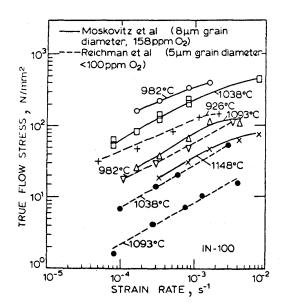
図13 焼結 Rene '95合金の圧縮変形抵抗




図14 Filled Billet プロセス

な形状をした焼結合金の押出し法が開発されている $^{12)}$ (Filled Billet技術、図 $^{12)}$)。最終製品形状と相似な形状をしたキャビティをもったFiller材(通常低合金鋼)のキャビティ内に粉末を充填して同時に押出す方法である。Filler材は、押出し後機械的あるいは化学的手段によって分離される。この手法によって焼結 12 1

Waspaloy, Rene'41 合金などに適用されて いる。


押出し材の組織は通常非常に微細(1~10μ) であるために、高温特性を向上する必要から粒成 長をおこさせる熱処理が必要である。通常押出さ れた棒材は、その後鍛造、圧延などがおこなわれ る。

3.4 超塑性鍛造 超塑性 (Super plasticity)とは、材料がある低流動応力下で、ネック なしに破断することもなく, 数100%から2,000 %にも達する巨大伸長の伸びをうるように引き伸 ばしうる現象で、微細結晶粒超塑性と変態超塑性 とに分類される。ここでは焼結合金の微細結晶粒 超塑性現象を利用しておこなう鍛造について述べ る。 Pratt and Whitney 社は超塑性現象を 利用して耐熱合金を鍛造するプロセスを Gatorizing 法と名付けて発表した $^{(13)}$ このプロセス は Wrought 材や Cast 材の耐熱合金にも適用 できるが、それらは偏析などを避けることができ ないために、組織の均一な焼結合金に適用されて いる。焼結合金の直接押出しを再結晶温度近傍で おこなって微細結晶粒のビレットを作り、低歪速 度 (0.5 in/in/min) で1,000℃~1,100 **℃**の温度で鍛造をおこなう (IN-100)。鍛 造圧力は非常に低圧力で通常の鍛造では、50.000 Tonプレスが必要な場合,超塑性鍛造では、わず か 1,650 Ton のプレスで鍛造できる。超塑性鍛 造で製造されたディスクの 1 例を図 15 に示した が翼付ディスクの鍛造も可能である。したがって

GATORIZINGプロセスで製造さ 図15 れた焼結【N-100合金のディスク

材料歩留の向上はいちじるしいものがある。

超塑性変形をおこなったP/M IN-100合金の歪速度と変形抵抗の関係

Reichman ¹⁵⁾や Moskowitz ¹⁶⁾ は、焼結 IN-100合金の超塑性について報告している。 図16には、変形応力と歪速度の関係を対数プロ ットで示した。直線の傾き (m値: 歪速度依存指 数)は両者の実験ともほぼ 0.5で一致しているが, 一定歪速度に対する変形応力には差がある。これ は、結晶粒度、酸素量などの差によるものと思わ れる。 Ewing ¹⁷⁾ も焼結 IN-79 2合金につ いて、ディスクの製造を超塑性鍛造でおこなって いる。鍛造圧力は低く, 時効後の特性(引張強度, ラプチャー強度,低サイクル疲労強度)は、通常 DD-979, Inconel 718, Rene'95 ₺ り高い値を示している。高温(760℃以上)で の使用では、結晶粒粗大化の熱処理が必要である。

焼結合金の強度をあげるために、結晶粒の形状, 方向および大きさをかえる加工熱処理 (TMT)

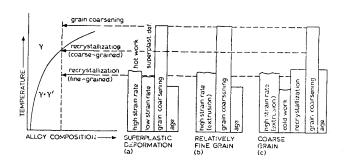


図17 焼結耐熱合金のTMT処理概念図

がおこなわれている。Ni 基焼結合金は主に結晶粒の大きさのコントロールがおこなわれる。TM T 処理の一般例を図1 7 に示した。 $^{18)}$

4. 機械的特性

高温で使用されるタービンブレードの場合は、クリープ、ラプチャー強度や伸びの特性が重要であり、中間温度で使用されるディスク材の場合は、高い降伏応力、引張強さ、低サイクル疲労強さなどが必要とされる。実際の機械的特性は、合金組成、熱処理、析出 γ' や炭化物の大きさ、分布、製造方法などによってきまる。焼結合金は、もと微細結晶粒で、多量の微細 γ' 、M C 炭化物が粒界にあるため中間温度領域では、高強度であるが、高温では、粒界すべりが変形の主役となるため、強度の低下は大きい。図18、19に焼結

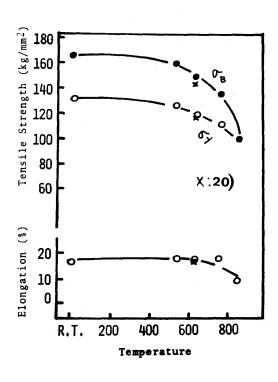


図18 焼結Re ne '95合金の高温引張強さ

Re ne'95 合金の高温引張特性⁴⁾とクリープラプチャー強度を示した。¹⁹⁾ 特性はいずれも Rene'95 の規格を満足している。図20,図21には IN -100 合金の特性を Cast 材と比較して示した。 焼結合金は上述のように結晶粒度が数十ミクロンとこまかいため中温領域においては、溶解材に比して強度が高い。高温のラプチャー強度は、押出しによって細粒(8μ)のものより As Hip'd

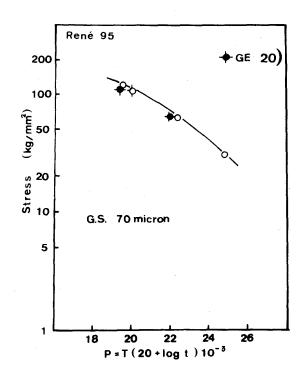


図19 焼結Re ne'95 合金のクリープ破断強さ

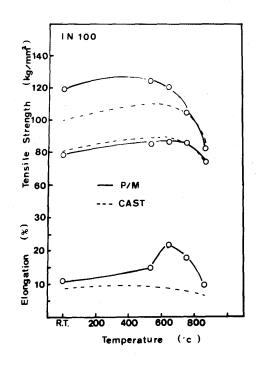


図20 焼結 IN-100合金の高温引張強さ

材($1\ 0\ 0\ \mu$)の方が高い値を示している $^{16)}$ 図 $2\ 2$ には,超塑性鍛造をおこない, $1\ 2\ 4\ 3\ ^{\circ}$ 、 $5\ 6$ 時間溶体化処理をおこなった焼結 $U-7\ 0\ 0$ 合金の特性を示した $^{11)}$ 図中示した点が焼結のデータで,線はカタログからとった値である。

高温における低サイクル疲労強度は,粗粒の方

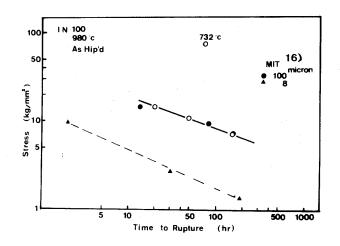


図21 焼結 I N-100合金の クリープラプチャー強度

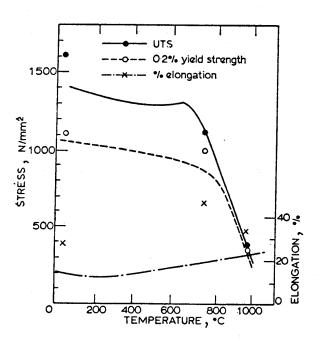


図 2 2 超塑性鍛造をおこなった焼結 U-700合金(点)とWrought U-700合金(線) の高温引張特性

が高いが、低温においては、細粒の方が高い。IN - 792を改良した焼結PA101合金は、482 Cにおいてディスク材として競合関係にあるWr-ought D-979, Inconel 718合金よりも高い低サイクル疲労特性を示す。 $I^{(7)}$ (図23)

5. 焼結合金の経済性

ここでタービンディスクを例にとって焼結合金のコストを考えてみる。(1) 通常の溶解法の場合は、インゴット→ビレット→鍛造(すえこみ)→

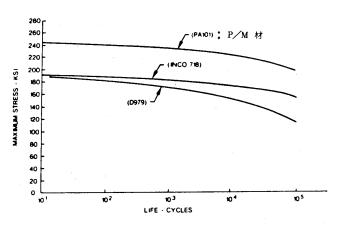


図23 482℃における低サイクル疲労強度

荒鍛造→仕上げ鍛造→機械加工→最終製品 (2) 焼結合金の場合は、粉末製造→単純形状HIP→鍛造→機械加工→最終製品 (3) 焼結合金の目標プロセスは粉末製造→最終形状HIP→最終製品である。以上の3つの製造プロセスについて考えてみる。図24に3つのプロセスについてのコスト解析を示した。 21)焼結のプロセスは、結局12~50%もの節約になる。TF-30ェンジンのディスクに用いられている Astroloy は、(1)のプ

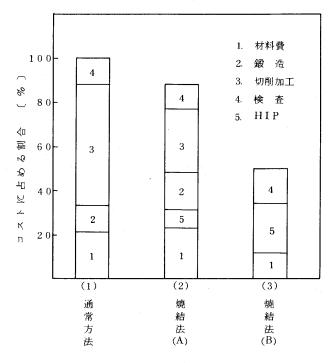
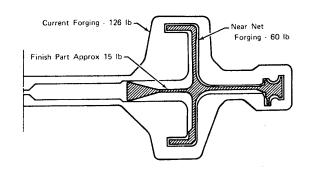



図24 ディスクの製造時の通常プロセスと焼結法のコスト比較(通常のプロセスを100とした場合)

ロセスで280lbのビレットを用いるのに対し て、(2)のプロセスで215 lbのプリフォームで 製造できる。¹⁰⁾ 図25には、F-100のディス クを示したが、製品重量15 lb に対して通常の

F-100エンジンディスク材の製 図 2 5 品形状,鍛造上り形状,およびGA TORIZING プロセス仕上り形状

鍛造では, 126 lb の原料が必要なのに対して, Gatorizing プロセスでは, 60 lb の原料で 製造できる $^{(10)}$ 以上のように、粉末化によるコス トダウンのメリットは大きい。

分散強化型合金

分散型合金は、1951年 Irman がSAP $(Al-Al_2O_3)$ を開発して以来,活発な研究開発 がなされており、鉛からモリブデンまで分散強化 理論に基ずき多数の合金系について報告されてい る。ニッケル基分散強化型合金としてニッケル中 にトリア (ThO₂) を分散させたTDニッケルが ある。このTDニッケルに Cr を添加して表面コ ーティングなしに1200℃まで使用できるよう にしたのがTDナイクロム(Ni Cr)である。

TDナイクロムを押出し加工後, 高周波誘導コ イルを移動させると,一端から他端へ順次再結晶 して、一方向にそろった細長い柱状晶あるいは、 単結晶をうることができる (ZAP, Zone Aligned Polycrystals)。この方法によって クリープ破断強さは、いちじるしく改善され、 1093℃, 10時間破断強さは, 11.6 kg/m² に達する。22)

Benjaminは,分散強化型合金の強化理論と, 従来の耐熱合金の強化理論とを組合せ、さらに粉 末冶金法のメリットを利用した材料を開発した $^{23)}$ これは機械的混合法 (Mechanical Alloy-

ing: 母相金属粉と分散粒子相(ThO2,Y2 O₂)をアトライターで高速回転混合、粉砕により 機械的に合金化される方法)に特徴があり、母相 金属と均一な分散相との混合粉末を得たのち、粉 末押出し法により高密度化した Ni 基合金である。 図26は,種々の温度におけるY,O,分散型耐熱 焼結合金の100時間ラプチャー強度を示し,低

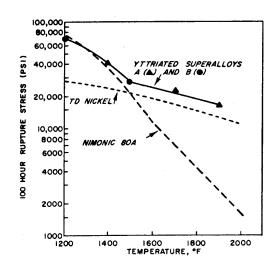


図 2.6 Y_2O_3 添加耐熱合金(分散強化型合 金)の100時間ラプチャー強度

温側では、Nimonic 80A 合金の析出強化に より高強度を維持し、高温側では、上記Y2O3の 分散強化によりTD-Ni と類似の挙動を示す。 高温強度でもほぼ同じような特性を示す(図27)。 高温耐食性、耐酸化性の点でも良好な結果を示し た。

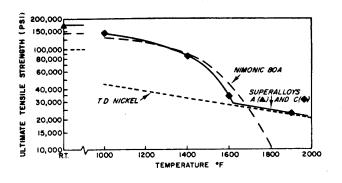


図 2 7 Y_2O_3 添加耐熱合金(分散強 化型合金)の高温引張強度

なお本文で使用した合金組成を表2に示した。

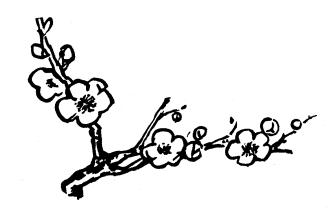
合金名	С	Mn	Si	Cr	Ni	Со	Мо	W	Nъ	Ti	Al	В	Zr	Fe	その他
16-25-6	≤0.08	1.35	0.70	16.0	25.0	_	6.0	_	-	_	_	_	-	残	0.15 N
A 286	0.05	1.40	0.40	15.0	2 6.0	_	1.25	-		2.15	0.2	0.003	_	残	0.3 V
Astroloy	0.0 6	_	_	15.0	残	15.0	5.25	_	_	3.5	4.4	0.03	_	_	_
C-101	0.16	-	_	1 2.2	残	9.0	1.95	3.95	_	4.1	3.4	0.015	0.11	_	3.95Ta 1.0 Hf
D-979	0.05	_	_	15.0	残	-	4.0	4.0		3.0	1.0	0.01	_	27.0	_
Inconel 718	0.04	0.20	0.30	19.0	残	-	3.1	_	5.0	0.9	0.4	_	_	1 8.5	_
IN-100	0.18	_		10.0	残	15.0	3.0	-	-	4.7	5.5	0.014	0.06	_	1.0 V
Nimonic 80A	0.07	0.5	_	19.5	残	1.1		-	_	2.5	1.3	-	_	_	
IN-792	0.21	-	_	1 2.7	残	9.0	2.0	3.9	_	4.2	3.2	0.02	0.1 0	_	3.9 Ta
Rene'95	0.15		_	14.0	残	8.0	3.5	3.5	3.5	2.5	3.5	0.01	0.05	-	_
Udimet 700	≤ 0.15		-	15.0	残	18.5	5.2	-	-	3.5	4.25	≤ 0.05	_	≤1.0	_
TD Ni Cr	0. 1	-	-	21.0	残	-	_	-	-	-	_	-	+	_	2.7Th O ₂
IN-738	0.17	≤0.20	≤0.30	1 6.0	残	8.5	1.75	2.6	0.9	3.4	3.4	0.01	0.10	< 0.50	1.75Ta
Rene'41	0.09	_	-	19.0	残	1 1.0	1 0.0	_	_	3.1	1.5	≤0.01	-		_
Was paloy	0.07	0. 5	0.5	19.5	残	1 3.5	4.3	_	-	3.0	1.4	0.006	0.07	≤2.0	-

表2 本文中に表われたおもな合金の組成

7. 結 言

焼結耐熱合金は、アメリカにおいてようやく実 用の域に入ったばかりで, これは合金粉末の製造, HIP, 超塑性鍛造などの Processing 技術 の開発に負うところが大きい。1976年シカゴ で開かれた国際粉末冶金会議に焼結耐熱合金の報 告がいくつかなされたが、Low Carbon Astroloy の As Hip'd 材についての特性の報 告.24) 25) またガスアトマイズされて、まだ冷却 されてない粉末を鍛造型に入れ直接鍛造するプロ セスの報告 $^{26)}$ があり、今後の発展が期待されて いる。現在は、HIP+鍛造あるいは、押出し+ 超塑性鍛造のプロセスが一般的であるが、(F 100:IN-100 GATORIZING, T 7 1 0 0 : Rene'95, HIP+FORGING, TF-30:L/C Astroloy, HIP+FORGING) JT8Dのディスク材にLow Carbon Astroloy の As Hip'd 材の適用が試みられ ているように経済性の面からもAs Hip'd 材が

主流になるものと思われる。


以上最近の報告と当社での研究データをもとに、 焼結耐熱合金の現状を解説してみた。 耐熱焼結合 金の今後の研究開発の発展を期待したい。

文

- 11) S.H. Reichman, J.W. Smythe, Papers and Discussions at 7th Plansee Seminar, 35(1971), Metallwerk Plansee AG. & Co. KG.
- 12) A.S. Bufferd, Ref. 8, 303.
- 13) U.S. PAT. 3,519,503.
- 14) P & W社 GATORIZING PROCESS カタ ログ.
- 15) S.H. Reichman and J.W. Smythe, Int. J. Powder Met., 6, (1970), 65.
- 16) L.N. Moskowitz, R.M. Pelloux, N.J. Grant, Proceedings of the 2nd International Conference on Superalloys Processing, (1972), Z-1, MCIC.

- 17) B. Ewing, F. Rizzo, C. Zur Lippe, national Conference on Superalloys Processing, (1972), BB-1, MCIC.
- 18) G.H. Gessinger, M.J. Bomford, International Metallurgical Review, vol. 19, (1974), 51.
- 19) 西野, 土井, 粉体粉末冶金昭和 5 1年秋季講演 概要集, (1976), 42.
- 20) J.F. Barker, E.H. Van Der Molen, Proceedings of the 2nd International Conference on Superalloys Processing, (1972), AA-1.

- 21) L.P. Clark, Proceedings Gas
 Turbine Confrence, (1976), 1-1.
- 22) R.E. Allen, Ref. 16, X-1.
- 23) J.S. Benjamin, Metallurgical Transactions, vol. 1, Oct., (1970), 2943.
- 24) M.T. Podob, Modern Developments in Powder Metallurgy, vol. 11, (1977), 25, MPIF.
- 25) P.E. Price, R. Widmer, J.C. Runkle, Ref. 24, 45.
- 26) R.G. Brooks, G. Coombs, Ref. 24, 1.

ガスタービンに関するISOの動向

青 木 千 明

1. まえがき

ガスタービン関係の国際標準については、組織 としてはISO (International Organization For Standardization)/TC70 /SC6委員会が、幹事国を英国として活動して おり、日本における受入審議機関としてはISO 対策内燃機関委員会と日本機械学会調査班のTC 70/SC6合同委員会が設けられて、活動を行 なっている。

ISO国際標準で、すでにできたガスタービン関 係のものは、「受取試験方法」(ISO規格)お よび「仕様書標準」(ISO規格案)の2つで、 いずれも日本からも積極的に審議に参加して作成 されたものである。

ここに, ガスタービンの国際標準に関して, 活 動の状況,適用範囲,ISO規格の内容,国内規 格化の状況などにつき、知り得ている所の概要を 御説明し、皆様方の御参考に供したい。

2. ガスタービン関係 I S O 組織

ガスタービンを含む内燃機関の国際標準を取り 扱うISOのTC (Technical Committee) は、1967年に改組されたISO/TC70 であり、その幹事国は英国である。日本も、この TC70に"Pメンバー" (Participantとし て投票権を持つ参加国)として積極的に参加して いる。

TC70で取り扱う適用範囲は、動力用内燃機 関(ガスタービンを含む)であれば、発電用、鉄 道車両用,船舶用その他も含めることとし,建設 機械用、農業および工業用トラクター用、自動車 用、航空用機関は除かれている。(除外されてい る部分については、自動車などは別のTCに包括 的に含まれることになっている。)

TC70の中には、SC (Sub-Committee) が7つ設けられており、このうちのSC6で

ガスタービンを取り扱っており、他のSCは往復 動機関を対象にしている。 ガスタービンのISO /TC70/SC6の幹事国は英国で、日本もP メンバーで参加している。

3. **TC70/SC**6の活動状況

ガスタービンに関するISO規格として,(1)ガ スタービン受取試験方法, (2) ガスタービン仕様 書標準を作成、制定することにして、 ISO/T C70/SC6は1969年から活動に入り、す でにTC70/SC6委員会として合計8回の国 際会議が第1表に示すごとく開催された。なお,

第1表 ISO/TC70/SC6 国際会議開催及参加状況

通算回	開催年月	開催場所(国)	会議種別	日本からの参加者
1	1969-10	ロンドン (英国)	WG 6 (第1回)	井口 泉(東芝) 河田 修(富士電) 丹羽高尚(三菱重)
2	1970 - 5	ブラッセル (ベルギー)	WG 6 (第2回)	井口 泉(東芝) 丹羽高尚(三菱重) 加藤正敏(日立) 渡部一郎(慶応大)
3	1971 – 5	ストックホルム (スェーデン)	SC6 (第1回)	川田正秋(専門部会長) 樗木康夫(日立)
4	1972-2	パリー	SC6 (第2回)	井口 泉(東芝) 樗木康夫(日立)
5	1972-11	フランクフルト (西ドイツ)	SC6 (第3回)	井口 泉(防衛大) 青木干明(石播) 渡部一郎(慶応大)
6	1 97 3 – 5	ロンドン (英国)	SC6 (第4回)	井口 泉(防衛大)
7	1973 – 11	レニングラード (ソ 連)	SC6 (第5回)	井口 泉(防衛大) 青木干明(石播) 丹羽高尚(三菱重)
8	1974-9	チューリッヒ (ス イ ス)	SC6 (第6回)	井口 泉(防衛大) 丹羽高尚(三菱重)

(昭和53年1月20日原稿受付)

当初はTC70のWG6(Working Group) としてスタートし、1971年からSC6に改め られたもので、TC70/WG6の時に2回, TC70/SC6になってから6回の会議が行なわ れた。

I SO/TC70/SC6への"Pメンバー" としての参加国は、英国、西ドイツ、イタリー、フランス、スイス、ベルギー、スェーデン、ソ連、チェッコ、米国、日本などであり、このほかに"Oメンバー"(Observer で、情報交換だけ行なう国)が数ケ国ある。

TC70/SC6の活動に対して、比較的大きな影響力を持っているのが、CIMAC(国際燃焼機関会議、Conseil International des Machines à Combustion)であり、活動の方向づけや規格の素案作りに重要な役割を果してきている。

CIMACには米国も日本も参加しているが、その歴史的背景から欧州各国がその中心を占めており、そのため、TC70/SC6での審議活動状況も欧州各国および米国ならびに日本という三極化の傾向がみられる。

第 1 表からも分る通り、TC70/SC6の国際会議は、1969年から1974年にかけて集中的に行なわれ、この間に次のISO規格の原案が作成された。

(1) "Gas Turbines - Acceptance Tests" (ガスタービン受取試験方法)

CIMACOWGで1968年に作成した同一標題のリコメンデーションが、1969年10月のロンドン会議に素案として提出され、それに修正を加えた形で各参加国の合意がみられ、1971年4月にISO/DIS(Draft International Standard)2314として原案がまとめられた。 これに対して参加各国の賛否が求められ、日本も文章上の修正意見をつけて同意をし、1973年3月には、ISO Standard 2314として正式に国際規格に制定された。

(2) "Gas Turbines - Procurement" (ガスタービン仕様書標準)

1969年10月の最初の国際会議以来,8回にわたって継続審議され,この間各国から多くの具体的な提案や熱心な意見が出され,国際会議での審議も毎回議論伯仲して非常に熱の入ったもの

となり、従って審議過程でも多くの紆余曲折がみられたが、1974年9月のチューリッヒ会議で参加各国による最終的な原案の合意がまとまり、1976年9月にISO/DIS3977として原案が各参加国に提出された。これに対する参加国の賛否が求められ、日本も文章上の修正意見をつけて同意をしている。なお、このDIS3977は、未だISO事務局からISO規格としての制定はされていない。

4. 日本における審議機関と活動状況

ガスタービンを含む内燃機関を取り扱う I SO / T C 7 0 に対応する国内対策委員会は、日本内 燃機関連合会 [略称、日内連ま たは J I C E F (Japan Internal Combustion Engine Federation)] の中にある「I S O対策 内燃機関委員会」 [略称、J I C E S C (Japan Internal Combustion Engine Standards Committee for ISO)] である。

JICESCは、ISO/TC70が1967年に改組されて内燃機関を扱うことになったことを受けて、1969年1月に関係官庁の勧めにより、日内連が世話役となって設けられ、日本工業標準調査会〔略称、JISC(Japanese Industrial Standards Committee)〕の下部機構となっている。このあと、1971年1月にJICESCは日内連の中に合併されて現在に至っており、事務所の所在地は次の通りである。

〒105 東京都港区新橋 1-11-5 吉野ビル 日本内燃機関連合会 ISO対策内燃機関委員 会(電話(03)574-7882)

〔専務理事 梶谷憲雄氏〕

JICESCの中の審議委員会には、ISO/TC70往復動内燃機関委員会およびISO/TC70/SC6ガスタービン委員会があり、それぞれに対応して設置されている日本機械学会ISO/TC70/SC6ガスタービン調査班とのそれぞれ合同委員会の形で運営されている。

ISO/TC70/SC6ガスタービン合同委員会の構成は、現在次のようになっている。

JICESC-ISO/TC70/SC6ガスタービン委員会

TC70委員長:山本盛忠(新潟鉄工)

TC70副委員長 :井上宗一(石川島播磨)

TC70専門部会長:川田正秋(上智大学)

SС6 主 查 :井口 泉(防衛大学校)

SС6 幹 事 : 青木千明(石川島播磨)

SC6 委 員 :6名

日本機械学会ISO/TC70/SC6ガスタ

ービン調査班

主 查 :渡部一郎(関東学院大学)

幹 事 :佐藤 豪 (慶応義塾大学)

委 員 : 15名

さらにこの合同委員会の中に、Working

Groupとしての合同小委員会が設置されており、 その主査および幹事は JICES Cガスタービン 委員会の主査、幹事がそれぞれ兼務して、ほかに 小委員会委員 9 名が決められている。

このガスタービン合同委員会および合同小委員会は、ISO/TC70/SC6の国際会議の開催に並行して、活発な活動を行ない、ISO原案に対する日本での審議と共に、具体的な日本案の立案および国際会議への提案を積極的にすすめ、各国際会議には代表者を派遣して、日本の考え方や提案をISO原案に強く反映させることに大きな役割を果した。

TC70/SC6の国際会議では、英国を中心とする欧州各国と米国とがややもすると意見が対立するようなことが多くみられ、そのような場合に日本が先にも述べた通り第3極的立場で意見を求められたり、あるいは日本の提案が両者の仲介役の役割を果して採用されたりすることが多かったことは、特筆に値するといってよい。

このように日本案が、やや自負かもしれないが TC70/SC6国際会議で比較的尊重されたのは、提案に先立ち日本国内の委員会でじゅう分論 議を重ねていたこと、委員会には日本の代表的が スタービンメーカーの代表委員が参加していて欧 州および米国の代表的ガスタービンメーカーのほ とんどとつながっているために比較的どこの国に も受け入れられ易い中立的な意見や提案が多かっ たこと、また日本の提案を英語の文書にして国際 会議に先立ち ISO事務局に送付しておくことを 励行し、かつ国際会議に代表者を必ず出席させて 配布ずみの提案文書に基づいて意見を陳述したこ と(これは言葉のハンディをカバーするためにも 重要であったが、これがかえって各国から好感を 持って受け入れられた。)などがその理由とみら れる。

ここに述べたようなことは、かかる国際会議への対処の仕方として非常に重要なことであると考えられ、今後の参考にもして頂ければと思う。

ガスタービン合同委員会は、1969年から 1976年にかけて、 $1\sim2$ ヶ月に 1回の小委員 会の開催と、1年に $1\sim2$ 回の合同委員会の開催をかさねて、詳細な審議と熱心な討議を行ない、さらにこの間、第1表に示すごとき合計8回の国際会議にのべ20名の代表者を派遣している。しかし、ガスタービンに関する二つの大きな1SO規格が制定またはDIS提案された現在は、合同委員会の役割は1SO事務局との細部な対応とフォローアップが中心になっている。いずれにせよ、20ガスタービン合同委員会が今後共ガスタービンに関する1SO標準にかかわる国内審議に、いつでも対処できるような態勢になっていることはいうまでもない。

5. TC 70/SC 6 での適用範囲

ISO/TC70/SC6で取り扱っているガスタービンの適用範囲は,第2項で述べたごとくTC70で決めている取り扱う内燃機関の適用範囲を受けており,現在できているガスタービン関係ISOまたはDISでは,次のように示されている。

「この国際標準は、通常の燃焼系統を持つ開放 サイクルガスタービンプラントに適用し、また 密閉サイクルおよび半密閉サイクルガスタービ ンプラントにも適用できる。フリーピストンガ ス発生機または特殊な熱源(たとえば化学プロ セス、原子炉、過給ボイラの火炉)を使用する ガスタービンには、適切な修正を加えることに よって適用してもよい。

この国際標準は、航空機、土木建設機械、農・工業用トラクタおよび自動車を駆動するために使用されるガスタービンには適用しない。」

6. 「ガスタービン受取試験方法 **』**について

ISO 2314 "Gas Turbines - Acceptance Tests" (初版1973年3月1日) について、概要を御紹介すると次の通りである。

なお、主文の頁数は20頁である。

〔第1章〕目的および適用範囲

目的は, ガスタービンプラントの出力, 熱効率 その他の特性を決定するための受取試験の方法と 報告に指針を与えることである。

適用範囲は,第5項に述べた通りだが,適用除 外は明記されていない。

試験項目として、主要(強制)試験および選択 試験に分け、次のものをあげている。

主要(強制)試験

- a) 指定条件での出力(ガス発生機ではガ ス出力)
- b) 指定条件での熱効率,燃料消費率,熱 消費率
- c) 主要保安装置の作動

選択試験

特に同意のあった場合、 7項目から選択 する。

〔第2章〕 関連規格

〔第3章〕定義, 符号, 記号

この中で, 比較基準条件が与えられているが, これは第7項中の〔第5章〕にあるものと同じ であるので、そこを参照して頂きたい。

また、ガスタービンの基本サイクルでの付置符 号(番号)は第1図の通りである。

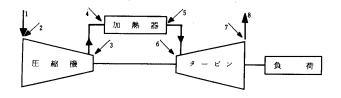


図1 ガスタービン基本サイクルの位置番号

〔第4章〕試験準備

ここでは、受取試験は通常組立完成直後か3ケ 月以内に行なわれるべきであるとしている。

〔第5章〕試験運転条件

運転条件として、回転速度、圧力、温度等の主 要なものについて整定状態とみなされる最高許容 変動値を与えている。

〔第6章〕計器および測定方法

出力,燃料,温度,圧力,流量の測定について, 使用すべき計器の精度および測定方法が述べられ

ている。

〔第7章〕試験方法

主要(強制)試験として、出力および熱効率、 ならびに主要保安装置としての危急過速度トリッ プ装置および炎吹消えトリップ装置(装備されて いる場合)の作動に対する試験を行なうことが定 められている。

選択試験としては、制御装置の性能と保安装置 の性能, 運転取扱の特性(起動特性, 起動信頼性, 負荷投入特性など),振動,排気,排ガス量およ び温度(排熱回収装置がある場合)、騒音、なら びに熱放出に対する各試験があげられている。

〔第8章〕測定結果の計算

試験の測定結果の計算に関して、出力、熱消費 率と熱効率,基準条件への試験結果の修正,試験 結果の評価、間接法による出力の求め方、タービ ン入口ガス温度に対する計算方法につき, 動力の 貸借精算や熱勘定境界域の指針も含めて、述べら れている。

〔第9章〕試験の報告

試験の報告書につき、形式と記載されるべき事 項のリストが示されている。

7. 「ガスタービン仕様書標準」について

ISO/DIS 3977 "Gas Turbines

- Procurement " (提案1976年3月18 日) について、概要を御紹介すると次の通りであ る。なお、主文の頁数は45頁である。

〔第1章〕目 的

この国際標準は、ガスタービンおよび関連補機 を購入者が製造者(または該当する責任を持つ契 約者) から調達しようとする時に必要な技術情報 を定めている。

また、異なる環境および安全要求条件に合致す る提案の提出のための基礎、ならびにこれらの条 件に合致するかどうかを決めるためのどこでも可 能なような標準を定めており、当該装置に適用を 要求されるような地域的または国家的な法律規制 については取り扱わないものとしている。

〔第2章〕適用範囲

第5項に述べた適用範囲の通りである。

〔第3章〕関連規格

〔第4章〕用語の意味

ここでは, ガスタービンおよび関連装置につい

ての主要な用語の意味を定義している。 すなわち, 「ガスタービン」,「ガスタービンプラント」, 各種サイクル、形式、主要な構成要素、制御およ び保安系統、ならびに性能などに関連する42個 の用語を定義している。 また、 主要なサイクルの 構成要素の配列例が図示されている。

〔第5章〕比較基準条件

ISO出力,熱効率,熱消費率あるいは燃料消 費率についての比較基準条件を,次の通り定めて いる。

入口空気条件

圧縮機入口フランジ(または圧縮機入口フレ アー) において吸入空気に対して

全圧力

1.013bar

全温度

15℃

相対湿度

6 0 %

排気条件

タービン出口フランジ(または再生サイクル の場合は再生用熱交換器出口) において排気 に対して

静圧力

1.013 bar

冷却水の条件(もし使用される場合)

水入口温度

15℃

〔第6章〕試験用燃料

〔第7章〕定格

ガスタービンはその運転モードが実際には非常 に広汎にわたることから、「標準定格」と呼べる 運転モードの定義づけを行なっている。

まず, 定格出力は比較基準条件に基づくことと, 次に示す燃料の定圧低発熱量に基づいて評価する ことが定められている。

a) 液体燃料: 42.000kJ/kg

b) ガス燃料: 100%メタン-50,056

k J/kg

(なお圧力 1.0 1 3 bar, 温度 1 5℃を基準と する。)

次に、運転モードとして、下記に示すような年 間運転時間を基にした4種の「クラス」(Class) と、年間平均起動回数を基にした5種の「レンジ」 (Range) とを定め、それらの組み合わせに対 して定格出力を決めるようにしている。

クラス (Class)

クラスA:年間500時間以下の運転

(予備ピーク用)

クラスB:年間2,000時間以下の運転

(ピーク用)

クラスC:年間6,000時間以下の運転

(セミベース用)

クラスD:年間8,760時間以下の運転

(ベース用)

レンジ (Range)

レンジΙ:年間平均起動回数500回以上 レンジⅡ:年間平均起動回数500回未満 レンジⅢ:年間平均起動回数100回未満 レンジ N:年間平均起動回数 25回未満 レンジV:特定期間中の保守・点検のための 計画停止以外は連続運転(Continuous)

(組み合わせとしては、たとえば年間2,000 時間以下の運転で年間起動回数500回未満の 場合には、運転モード"BⅡ"と示す。)

さらに、「ISO標準定格」として、次の2種 の運転モードでの標準定格出力を決めることにし ている。

- a) クラスB: レンジⅡ (発電用ではISOピ **ー**ク用)
- b) クラスD:レンジN(発電用ではISOべ - ス用)

また、製造者はこれらのケースに対して必要な点 検・保守の形式, 周期, 程度を示すことになって いる。

このような標準定格とは別に, ガスタービンプ ラントが実際に設置される現地での特定の地域的 条件(大気圧力、温度、圧力損失など)および実 際に想定される運転モードを考慮して、「現地定 格」 (Site Rating)を定めなければならない ことになっている。

〔第8章〕制御および保安装置

ガスタービンプラントの制御装置および保安装 置に関連する25項目について、基本的な技術的 要求事項が述べられている。

たとえば、起動または停止のシーケンスへの要 求事項, 調速機・燃料遮断装置・過速度制御装置 などが具備すべき条件、または調速装置や温度制 御装置の安定性に対する要求値などが定められて いる。

なお、安全性の面から配慮すべき事項が、付章 Eに記されている。

〔第9章〕燃 料

ガスタービンに使用するガス燃料および液体燃 料について、購入者が提供すべき情報、製造者が 提供すべき情報、燃料の特性で注意すべき指針が 記述されている。また、固体燃料および原子核燃料 についても簡単に言及している。

なお、燃料に関する情報の補遺が付章Aに詳細 に述べられている。

〔第10章〕環 境

ガスタービンプラントの運転員と、それに隣接 した居住区域にいる人に影響を及ぼす環境上の要 因について取り上げており、地域的に認められて いるか、または相互に合意した標準あるいは規則 がある場合には、それらがまず優先し、そのよう なものがない場合にこの標準を適用することにし ている。細部については相互に合意することとし, いわゆる規制については取り扱っていない。

環境上の要因としては、振動、騒音、大気汚染 (排気煙, 化学汚染, 窒素酸化物, 排気熱影響), 冷却水による熱影響,設置場所の汚染(火災,ド レン、廃棄物など)について説明している。

なお、排気煙の測定法について付章Bに、また ガスタービン排気中の全窒素酸化物の分析方法に ついて付章 C に記述されている。

〔第11章〕購入者が引合時提供すべき技術情

この章は、次の第12章と共にこの標準のもっ とも骨格となる所で、表題の通り、引合の際に購 入者が製造者に対して提供すべき最少限必要な技 術情報を、箇条書きで説明している。調達のため の引合仕様書の作成に対して、便利かつ有効であ ると思われる。

〔第12章〕製造者が入札時提供すべき技術情

この章は、前の第11章と共にこの標準の中心 となる所で,表題の通り,入札の際に製造者から 購入者に対して提供すべき最少限必要な技術情報 を, 箇所書きで説明している。 見積提案または入 札のための見積仕様書の作成に対して、便利かつ 有効であると思われる。

なお、購入者から要求される場合に、製造者は

必要な予想される保全(Maintenance) に関 する情報を提供するが、その手引として付章Dが ある。

〔付章 A〕燃料に関する情報の補遣

ガス燃料について、比重および密度の計算、発 熱量の計算、不純物に関する資料および説明があ り、液体燃料について、特性、各特性の特徴、燃 料油等級に関する比較的詳細な説明がある。ガス タービン用燃料に対する実用的な規定をするのに 参考になるものと思われる。

〔付章B〕排気煙の測定法

バッハラッハ法およびフォンブラント法による 排気煙測定法が説明されている。

〔付章C〕ガスタービン排気中の全窒素酸化物 の分析方法

窒素酸化物測定法について, 化学分析法(3方 法)と連続法(7方法)とに分けて概要を説明し, 各方法の長短を比較している。 J I S-K0104 (1974)「排ガス中の窒素酸化物分析方法」 も参考にされ、同 JIS中の測定法も取り上げら れている。

〔付章 **D**〕保

保全に関する製造者の代表的な情報例を示して いる。

〔付章E〕安 全 性

特に安全性の面から配慮すべき事項が示されて いる。

8. ISΟ標準の国内規格化

ガスタービンに関するISOまたはDISの国 内規格化については、現在次のようになっている。 ISO 2314「ガスタービン受取試験方 法上

このISOに対応するものとして、すでにJIS B 8 0 4 1 「ガスタービン試験方法」(1972) 年制定, 1975年確認, 専門委員会長 渡部一 郎(慶応大))が制定されている。このJISは、 ISO 2314 を比較的よく踏襲しながら、国内 事情に合わせて修正を加えたもので、その経過に ついては同JISの解説に記されている。

なお, 比較基準条件のうち, 排気条件のタービ ン出口フランジでの排気圧力が、ISOでは静圧 カ1.013 bar, JISでは全圧力1.013 bar となっており、これは次の段階でISOに合わせ

るべきものと考えられる。

(2) I SO/DIS 3977「ガスタービン仕様 書標準」

現在、日本機械学会の標準化部会の中に、「ガスタービン仕様書通則調査分科会」(S-SC100、主査 井口 泉(防衛大)、幹事 青木千明(石播)、委員18名)が設置されて活動中であり、分科会の目的は、国際的に通用できるガスタービンの仕様書に関する通則の作成のための調査を行なうことである。従って、この分科会では、ISO/DIS 3977を基にしてガスタービン仕様書通則の調査・原案作成をすすめており、昭和53年度中には原案をまとめあげることを予定している。

このため、近い将来、ISO/DIS 3977 に対応するような国内規格も実現化されるものと期待しており、またそのときには、ガスタービンに関する国内標準もますます整備されて行くものと考える。

9. 今後の展望

ガスタービンに関する国際標準については、上に述べてきたごとく「ガスタービン受取試験方法(ISO 2314)」および「ガスタービン仕様書標準(ISO/DIS 3977)」ができたことにより、大綱は固まったものと考えられる。特に後者においては、主要な用語の定義、比較基準条件、出力の定格、制御および保安装置などについても包括的に含まれており、国際標準を必要とするような基本的事項は一応網羅されたとみてよい。

従って、ガスタービンに関するISOの今後の動きは、もっと具体的な事項に対する標準化の要求や、TC70以外のTCとの関連において調整を必要とされる事項が生じてきた場合の対処が中

心になるものとみられる。これらに該当する事項としては、騒音計測や、排気煙または排ガス中のNOxの計測などが考えられる。

たとえば、騒音については、ISO/TC43 (Acoustics,音響)において、「ガスタービンからの騒音の計測法」の原案を作成中であり、TC70/SC6もこれに対応してサポートを行なっている。

このほか、舶用ガスタービンの船級規則の国際的統一についてCIMACが素案作成を行なっているなどの動きもあり、これらもISOでの標準化に将来すすんで行くことになろう。

ガスタービンは、比較的進歩発展の新らしい機種であるため、従来整備されていなかった国際標準が制定されつつあることは関係者にとって非常に喜ばしいことであり、またそれだけに標準化も関係者の熱意によって新らしいものを作成し易い環境にあり、その成果と今後の動きについて大きく期待されている。

10. あ と が き

国際標準というものは、非常に便利なものでありながら、実際に使用するとなるとなかなかむずかしいものである。 ISO規格が制定されるまでの労力と費用を考えると、非常に莫大なものであり、またその目的・趣旨から考えるならば、関係者が皆でいかにうまく利用し育て上げて行くかが大切なことであると思う。

ここに述べた拙文が、何らかの形で皆様の御参 考になり、ISO規格および対応する国内規格の 利用を伸長することになって、ひいては産業活動 上あるいは国際取引の面でメリットが生きてくる ようになることを、願ってやまない次第である。

なお、合同委員会、分科会その他において、多数の関係者がこれら国際標準作成または国内規格 化に御尽力頂いていますので、この紙上をお借り してここに深く感謝の意を表します。

以 上

高温燃焼ガスの物性値とその検索〔2〕

昭 慶応義塾大学工学部 長 島

高温燃焼ガスの物性値の検索という主題につい て, 前報では, 高温ガス一般についての検索の 方法と、ごく初歩的な物性値推算法について述べ $t_{\rm c}^{(1)}$ その後半として、ここでは、高温燃焼ガスの 物性値について、最近どのような文献が報告されて いるか、実際に検索を試みた結果を記してみる。 また、理想気体またはそれに近い気体の混合物の 性質を推算する方法について最近のいくつかの考 え方を紹介することにしたい。与えられた主題が 検索ということであり、紙面も限られているので, 個々の物性値データそのものはここでは触れない。

6. 高温燃焼ガスの一般的特徴

高温燃焼ガスは、その状態が臨界点の状態から 十分隔たっており、かつ低圧(低密度)の場合が 多いので、その性質は理想気体あるいは半理想気 体に近いものとして扱うことができる。詳細な物 性値を必要とする場合には、混合物である点、分 解や解離をともなう点で計算は大変厄介になる。

燃焼ガスの成分は燃料の種類によって異るほか、 空気過剰率なども関係する。分離や解離に関して は、例えば一定の解離成分を考えてよい場合と、 温度とともにその変動を考慮しなければならない 場合がある。成分としてはH,OやCO,のような 最終的な化合物のほか、NOやOH のような遊離 基 (free radical)も考える必要がある。

理論的には燃焼ガスの組成としては無数の組み 合せが考えられるが、実際には主要成分として、 H,O, CO,, CO, NO など限られた特定の成分 のみを考えればよい場合が大部分で,またそのパ ーセンテージも燃料の種類から大略は定まってい る。

(昭和53年1月9日原稿受付)

物性値を計算するには、その前提として、少な くともその平衡組成が、実験または理論によって 定量的に求まっていなくてはならない。

7. 燃焼ガスの物性値の検索

高温燃焼ガスは種類も多く,物性値について考 える場合も、どのような目的でこれらの知識が要 求されるかによって物性値の種類や温度・圧力範 囲も異る。ガスタービン,内燃機関などの設計や, MHD の研究,燃焼計算,伝熱計算などの必要性 のほかに, 最近は環境問題を検討するうえで燃焼 ガスの諸性質が必要とされ,その関係の研究報告 が増加している。これらの応用範囲を想定して、 燃焼ガスの物性値の文献検索を行なってみた。過 去約10年間の文献に重点をおき、物性値の種類 は熱物性値(熱力学的性質、輸送的性質)だけを 考える。なお以下に検索した文献の中には、日本 の図書館では見出し難いものも多く、筆者も必ず しも以下に述べる原文献を全部チェックするわけ にはいかなかったことをお断りしておく。それで も文献名だけでも紹介しておけば、なにかの機会 に読者各位のお役に立つこともあろうかと考えて 敢えて含めて記載したものである。

さて,前稿にも記したように,物性値データに 関する文献検索には Retrieval Guide (2) と Chemical Abstractsとが代表的な手段である。 また評価ずみデータの集積としては Journal of Physical and Chemical Reference Data (季刊誌) がある。ここでは上記の他, BWK 誌をはじめ幾つかの雑誌のバックナンバー, ならびに数種の燃焼関係書について検索し、ハン ドブック類など二次データ記載書は対象としてい ない。

まず,燃焼ガスの成分分析に関する報告である

が,最近,成分分析の方法や計測機器が進歩して, 文献も多い。これは主として環境問題の面からの 要求によるものである。しかし物性そのものとは 別に考えた方がよいのでことは割愛する。

7-1 物性値の検索 熱物性値の測定デー タに関する文献と、状態式やエントロピー線図に 関する文献とに分けて考え、後者については次節 で触れる。

文献検索によれば、熱力学的性質については、天然 ガスの燃焼ガスに添加物(イオン化促進剤)を加 えた場合の熱力学的性質の計算を Yungman ら⁽³⁾ が報告している。計算例として,メタンとオイル を空気中で燃焼させ、Kを添加した場合を扱って いる。MHD燃焼ガス発生器からのガスの熱力学 的および電気的性質の計算は, Kuehne ら⁽⁴⁾の報 告がある。例として天然ガスについて1500K まで計算を行なっている。炭化水素の密度、蒸発 熱その他について Mc Cracken (5)が、C.H.N. + N₂O₄ の燃焼ガスの4800 Kまでの計算プロ グラムについて $^{(6)}$ また酸素や弗素を含む燃料の燃 焼ガスの熱力学的性質の計算について Ale masovら $^{(7)(8)}$ メタンの燃焼ガスについて4000K までの平衡組成や全エンタルピーなどをLavrov ら⁽⁹⁾が、天然ガスの燃焼ガスの平衡組成や比熱の 計算について Harry ら⁽¹⁰⁾ が、それぞれ報告して いる。ピートの燃焼ガスの比熱の計算式について 含有水分の量の関数として Opman ら⁽¹¹⁾が報告し ている。

次に輸送的物性値や放射に関する性質であるが 4000Kまでの炭化水素の場合の粘性係数,熱 伝導率,拡散係数,熱拡散係数その他について Samuil ov ら⁽¹²⁾⁽¹³⁾⁽⁴⁾, Bars ukov ら⁽¹⁵⁾が,またケ ロシン燃焼ガスの粘性係数,熱伝導率に関して Chlupら^(l6), 化石燃料の燃焼ガスの熱伝導率, 粘 性係数、プラントル数を6000Kまで計算した 報告を Kmonicekら⁽¹⁷⁾が発表している。得られ た物性値の誤差を Kmonicekらは, 粘性係数で 10%以下,熱伝導率で30%以下と推定してい るが、他の研究者による値もほぼ同程度の精度と 考えてよいであろう。炭化水素の燃焼ガスの3000 Kまででの熱伝導率,粘性係数,相互拡散係数に ついて Sutkaityte ら⁽¹⁸⁾ が報告している。ジェ ットエンジン燃料の燃焼ガスについては Ross⁽¹⁹⁾

が触れている。燃焼ガスの放射率についてはBueters ⁽²⁰⁾の報告がある。

炭化水素燃料(ガス)の熱力学的データの最近 のまとめは Zwolinski ら⁽²¹⁾が、また解離した空 気の粘性係数、熱伝導率、電気伝導率、プラント ル数については Kulikら(22)が報告している。

燃焼ガスの平衡組成の計算や分析結果に関して は、最近も研究例が幾つも報告されているが、物 性値そのものではないので省略する。

7-2 エントロピー線図,状態式等の検索

前節と同様、最近10年間に重点をおいて燃焼 ガスのエントロピー線図,状態式などの検索を行 なってみた。

それ以前の古いエントロピー線図,例えばStodola⁽²³⁾, Schüle⁽²⁴⁾, Rosinら⁽²⁵⁾, 小林⁽²⁶⁾, P fl au m ⁽²⁷⁾, 田中ら⁽²⁸⁾, **Her shey**ら⁽²⁹⁾, Kuhl ⁽³⁰⁾, 八田ら⁽³¹⁾,谷下などの線図については,解り易い まとめの解説が谷下の著書(32)などになされている。 また、空気や燃焼ガスについて有名な Keenan らの表⁽³³⁾を近似式化した実用的な試み⁽³⁴⁾⁽³⁵⁾も以前 に発表されているが, この種のコリレーションは, 一部は後述するように最近も各種の試みがある。 燃焼ガスではないが、空気のエントロピー線図は Clait or ら⁽³⁶⁾あたりまでのものが機械工学便覧⁽³⁷⁾ などにも要約されている。

さて最近の研究についてであるが、1969年 に Houberechts ⁽³⁷⁾ は石油の燃焼ガスで空気過 剰率をいろいろに変えた場合について,エンタル ピー線図,エントロピー線図を,それらの計算方 法も含めて報告している。温度は1000Kまで であるが, 圧力を 1 0 0 kg/cm まで求めている点 が特色である。炭化水素の燃焼ガスのエンタルピー 計算式と計算例(C, H, CH, H,Oなど, 2500 ℃まで)については Beauseigneur⁽³⁸⁾ の報告 がある。1975年には、同様に炭化水素燃料の 燃焼ガス(平衡混合物)のエンタルピー、内部エ ネルギーおよびそれらの偏微分量などの計算プロ グラムが Olikaraら⁽³⁹⁾により報告されている。 変わったところでは,燃焼生成物プラズマのエン タルピー, 膨張仕事などの計算する式の誤差を推 算する式を Kucheryavyi ら⁽⁴⁰⁾ が導いている。 ガスの燃焼に関する専門書、例えば Shetinkov などにも燃焼ガスのエンタルピー・エントロピー

線図に関する記述が含まれている。最近の特色のある書籍の一つは $Rivkin^{(2)}$ による物性値集であろう。これは燃焼ガスの成分に関係の深いガス(空気、 CO_2 、CO, H_2O , N_2 など)について、その性質を計算したもので、空気と燃焼生成物の熱力学的線図の作り方や計算式などの解説も含んでいる。今回参照できなかったが、Rivkin は以前に空気と燃焼生成物の熱力学的性質に関する著書 $^{(3)}$ があり、上記物性値集はその発展したものと考えられる。

燃焼ガスの状態量の計算や線図などに関して, 最近の新しい考え方を示す例は、Rantや Baehr などによるエクセルギーを用いる表現であろう。 Rant が最初に燃焼ガスのエクセルギー線図につ いて提唱したのは,すでに1960年(44)のことで あり、それほど新しいことではない。この報告で は、Rant はエクセルギーの定義を説明し、燃料、 空気などのエクセルギーに触れた後, 燃焼ガスの 一般エクセルギー線図について説明している。 Gas persic (45) は高圧における燃焼ガスのエクセ ルギー線図を試み,初めて圧力100bar まで を含めた。彼はさらに1970年には完全燃焼点 不完全燃焼の場合のガスの性質の計算を行なった。 そして Rant と Gas persic⁽⁴⁷⁾は,不完全燃焼の 場合も含めて、圧力100bar までの燃焼ガスの 一般エンタルピー・エクセルギー線図を1972 年に発表している。以前の Rosinと Fehling が100種類の燃料を検討していたのに対して, この報告では23種類の固体,液体,気体燃料に ついて検討している。温度範囲は300~3300 K, 圧力範囲は1~100bar,空気過剰率は1.0 ~∞の範囲である。エクセルギーを計算する際の 周囲温度としては、 T₀ = 0, 15, 30℃ の3種 類について行なっている。Baehr らは燃料や燃 焼ガスのエクセルギー計算などに関する一連の報 告(48)(49)(50)(51) を発表している。このうち,文献(48)は 炭化水素、アルコールなど、気体および液体燃料 のエクセルギーの定義と計算に関するもの, 文献 51)は燃焼ガスのエクセルギーに関するもの、文献 49は解離した燃焼ガス混合物の平衡計算方法に関 するもの、そして文献500はガスタービンの燃焼ガ スの熱力学的関数に関するものである。

エクセルギーによる計算の普及のためには、上

記のような線図が完備していることが必要である。なお、燃焼ガスのいろいろな計算を扱かった文献については、例えば、上記 Baehr ら⁽⁴⁹⁾などにも、この稿で触れない文献の引用があるので参照されたい。

8. 混合ガスの物性値の推算について

特に高温燃焼ガスのための物性値の推算法というものがあるわけではないが、高圧でない限り、理想的な状態を仮定した混合ガスの方法を適用してよいと考えられる。純粋ガスの場合の推算については前回触れたので、ここでは混合ガスについて簡単に述べる。

8-1 混合ガス 燃焼ガスは多成分系であるが、混合ガスの諸法則のうち実験的に検証されているのは、ほとんど2成分系までに限られる。混合ガスの物性値の推算とは、要するに個々の成分ガスの物性値は既知であるとして、純粋ガスの性質と混合ガスの組成とから算出する方法である。理想的な混合ガスの条件、例えばギブス・ダルトンの法則が近似的に成り立つ範囲は、実在気体の場合には密度が臨界密度より十分小さい場合である。高温燃焼ガスの場合には、温度が臨界温度よりはるかに高く、圧力は大気圧付近であるので、この条件は満たしている。

まず状態式であるが、理想気体の混合物であれば次式が成り立つ。

$$P = \frac{RT}{V} \Sigma n_i \qquad (8-1)$$

ことで P 、 V 、 T は混合 ガスの圧力,体積,温度で, R は一般気体定数, n_i は各成分のモル数である。実在気体の多成分混合物に対して用いられる状態式には,拡張されたベアティ・ブリッジマン式 52 がある。 これは,よく知られたベアティ・ブリッジマン式

$$P = \frac{R T (1 - \epsilon)}{v^{2}} (v + B) - \frac{A}{v^{2}}$$
(8-2)

$$A = A_o (1 - a/v) v$$
:比容積
 $B = B_o (1 - b/v)$
 $\epsilon = c/v T^3$

における定数 Ao, Bo, a, b, c を混合物に対

して、各成分の定数(添字i)と圧力比 $y_i = p_i$ /p とから定め直したものである。

$$A_{om} = \left(\Sigma y_i A_{oi}^{\frac{1}{2}} \right)^2$$

$$B_{om} = \frac{1}{4} \Sigma y_i B_{oi}$$

$$+ \frac{3}{4} \left(\Sigma y_i B_{oi}^{\frac{1}{3}} \right) \left(\Sigma y_i B_{oi}^{\frac{2}{3}} \right)$$

$$c_m = \left(\Sigma y_i c_i^{\frac{1}{2}} \right)^2$$

$$a_m = \Sigma y_i a_i$$

$$b_m = \Sigma y_i b_i$$

状態式が与えられれば、よく知られた熱力学的関係から、比熱、エントロピー、音速その他の誘導 状態量が計算できる。

熱力学的性質に関して広く用いられる推算法は, なんといっても対応状態原理に基く方法である。 これには,一般対応状態線図を用いる方法と計算 による方法とがある。一般対応状態線図は, もち ろん混合物にも適用できるが, 難点は, 混合物の 臨界定数(臨界状態量)がよくわからないことで ある。これを避けるには,標準状態での状態量を 用いて対応状態線図を作るとか、Pitzer の係数 (acentric factor)⁵³⁾や Kay ⁵⁴⁾ あるいは Ioffe⁽⁵⁾ の換算状態量を用いるのも一つの方法 である。最近 Rowlinsonら^{(56) (57) (58)} は対応状態 原理による計算法の混合物への拡張を試みて,一 連の報告を発表している。空気や炭化水素系の混 合物について、エンタルピーやジュール・トムソ ン係数を計算した結果は、実測値が存在する範囲 ではそれとよく合致している。

輸送的物性値に関して幾つもの方法が提案されている。それらの中で、比較的よく用いられるものは、粘性係数に対する Wilke (59) の式

$$\eta_{\rm m} = \sum_{i} \frac{\eta_{i}}{1 + \frac{1}{x_{i}} \sum_{j} x_{j} \phi_{ij}} (8 - 3)$$

$$\phi_{ij} = \frac{\left[1 + (\eta_{i} / \eta_{j})^{\frac{1}{2}} (M_{j} / M_{i})^{\frac{1}{4}}\right]^{2}}{(4 / \sqrt{2}) \left[1 + M_{i} / M_{i}\right]^{\frac{1}{2}}}$$

と, 熱伝導率に対する Linds ay • Bromley の式

$$\lambda_{m} = \sum_{i} \frac{\lambda_{i}}{1 + \frac{1}{x_{i}}} \sum_{j} x_{j} A_{ij}$$

$$A_{ij} = \frac{1}{4} \left[1 + \left\{ \frac{\eta_{i}}{\eta_{j}} \left(\frac{M_{j}}{M_{i}} \right)^{3/4} \right. \right.$$

$$\times \frac{1 + S_{i} / T}{1 + S_{j} / T} \right]^{\frac{1}{2}}$$

$$\times \frac{1 + S_{ij} / T}{1 + S_{i} / T}$$

$$S_{ij} = \sqrt{S_{i} S_{j}} \qquad (非極性分子)$$

$$S_{ij} = 0.733 \sqrt{S_{i} S_{j}} \qquad (極性分子)$$

$$S : Sutherland 定数, x : 体積比$$

などがある。また,残余粘性係数η-η。(η。は 理想気体状態における粘性係数)と密度との関係

が単純な曲線で表わされることに着目して、Thodos ら⁽⁶¹⁾ は混合ガスを含めて一般化した関係式

$$(\eta - \eta_{o}) \xi = 17.0 \times 10^{-5}$$

$$\{ e x p (1.23 \rho_{R} - 1) \}$$

$$\xi = T_{cm}^{\frac{1}{6}} / M_{m}^{\frac{1}{2}} P_{cm}^{\frac{2}{3}}$$

$$T_{cm} = \Sigma T_{ci} x_{i}$$

$$P_{cm} = z_{cm} R T_{cm} / v_{cm}$$

$$v_{cm} = \Sigma v_{ci} x_{i}$$

$$z_{cm} = \Sigma z_{ci} x_{i}$$

を検討している。

最近の特色ある考え方の例は、Kestinらによる分子間ポテンシャル・パラメーターを考える方法であろう。第一の方法は、混合ガスのポテンシャル関数を単純な算術的修正をする方法⁶²³であり、第二の方法は、ポテンシャル・パラメーターに対応状態原理を適用して一般化する方法⁶³³である。なお、これらの方法によれば、ガスの相互拡散係数なども推算することができる。

高温混合ガスの熱伝導率は、通常の定常法で測定するような場合には放射損失が大きいうえ、熱拡散の影響も考えられるので、純成分の値から推

算によった方が実測値より信頼度が高いことがあ り得る。

8-2 燃焼ガス 燃焼ガスの物性値の推算法,計算法の検討や解説の文献は少ない。田中・粟野による一連の文献 (28)64 や谷下による著書 (32)の一部,前節で触れた Rivkinや Baehr の文献などがその例である。

燃焼ガスの粘性係数と熱伝導率を,前述の混合ガスの式によって実際に推算した例は斉間⁶⁵の報告などがある。

電離ガスについては、解離ガスであってもシーディングによる場合でも、前述の Baehr ら⁽⁴⁹⁾ の報告などもあるとはいえ、物性値については実測値がほとんどないので、信頼度が確認できているような推算法がない。

理論計算以外は、実際的な推算には対応状態原 理による方法などを用いざるを得ない。

9. おわりに

燃焼ガスについて、熱力学的ならびに輸送的物性値の実測データがどのくらい存在するかを確認したい意図もあって、過去約10年間分の文献の検索を行なったところ、前記のように使える実測データがほとんどないということを確認するにとどまった。したがって理論計算や推算法によるしか方法がない。この意味では、過去約10年間に高温域の実測データがかなりそろった純粋ガスの場合にくらべて、燃焼ガスは今後の課題にとどまっていることがわかる。

肝心の高温燃焼ガスについては,残念ながら羊 頭狗肉の感を免がれないが,以上で,一応稿を閉 じさせて頂く。

文 献

- (1) 長島, ガスタービン学会誌, 5-19(1977), 36.
- (2) Thermophysical Properties Research
 Literature Retrieval Guide,
 (1967), Plenum Press.
- (3) Yungman, V.S., ほか2名, Elec. MED, Proc. Symp., Salzburg, <u>3</u> (1966), 79;および Nucl. Sci. Abstr., 20 (1966), 5100.

- (4) Kuehne, W.D., & Kolb, G., Ber.

 Kernforschungsanlage Juelich,
 (1972), Juel 874-TP, 121.
- (5) Mc Cracken, D.J., U.S. Clearinghouse Fed. Sci. Tech. Inform. AD (1970), Na 714674.
- (6) Alemasov, V.E., & Dregalin, A.F.,
 Teplo-Massoperenos, 3-7
 (1968), 12.
- (7) Alemasov, V.E., ほか, Termodin, i Teplofiz, Suoist, Produktov Sgoraniya, T. 3, VINITI, Moscow, (1973).
- (8) Alemasov, V.E., ほか2名, 同上 T.7, VINITI, Moscow, (1974).
- (9) Lavrov, N.V., & Palekhova, O.E., Ispol'z. Gaza Nar. Khoz., (1969), Na7 (Pt. 1), 103.
- (10) Harry, E., & Hassan, K., Bull. Iran. Petro. Inst., No. 57, (1974), 6.
- (1) Opman, Ya. S., & Venzel, E. F., Izv.

 Vyssh. Ucheb. Zaved., Energ.,

 17-1 (1974), 145.
- (12) Samuilov, E.V., ほか5名, Elec. MHD, Proc. Symp., Int. Atom. Energy Agency, Vienna, <u>4</u> (1968), 2249.
- (13) Samuilov, E.V., & Tsitelauri, N.N., Teplofiz. Vys. Temp., <u>8</u>-6 (1970), 1174.
- (14) Samuilov, E.V., & Tsitelauri, N.N., Teplofiz. Vys. Temp., 9-1 (1971), 197.
- (5) Barsukov, V.I., ほか4名, Teplofiz. Suoist Gazov, Mater. Vses. Teplofiz. Konf. Svoist. Veshchestv Vys. Temp. 3rd (1968), (Published 1970), 50.
- (16) Chlup. V., & Bartl, J., Kniznice
 Odbornych Ved. Spisu Vys. Uceni
 Tech., Brne B, 32-3 (1973),
- (17) Kmonicek, V., & Hoffer, V., Rozpr.

 Cesk. Akad. Ved, Rada Tech.

 Ved., 84-2 (1974).
- (18) Sutkaityte, I., ほか2名, Liet. TSR Mokslu Akad. Darb., Ser. B, 6 (1973), 135.
- (19) Ross, J. L., Air Force Aero Propul. Lab., U.S.N.T.I.S., AD Rep.

 $N_0.783308/OGA$, (1974).

- (20) Bueters, K.A., Combustion, <u>45</u> 9 (1974), 12.
- ②) Zwolinski, B.J., ほか2名, Proc. Annu. Conv. Natur. Gas. Process Ass., Tech. Pap. 52, (1973), 33.
- (22) Kulik, P.P., & Ermokhin, N.V., Teplofiz. Svoist. Zhidk. Gazov Vys. Temp. Plazmy, (1969), 347.
- ② Stodola, Dampf-und Gas Turbinen,
 Springer, 英訳Lowenstein, McGrawHill, (1927).
- (24) Schule, W., Neue Tabellen und Diagramme für technische Feuergase, Springer, (1929).
- ©5) Rosin, P., & Fehling, R., Das I, t-Diagramm der Verbrennung, Berlin, VDI-Verlag, (1929).
- (26) 小林, 旅順工大報告, 5 (1932), 227.
- (27) Pflaum, W., S Diagramm für Verbrennungsgase, VDI-Verlag, (1932).
- (28) 田中, 粟野, 航研報告, Na 118 (昭10-3), Na 128 (昭10-9), Na 144 (昭11-9).
- (29) Hershey, R.L., ほか2名, SAE J, <u>39</u>-4 (1936), 409.
- (30) Kuhl, ., Forsch.-h. 373 (1935).
- (31) 八田, 出原, 機械学会論文集, <u>17</u>-58(昭26), 25
- (32) 谷下,工業熱力学,応用編,裳華房,(昭39).
- (3) Keenan, J.H., & Kaye, J., Gas Table, John-Wiley, (1945).
- (34) 須之部, ほか 2 名, 運輸技研資料, No. 41, (1962).
- (35) 須之部, 藤江, ガスタービン, 共立, (昭42).
- (36) Claitor, L.C., & Crawford, D.B., Trans. ASME, 71 (1949), 885.
- (37) Houberechts, A., Rev. Energ. Primaire, 5-3 (1969), 55.
- (38) Beauseigneur, G., Rev. Gen. Therm., 6 (71)(1967), 1435.
- (39) Olikara, C., & Borman, G.L., SAE Tech. Pap. No. 750468, (1975).
- (40) Kucheryavyi, V.I., ほか2名, Vopr. MGB — Preobraz. Energ., <u>1</u> (1974). 149.
- (41) Shchetinkov, E.S., Fizika Goreniya Gazov, Moskva, (1965).
- (42) Rivkin, S.L., Termodin. Svoistva Gazov, Moskva, (1973).

- (43) Rivkin, S.L., Termodin. Svoistva
 Vozdukha i Prod. Sgoraniya
 Topliv, Gosenergoizdat, (1954,
 1962).
- (44) Rant, Z., BWK, <u>12</u>-1 (1960), 1.
- (45) Gaspersic, B., Strojniski Vestnik, 9
 -1/2 (1963), 1.
- (46) Gaspersic, B., Thesis, Univ. Ljubljana, (1970).
- (47) Rant, Z., & Gaspersic, B., BWK, <u>24</u> 5 (1972), 201.
- (48) Baehr, H.D., & Schmidt, E.F., BWK, 15-8 (1963), 375.
- (49) Baehr, H.D., & Schmidt, E.F., BWK, 16−1 (1964), 8.
- 50 Baehr, H.D., Fortschrittsberichte VDI-Z, 6-13 (1967).
- 51) Baehr, H.D., & Schmidt, E.F., BWK, 16-2 (1964), 62.
- (52) Rossini, F.P. (ed.), Thermodynamics and Physics of Matter, Princeton U.P., (1955), 266.
- 53) Pitzer, K.S., & Curl, R.F., J. Am.
 Chem. Soc., <u>79</u> (1957), 2369;
 Ind. Eng. Chem., 60 (1958), 265.
- 54) Kay, W.B., Ind. Eng. Chem., <u>28</u> (1936), 1014.
- (55) Joffe, J., Ind. Eng. Chem., <u>39</u> (1947), 837.
- (56) Rowlinson, J.S., & Watson, I.D., Chem. Eng. Sci., 24 (1969), 1565.
- 57) Watson, I.D., & Rowlinson, J.S., Chem. Eng. Sci., <u>24</u> (1969), 1575.
- 68 Gunning, A.J., & Rowlinson, J.S., Chem. Eng. Sci., 28 (1973), 521.
- 59) Wilke, C.R., J. Chem. Phys., <u>18</u> (1950), 517.
- 60) Lindsay, A.L., & Bromley, L.A., Ind. Eng. Chem., 42 (1950), 1508.
- 61) De Witt, K.J., & Thodos, G., Physica, 32 (1966), 1459.
- 62) Kalelkar, A.S., & Kestin, J., J. Chem. Phys., 52 (1970), 4248.
- (63) Kestin, J., ほか, Physica, <u>48</u> (1972), 165.
- 64 田中, 粟野, 熱及び熱力学, 共立, (1936).
- (65) 斉間, 日大工学研究所彙報Na. 8, (昭 39) 312.

IHI-スルザー 1/S 7 形ガスタービン

石川島播磨重工業㈱ 大 敬介 タービン・風水力事業部

1. 概 要

本ガスタービンは、当社(石川島播磨重工業) とスルザー社との技術提携のもとに製造、販売す る産業用ガスタービンである。本ガスタービンは、 現在中近東地域を中心に,パイプラインコンプレ ッサおよびポンプ駆動用ならびに発電機駆動用と して50台以上の実績を有しており、またガスタ - ビン本体はもとより、付属装置もすべてブロッ ク化・モジュール化されているため,通常プラン トはもとより寒冷地、熱帯地およびオフショア等 の僻地においても設置が容易であり,連続運転用 として信頼性の高い原動機である(図1,図2, 図3)

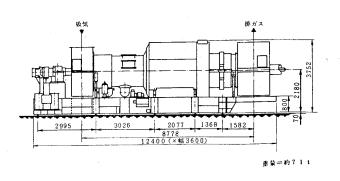


図 2 S7形ガスタービンの主要寸法

2. 特 徴

- (1) 長時間の連続運転に適し、かつ堅牢で極めて 保守容易な構造になっている。
- (2) プラント計画上からの要求に対する自由度が 大きい。
- ガス燃料,軽質油,重質油燃焼およびガス/ 油混合燃焼が可能

(昭和52年11月29日原稿受付)

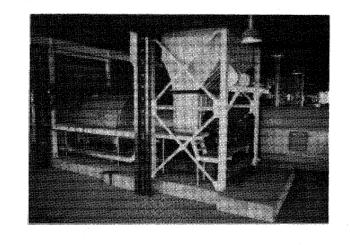


図 1 据付状態のS7形のガスタービン

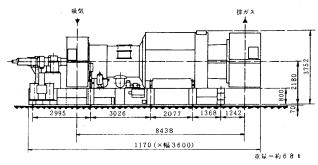


図 3 7 形ガスタービンの主要寸法

- 膨張タービン、電動モータ、油圧モータによ る起動方式が標準化されているため, プラント の条件により最も有利な起動方式の採用が可能。
- 吸気フランジは上下左右方向,排気フランジ は上方向および左右方向への配置が可能。
- 建屋内のレイアウトおよびエンクロージャー 付パッケージとしてのレイアウトが可能。
- 直結補機として潤滑油ポンプおよび制御油ポ ンプが標準装備されており, さらに補助発電機,

燃料油ポンプ、被動機用シ ールオイルポンプ等が直結 補機としてオプショナルに 取り付けが可能。

- 。 ガスタービン本体主要部の変更なしに、再生サイクル用熱交換器の取り付けが可能。
- (3) ガスタービン本体は、7 形ガスタービン(1軸)と S7形ガスタービン(2軸) において、90%以上の共 通部分を有しているため、 一定回転数で運転する発電 機駆動用ならびに回転数で 化を伴うコンプレッサ、ポ ンプ駆動用および船舶推進 用への適応が容易。即ち、
- コンプレッサ,ポンプ駆動用および船舶推進用
 - : S 7形 (2軸) ガスター ビン
- 。 発電機駆動用
 - :7形(1軸) ガスタービ ン
- (4) ガスタービン本体はもち ろん,その他の付属装置も 全てブロック化・モジュー ル化されており,輸送はブ ロック,モジュール単位で 行なわれる。したがって現 地工事はブロック間の接続

表 1	7 形	(1軸)	ガスター	ビンの主要目
111	, ,,,	\ <u>+</u> TIII/	/ /	

		туре 7	Туре R7
主 要 目		·	熱交換器付き
ガスタービン回転数	rpm	6400	6400
カップリング端出力	KW	10580	10020
カップリング端効率	95	2 6. 0	3 1, 3
圧縮 機 圧縮 比	_	約 7.47	約 7.63
吸 気 流 量	m²/8	約 51	約 51
排ガス流量	kg/8	約 62	約 62
排ガス温度(タービン出口)	r	約480	約483
排ガス温度(熱交換器出口)	τ	_	約350
圧 縮 機 段 数		軸流	1 3 段
ターピン段数		軸 流	6 段
燃 焼 器		キャニュラー	9 本
ガスターピン本体重量	kg	6.8	3000

表 2 S 7 形 (2 軸) ガスタービンの主要目

主要目		туре 87	Type SR7
			熱交換器付き
出力ターピンおよびガス発生機ロータ公称回転数	rpm	6400	6400
ガス発生機回転数範囲	rpm	5600-6720	5600-6720
出力タービン 回転数範囲	rpm	3200-7040	3 2 0 0 - 7 0 4 0
カップリング端出力	KW	10160	9620
カップリング端効率	96	2 5 0	3 Q 1
圧縮 機 圧 縮 比	_	約 7.47	約 7.63
吸 気 流 量	m³/S	約 51	約 51
排ガス流量	kg/S	約 62	約 62
排ガス温度(タービン出口)	τ	約 480	約 483
排ガス温度(熱交換器出口)	C	-	約 350
圧 縮 機 段 数	-	軸 流	1 3 段
タービン段数 ガス発生機タービン/出力タービン	_	軸 流	4 / 2 段
燃 焼 器	-	キャニュラー	9 本
ガスタービン本体重量	kg	7 1 0	00

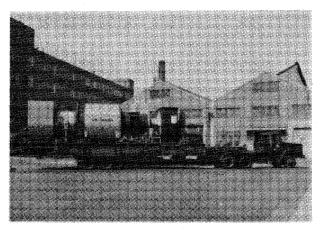


図4 輸送中のS7形ガスタービン

工事のみで完了するため,現地据付工事の短縮 が図れる(図4)。

3. 主 要 目

主要目の性能に関する条件は、大気温度 15 \mathbb{C} 、大気圧 760 mm Hg 、吸・排気圧損 0 mm Aq である(ISO 条件)。

- (1) 7形(1軸) ガスタービンの主要目(表1)
- (2) S7形(2軸) ガスタービンの主要目(表2)

4. む す び

本ガスタービンは、スルザー社の長年の回転機

械ならびにプラントへの適要技術に裏打ちされた 信頼性の高いガスタービンである。当社において も, スルザー社におけると同様の品質管理のもと で今回S7形ガスタービン1号機を製作し、生産 体制を確立するとともに, 試運転において良好な 成績を確認した。

ASME GAS TURBINE DIV. ANNUAL REPORT 1978 頒布のお知らせ

ASMEガスタービン部門では,世界各国のガスタービン関係会社(メーカー,ユーザー,関 連業界),大学,学協会,研究機関などに於ける前年度の活動状況について年次報告書(Annual Report)を発行しており、

基礎研究, 開発研究, 新規開発機種の設計・製造, 試運転とその結果,

受注状況、生産及び納入実績、運転実績、現在の問題点とその対策。

などを記載し、各国のガスタービン産業界及び学会の最新動向を具体的に示す唯一の資料であり ます。

本年度版では、53の会社、大学、研究機関よりの報告と併せて ASME ガスタービン部門各 技術委員会の活動状況が記載されており、会員各位のご参考に資する所が大きいと思います。

本学会では、とくに ASME ガスタービン部門のご好意によりこれを会員の皆様に実費提供し ておりますので、ご入用の方は至急下記要領にてお申込み下さい。

申込方法:はがきに ASME Annual Report 1978申込と記入し氏名,所属,送付先,

部数をご明記下さい。

頒布送料:送料共900円(18頁)

送付先明記のうえ現金書留もしくは振替(東京179578)でご送金下さい。

申 込 先: 〒160 東京都新宿区新宿3丁目17番7号

紀伊国屋ビル5階

(財) 慶応工学会内

日本ガスタービン学会事務局 TEL (352)8926

総 目 次

第1巻第1号(47年9月)~第5巻第20号(53年3月)

☆挨 拶☆		巻	号	頁
日本ガスタービン会議の発足に当って	渡 部 一 郎	1	1	1
会報発刊に当って		1	1	15
新会長挨拶		1	3	1
前会長挨拶		1	3	2
会長就任にあたって		2	5	1
前会長挨拶	1. 0 1. 1 PCL	2	5	3
会長就任にあたって	入 江 正 彦	3	9	1
会長を終えるにあたって・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	水、町 長 生	3	9	2
社団法人日本ガスタービン学会の発足にあたって … 会長 会長就任にあたって	·-	4	13	1
云 反就任に めたう (岡 崎 卓 郎	5	. 17	1
☆メッセージ☆				
日本ガスタービン会議の発足を祝して	谷 口 修	1	1	4
日本ガスタービン会議創立を祝う	稲生光吉	1	1	5
日本ガスタービン会議の発足を祝う	上山忠夫	1	1	6
日本ガスタービン会議発足を祝う	中 川 良 一	1	1	6
日本ガスタービン会議の発足を祝す	進 藤 武左ヱ門	1	1	7
舶用機関とガスタービン	磯貝誠	1	1	8
鉄道車両用ガスタービン開発の促進を願う	近 藤 順 二	1	1	9
日本ガスタービン会議の設立によせて	大 江 卓 二	1	1 1	10
Message	U. Floor	1 .	1	11
A Bit of History	R. T. Sawyer	1	1	12
To the Gas Turbine Committee of Japan	J.S.Meurer	1	1	13
Message	T7 . 44	1	2	7
Wes sage	Vettermann	1	۷	1
	vetter mann	1	4	,
☆随 筆☆				·
☆ 随 筆☆ 1 号ガスタービンの生れるまで	中田金市	1	2	1
☆ 随 筆☆ 1号ガスタービンの生れるまで 繁栄の果て – 海外旅行雑感 –	中 田 金 市 小 泉 磐 夫	1, 1	2 2	1 3
☆ 随 筆☆ 1号ガスタービンの生れるまで	中 田 金 市 小 泉 磐 夫 山 内 正 男	1 1 1	2 2 3	1 3 3
☆ 随 筆☆ 1号ガスタービンの生れるまで 繁栄の果て - 海外旅行雑感 ガスタービンの動きとともに ガスタービン技術予測二例のてんまつ	中 田 金 市 小 泉 磐 夫 山 内 正 男 石 谷 清 幹	1 1 1 1	2 2 3 4	1 3 3 1
☆ 随 筆☆ 1号ガスタービンの生れるまで …	中 田 金 市 夫 男 中 小 山 石 海 部 一 郎	1 1 1 1 2	2 2 3 4 6	1 3 3 1 1
☆ 随 筆☆ 1号ガスタービンの生れるまで	中 田 金 磐 正 清 一 時	1 1 1 1 2 2	2 2 3 4 6 7	1 3 3 1 1
☆ 随 筆☆ 1号ガスタービンの生れるまで 繁栄の果て — 海外旅行雑感 — ガスタービンの動きとともに ガスタービン技術予測二例のてんまつ ASME Gas Turbine Divisionのこと ガスタービンの思出 ガスタービンの将来 ガスタービンの将来	中小山石 渡種子 市夫男幹郎休治	1 1 1 1 2 2 2	2 2 3 4 6 7 8	1 3 3 1 1
☆ 随 筆☆ 1号ガスタービンの生れるまで	中小山石渡種永西田泉內谷部島野脇 一大山石渡種水池 一	1 1 1 1 2 2 2 3	2 2 3 4 6 7 8 10	1 3 3 1 1 1 1
☆随 筆☆ 1号ガスタービンの生れるまで …	中小山石渡種永西中中小山石渡種永西中 日泉内谷部島野脇田 一位金	1 1 1 1 2 2 2 3 3	2 2 3 4 6 7 8 10	1 3 3 1 1 1 1 1
☆随 筆☆ 1 号ガスタービンの生れるまで …	中小山石渡種永西中八中小山石渡種永西中八世泉內谷部島野脇田田田泉內谷部島野脇田田田生生	1 1 1 1 2 2 2 3 3 4	2 2 3 4 6 7 8 10 11	1 3 3 1 1 1 1 1 1 2
☆随 筆☆ 1号ガスタービンの生れるまで …	中小山石渡種永西中八粟田泉內谷部島野脇田田野田泉內谷部島野脇田田野市夫男幹郎休治一市三一市夫男幹郎	1 1 1 1 2 2 2 3 3 4 4	2 2 3 4 6 7 8 10 11 13 14	1 3 3 1 1 1 1 1 1 2
☆随 筆☆ 1号ガスタービンの生れるまで …	中小山石渡種永西中八粟山市夫男幹郎休治一市三一二市夫男幹郎休治一市三一二	1 1 1 1 2 2 2 3 3 4 4 4	2 2 3 4 6 7 8 10 11 13 14	1 3 3 1 1 1 1 1 1 2 1 6
☆随 筆☆ 1号ガスタービンの生れるまで 繁栄の果て - 海外旅行雑感 - ガスタービン技術予測二例のてんまつ ASME Gas Turbine Divisionのこと ガスタービンの思出 ガスタービンの思出 ガスタービンの発展を願って 1号ガスタービンの発展を願って 1号ガスタービンの思い出 加熱噴流推進 青春への回想 その(1) JET ENGINE 思いつくまま 青春への回想 その(2)	中小山石渡種永西中八栗山栗田泉内谷部島野脇田田野本野金磐正清一時。仁金桂誠健誠金磐正清一時。仁金桂誠健誠	1 1 1 1 2 2 2 3 3 4 4	2 2 3 4 6 7 8 10 11 13 14 14	1 3 3 1 1 1 1 1 1 2 1 6
☆随 筆☆ 1号ガスタービンの生れるまで …	中小山石渡種永西中八粟山栗田泉内谷部島野脇田田野本野金磐正清一時 仁金桂誠健誠意磐正清一時 仁金桂誠健誠	1 1 1 1 2 2 2 3 3 4 4 4 4	2 2 3 4 6 7 8 10 11 13 14	1 3 3 1 1 1 1 1 1 2 1 6 1
☆随 筆☆ 1 号ガスタービンの生れるまで 繁栄の果て - 海外旅行雑感 - ガスタービン技術予測二例のてんまつ ASME Gas Turbine Divisionのこと ガスタービンの思出 ガスタービンの思出 ガスタービンの発展を願って 1 号ガスタービンの発展を願って 1 号ガスタービンの思い出 加熱噴流推進 青春への回想 その(1) JET ENGINE 思いつくまま 青春への回想 その(2) とばしい体験から 川重ガスタービンの開発雑感 1 9 7 7年国際ガスタービン会議を終って	中小山石渡種永西中八粟山粟伊田泉内谷部島野脇田田野本野藤金磐正清一時 仁金桂誠健誠高市夫男幹郎休治一市三一二一根	1 1 1 1 2 2 2 3 3 4 4 4 4 4 4	2 2 3 4 6 7 8 10 11 13 14 14 15 16	1 3 3 1 1 1 1 1 1 2 1 6
☆随 筆☆ 1 号ガスタービンの生れるまで 繁栄の果て - 海外旅行雑感 - ガスタービン技術予測二例のてんまつ ASME Gas Turbine Divisionのこと ガスタービンの思出 がスタービンの野来を願って 1 号ガスタービンの発展を願って 1 号ガスタービンの発展を願って 1 号ガスタービンの発展を願って 1 号ガスタービンの発展を順って 1 号がスタービンの発展を順って 1 号がスタービンの発展を順って 1 号がスタービンの開発を順から 計画がスタービンの開発を 1 9 7 7 年国際ガスタービン会議を終って 1 9 7 7 年国際ガスタービン会議に寄せて	中小山石渡種永西中八粟山栗伊大田泉内谷部島野脇田田野本野藤槻田泉内谷部島野脇田田野本野藤槻市夫男幹郎休治一市三一二一根雄市	1 1 1 1 2 2 2 3 3 4 4 4 4 4 5	2 2 3 4 6 7 8 10 11 13 14 14 15 16 17	1 3 3 1 1 1 1 1 2 1 6 1 1 2
☆随 筆☆ 1号ガスタービンの生れるまで 繁栄の果て - 海外旅行雑感 - ガスタービン技術予測二例のてんまつ ASME Gas Turbine Divisionのこと ガスタービンの思出 ガスタービンの将来 ガスタービンの発展を願って 1号ガスタービンの発展を願って 1号ガスタービンのとと がスタービンの発展を願って 1号ガスタービンの表に変しい 加熱噴流推進 青春への回想 その(1) JET ENGINE 思いつくまま 青春への回想 その(2) とばしい体験から 川重ガスタービンの開発雑感 1977年国際ガスタービン会議を終って 1977年国際ガスタービン会議に寄せて 1977年国際ガスタービン会議東京大会記	中小山石渡種永西中八粟山粟伊大渡田泉内谷部島野脇田田野本野藤槻部金磐正清一時。仁金桂誠健誠高幸一市夫男幹郎休治一市三一二一根雄郎	1 1 1 1 1 2 2 2 2 3 3 4 4 4 4 4 5 5 5 5 5	2 2 3 4 6 7 8 10 11 13 14 14 15 16 17	1 3 3 1 1 1 1 1 1 2 1 6 1 1 2
☆随 筆☆ 1 号ガスタービンの生れるまで 繁栄の果て - 海外旅行雑感 - ガスタービン技術予測二例のてんまつ ASME Gas Turbine Divisionのとと ガスタービンの思出 ガスタービンの思出 ガスタービンの発展を願って 1 号ガスタービンの思い出 加熱噴流推進 青春への回想 その(1) JET ENGINE 思いつくまま 青春への回想 その(2) とばしい体験から 川重ガスタービンの開発雑感 1 9 7 7年国際ガスタービン会議を終って 1 9 7 7年国際ガスタービン会議をきて 1 9 7 7年国際ガスタービン会議東京大会記 M.I.T.便り	中小山石渡種永西中八粟山栗伊大渡C 田泉内谷部島野脇田田野本野藤槻部H 金磐正清一時 仁金桂誠健誠高幸一 e 市夫男幹郎休治一市三一二一根雄郎 r	1 1 1 1 1 2 2 2 3 3 4 4 4 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5	2 2 3 4 6 7 8 10 11 13 14 15 16 17 18	1 3 3 1 1 1 1 1 1 2 1 6 1 1 2 1 5
☆随 筆☆ 1号ガスタービンの生れるまで 繁栄の果て ー 海外旅行雑感 ー ガスタービン技術予測二例のてんまつ ASME Gas Turbine Divisionのこと ガスタービンの思出 ガスタービンの思出 ガスタービンの将来 ガスタービンの発展を願って 1号ガスタービンの思い出 加熱噴流推進 青春への回想 その(1) JET ENGINE 思いつくまま 青春への回想 その(2) とぼしい体験から 川重ガスタービンの開発雑感 1977年国際ガスタービン会議を終って 1977年国際ガスタービン会議で寄せて 1977年国際ガスタービン会議東京大会記 M.I.T.便り 東京大会において世界的関心を集めたガスタービン	中小山石渡種永西中八粟山粟伊大渡C有田泉内谷部島野脇田田野本野藤槻部H賀金磐正清一時 仁金桂誠健誠高幸一ener的夫男幹郎休治一市三一二一根雄郎r郎	1 1 1 1 1 2 2 2 3 3 4 4 4 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5	2 3 4 6 7 8 10 11 13 14 15 16 17 18 18	1 3 3 1 1 1 1 1 2 1 6 1 1 2 1 5 7
☆随 筆☆ 1 号ガスタービンの生れるまで 繁栄の果て - 海外旅行雑感 - ガスタービン技術予測二例のてんまつ ASME Gas Turbine Divisionのとと ガスタービンの思出 ガスタービンの思出 ガスタービンの発展を願って 1 号ガスタービンの思い出 加熱噴流推進 青春への回想 その(1) JET ENGINE 思いつくまま 青春への回想 その(2) とばしい体験から 川重ガスタービンの開発雑感 1 9 7 7年国際ガスタービン会議を終って 1 9 7 7年国際ガスタービン会議をきて 1 9 7 7年国際ガスタービン会議東京大会記 M.I.T.便り	中小山石渡種永西中八粟山粟伊大渡C有田泉内谷部島野脇田田野本野藤槻部H賀金磐正清一時 仁金桂誠健誠高幸一ener的夫男幹郎休治一市三一二一根雄郎r郎	1 1 1 1 1 2 2 2 3 3 4 4 4 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5	2 3 4 6 7 8 10 11 13 14 15 16 17 18 18	1 3 3 1 1 1 1 1 2 1 6 1 1 2 1 5 7

☆ 論 説 • 解 説☆				巻	号	頁
ガスタービンと騒音	岡崎	卓	郎	1		
定置用ガスタービンの動向	井口	•	泉	1		
車両用ガスタービンの動向	岡 村	健		1		
航空用ガスタービンの現状とその方向	松木	Œ Œ	勝			
ガスタービン動車の開発について	石田	啓	介	1	_	
航空用ガスタービン転用論	今 井	兼 -		1	_	_
小型ブライトンサイクル動力システムについて	河 开 須之部量算			1		
ガスタービン開発上の問題点				•	_	
ガスタービン用鋳造耐熱合金	渡辺	哲	郎	1		
	近江	敏	明	1	_	
石油を中心とするエネルギー政策について	竹 村		豊	1	3	7
エネルギ変換装置としてのガスタービン		\1.e				
(その1 出力上限の考察)	一色	尚	次	1		
車輌用ガスタービン論	佐 藤		宏	1	~	
過給機の諸問題と無冷却形の開発		· 久留 [*]		1	3	27
	倉橋完充	辻村:	玄隆			
中近東におけるガスタービン	徳 永	賢	治	1	4	5
ガスタービン燃料	山崎	毅	六	1	4	12
4 サイクルディーゼル機関用過給機とそのマッチング	加 藤	利	夫	. 1	4	2.4
超音速軸流圧縮機内の流れ	大塚新太郎	• 橋本	孝明	1	4	$\overline{3}$ 4
エネルギ変換装置としてのガスタービン			•	_	_	• -
(その二 トータルシステムの一翼として)	一 色	尚	次	2	5	4
海外におけるガスタービンの話題	丹 羽	高	尚	2		10
チタニウム合金の溶接	松原	十四		2		1 3
定置式大型ガスタービンの最近の問題	竹矢		進	2		12
高温セラミックタービン	米 屋	勝	利	2		19
ディーゼル機関用過給機のよごれによる性能変化	ル <u>産</u> 佐 藤	昭二		2		
エネルギ技術再編成とガスタービン						26
エネルギ "危機" とガスタービン		清	幹	2	7	12
	平田		賢	2		17
航空用ガスタービンの高圧燃焼器の実験	堀 内	IE .	司	2		21
Comprex 圧力交換機の原理と応用	村 尾	麟		2	7	27
排気ガスタービン過給機における非定常流動問題	東	忠	則	2	7	33
ガスタービンのシミュレータ	西尾健二•			2	8	3
航技研における高温タービンの研究(第一報)	高 原	北	雄	2	8	9
ガスタービンテストセルの自動計測および消音技術	宇多小路豊	宮内記	享	2	8	20
	束原 功・	堀内和	和男			
高温ガス炉用へリウムタービン	阪 田	Œ	信	2	8	27
サンシャイン計画とガスタービン	山 西	哲	夫	2		35
航技研における高温タービンの研究(第二報)	高原北雄•	能瀬引	な 幸 仏	3	9	4
	蓑田光弘•					
	吉田豊明・	佐々ラ	大誠			
	坂田公夫•					
ガスタービン翼冷却の基礎研究	小 幡	E		3	9	13
航空用ガスタービン燃料油			脩	3		19
ジェットエンジン用軸受	宮川	行	雄		9	3 1
ホイットル自伝より			生	3	9	
水素ガスタービン研究会	水、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、	長	生生	3	10	11
航技研における高温タービンの研究(第3報)				3	10	
加以内でで、ショウェート・シャース(カリボ)	吉田豊明・			3	1 0	1 4
	坂田公夫・3					
	臼井 弘・	馬崎是	5.4注			
ル来に 払けて 鯖空 田 ボッカー いい 郷 生 楽 にっし、 一	松木正勝			^	· ·	0.0
北米に於ける航空用ガスタービン製造業について	吉中	Æ-	司	3	10	23
ホイットル自伝より(続)	小 戊 馬	和	生	3	10	31

窒素酸化物発生の基礎理論	佐	野	妙	子	多 3	号 11	頁 3
自動車用ガスタービンの圧縮機開発とエンジン性能について	仙元	改	• 渡辺	西土	3	11	12
車輌用ガスタービンの熱交換器の動向とその開発	吉光		· 塩谷		3	11	18
"ロールスロイス舶用ガスタービン"について 大容量発電用ガスタービンの動向	小 久 伊	塩	道	一雄	3 3	11 11	27 34
航空機用エンジンに対するEPAの排気規制	相相	R 田 波	哲	朗	3	11	40
最近の資源化技術におけるガスタービンの応用	平中	11.	直	道二	3 3	12	1
航空用ガスタービンと信頼性活動 戦時中における日本のガスタービン物語	堀 井	井 口	健	泉	ა 3	12 12	7 12
最近の非定常翼列問題研究の動向自動車用ガスタービンの将来予測に関するJPL調査	田	中	英	穂	4	13	5
報告	宮公士	内扣用	諄		4	13	15
ガスタービン用水素燃焼器 ····································			• 堀内』 •		4	13	23
ジェットエンジンの研究開発	岩 岡	田	誠 好	二彬	4 4	14 14	10 15
ダンパ軸受	宮地	敏雄 江靖			4	14	24
ホーバークラフトにおけるガスタービンの利用	大門		• 白沢:		4	14	33
航空用ガスタービンのモニタリング	菊	地	真 -		4	14	40
の研究・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	神	津	正麟	男一	4 4	14 15	4.9 2.1
最近の海上用ACVの動向	村 古	尾浜	庄	_	4	15	30
旧陸軍試作の補助ジェット エンジンの全貌(その1)	林		貞	助	4	16	22
ジェットエンジンの 最近の工作法	西	. 1177	良工吐	正业	4	16 16	31 38
レーザー・ドプラー流速計の応用 特殊車両用ガスタービン			• 五味:		4		
-AGT-1500ガスタービンの開発までー 耐熱材料の高温疲労強度に関する最近の研究	川台	 十一	• 金野!	有口	4	16	4 5
(高温疲労,クリープと疲労との相関性,熱疲労 について)	坂桐	政男	大南	正瑛	5	17	7
離島における発電用ガスタービン			井上		5		18
旧陸軍試作の補助ジェットエンジンの全貌(その 2)	林		貞		5	17	25
150kW 級発電用小型ガスタービンの 開発 ·······			• 大槻 [:] • 阪口 [:]		5	17	3 4
		養美	一级口	台巴			
艦 艇用ガスタービンの 現状 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	田	辺		清	5	18	20
焼結耐熱合金(その1)	西	野	良	夫	5	19	11
ガスタービン用熱交換器技術の工業炉への応用	後藤	勤	• 吉光		5	19	17
赤外線放射によるエンジン排気ガスの温度計測 ミネソタ大学のフィルム冷却研究	山吉	香 田	英 豊	三明	5 5	19 19	22 31
輸出ガスタービンの近況	樗木		• 滝川		5	20	5
烘 結 肘 靱 台 金 (そ の 2) ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	29	野	良	夫	5	20	11
ガスタービンに関するISOの動向	青	木	千	明	5	20	18
☆ 講 義☆ 機械部品の疲労強度解析(その1)	鯉	淵	興	_	3	12	26
機械部品の疲労強度解析(その2)	鯉	淵	興	_	4	13	32

		巻	号	頁
高速回転機械軸系振動解析技術(その一)	小林暁峯 • 菊地勝昭	_	14	55
高速回転機械軸系振動解析技術(その二)	小林暁峯 菊地勝昭		15	34
ガスタービン用圧縮機の空力的設計法と性能推定				
I ・軸流圧縮機(その1)	九郎丸元雄·生井武文	4	17	43
	井上雅弘			
ガスタービン用圧縮機の空力的設計法と性能推定			1.0	0.0
I ・軸流圧縮機(その2)	九郎丸元雄·生井武文 井上雅弘	5	18	29
高温燃焼ガスの物性値とその検索(1)	五年五年五 長 島 昭	3 5	19	36
高温燃焼ガスの物性値とその検索 (2) ···································	長島昭		20	25
		•		
☆ 技 術 論 文☆				
ガスタービンの動特性	梅田 章・葉山真治		5	22
軸流タービン翼車の振動	奥谷順一•村井秀児	2	6	3.3
1. 悪パスカーバン田科田子与仕軸辺の中陸的老房	中川善治 森 下 光	3	10	5
小型ガスタービン用動圧式気体軸受の実験的考察 ハイブリッド計算によるガスタービン動特性のシミュ	林 「 フ	. 3	10	5
レーションについて	梅田豊	4	15	6
タービン用高強度セラミックの高温スピンテスト	佐藤 晃・米屋勝利		15	14
空冷タービン翼の灰付着試験	野村雅宣•森下輝夫		16	4
	菅 進			
ガスタービン発電プラントの騒音対策	下出新一•井川敬之助	$_{1}$ $_{4}$	16	14
	星野和貞			
☆研究速報☆ タービン翼列における空力的減衰力に関する一実験	花 村 庸 治	1	2	49
遠心圧縮機の性能特性におよばすレイノルズ数の影響	渡部一郎 外2名		2	52
空冷式ガスタービン翼の開発	大塚敬介•吉本健一郎		3	38
	平田嘉圀			
航空用ガスタービン燃焼器の一研究法	鈴 木 邦 男		3	43
翼まわりの非定常境界層について	佐々木祥二・筒井康覧		4	43
	遠藤敏彦・水町長生		4	4.0
高速回転するラビリンスシールの漏れ特性	小茂鳥和生•三宅圀博	1	4	48
☆座 談 会☆				
ガスタービンの未来を語る -その1	粟野誠一•今井兼一郎	3 2	6	4
	浦田 星 · 岡崎卓則			
	岡村健二•中村健也	L .		
	三輪光砂	_		
	司会:平山直通		7	•
ガスタービンの未来を語る -その2	栗野誠一·今井兼一郎 浦田 星·岡崎卓郎		7	3
	開田 生・回崎早日聞村健二・中村健也			
	三輪光砂	.		
	司会:平山直通	į		
	•			
☆寄 稿☆	<u> </u>			
国際会議と日本語・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	沢 田 照 夫		11	46
国際会議会場スケッチ	一 色 尚 次	5	18	12
1977年国際ガスタービン会議のパネルディスカッション「車両用ガスタービン」に出席して ············	外 山 浩 介	. 5	18	16
ノヨノー 早門用 // ヘグーピノ」 に山 布 し し	가 비 伯 기	J	10	10

☆研究だより☆ 東大生産技術研究所ガスタービン研究室 「三菱重工高砂研究所におけるガスタービンの研究」 航空宇宙技術研究所原動機部のあゆみ 名古屋大学航空学科原動機研究室 慶応義塾大学工学部ターボ機械研究室 三井造船 KK に於けるガスタービンの開発 日立製作所・機械研究所の紹介 東京大学工学部航空学科における内部流体力学関係の 研究 川崎重工業㈱・技術研究所の紹介 船舶技術研究機関開発部について 石川島播磨重工 技術研究所におけるターボ機械の研	水佐松大有表藤 高船村	義 邦	重明 則 男	巻 2 3 3 3 4 4 4 4 4	号 8 10 10 12 12 13 13 15 16 17	頁 44 37 40 34 36 43 46 45 53
究	佐 藤 本 間	昭 二 友	郎 博	4 5	17 18	57 39
東京都立大学工学部機械工学科,熱機関工学,動力工学研究室	平山直道			5	19	43
 ☆ニュース☆ 1972年国際ガスタービン会議サンフランシスコ大会見聞記 論文関係 展示会全般について 舶用ガスタービン関係 自動車用ガスタービン関係 日本ガスタービン会議発会式報告 東京ガス根岸工場見学 自動車用ガスタービンに関するシンポジゥム 1973年国際ガスタービン会議ワシントン大会報告 論文関係 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	有丸三宮高岡 滑刺科		郎郎砂強郎二	1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 2 3 3 3 3 3 3 3 3	52 55 56 57 61 63 61 59 63 65 66 68
第 2 期評議員会と特別講演会 特別講演会 技術懇談会	有賀田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田		郎星星星	1 1 1	3 4 4	69 58 59
見 学 会	妹尾桜井滝田真右松木正勝	泰 照 ・長野新 ・高原	利 男 親敬 此雄	1 2 2 2 2 2 2 2 2 2	4 5 5 5 5 5 5 5 5 5	5932323334353738
燃焼・伝熱国際会議 1975年国際ガスタービン会議の報告 ターボ機械関係 航空及び燃焼関係	川口修•/ 高 田			2 3 3 3	7 10 10 10	40 46 46 48

プロダクトショーを見て	浜 「	中 全	: 美	· 巻 3	号 10	頁 49
☆ 見 聞 記☆ ケンブリッジ大学に留学して	難	支 昌	伸	1	2	56
アメリカ留学記 ONERA あれこれ		山 浩 象 良		1 1	2 4	58 56
Bath 大学印象記	酒 爿	丰 俊	道	2	5	45
欧米の航空機用ジェットエンジンの技術動向 アメリカでの見聞	松木正 梶		崎忠雄	3 4	1 1 1 3	43 40
☆ 新製品紹介☆ FJR 710/10 (第1次試作エンジン) 1 号機の初						
運転成功について	宝金昭表	造・松 ² 義		1 2	3 5	5 7 3 1
明電舎160 KVA ガスタービン発電装置(GX-						
1 60) ···································	野	田 廣	太郎	2	7	43
ーその応用プラント「ターボナートシステム」 - IHI ミニターボチャージャ (RH06形)	•	田 有 F	· 世 猛	2 3	8 1 2	4 2 3 9
IHI ミーダー π		r 冢 敬		5 5	20	31
☆ 新設備紹介☆						
航空宇宙研高圧燃焼試験装置		大 邦	_	2	6	46
マニュラ型高圧燃焼器試験装置	堀内正	司・鈴ス	木邦男	4	13	49
☆資料☆ 料☆ (その1)	統計作	ct: #\$ 911	禾 昌 厶	1	2	43
ガスタービン生産統計(その1)	統計作			1 1	3	48
1973年ガスタービン生産統計	統計作			1	4	51
会員アンケート集計報告1974年ガスタービン生産統計	本間統計作		博	2 2	6 8	11 46
1975年ガスタービン生産統計	統計化			4	13	51
航空ガスタービンエンジン資料集	情報セ			4	15	49
1976年ガスタービン生産統計	統計化	乍成 委	員 会	4	17	60
☆報告☆						6.0
第1回評議員会報告 · · · · · · · · · · · · · · · · · · ·	• • • • • • • • • • • • • • • • • • • •	· · · · · · · · · · · ·	••••••	1 1	1 1	69 69
第1期幹事		• • • • • • • • •	•••••	1	1	70
第1期事業計画				1	1	70
統計作成特別委員会報告	吉言	哉 晴		1	1	71
組織運営検討特別委員会報告	阿 岩	部 安	雄	1 1	1 2	72 66
幹事会報告 ····································		• • • • • • • • • • • • • • • • • • • •		1	2	67
並議員△却生		• • • • • • • • • •		1	3	72
臨時評議員会報告	有		郎	1	4	61
法人化委員会報告	渡音	那 —	良区	1	4	61
評議員会報告	• • • • • • • • •		•••••	2	5	47
行事報告	• • • • • • • • • • • • • • • • • • • •			2	5	52
昭和49年度各委員会および委員 ······ 第2回見学会,技術懇談会 ····································		· · · · · · · · · · · · · · · · · · ·		2 2	6 7	48
第3同技術貇談会	· • • • • • • • • • • • • • • • • • • •		••••••	2	7	46
GTC I ガスタービンセミナー (第2回)		• • • • • • • • •		2	8	51
評議員会報告		• • • • • • • • • •	• • • • • • • • •	3	9	46
行事報告		• • • • • • • • •	•••••	3	9	51

	巻	号	頁
昭和50年度各委員会および委員	3	10	52
日本 ガスター ビン会議第 4 期臨時評議員会	3	12	42
日本ガスタービン会議第4期評議員会報告	4	13	74
日本 ガスター ビン学会評議員会・総会報告	4	14	63
日本ガスタービン会議よりの財産寄附に関する報告	4	15	53
日本ガスタービン会議第5期決算報告並びに財産清算報告	4	15	53
1 977年国際ガスタービン会議東京大会に関するお知らせ	4	15	55
日本ガスタービン学会 評議員会・総会報告	4	17	64
☆ 行 事 案 内☆ 見 学 会 ··································	1	1	6.6
兄 子 会	1	1	66
自動車用ガスタービンに関するシンポジウム開催のご案内	1	1	66
ガスタービン講演会開催について	1	1	67
ガスタービン講演会・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	1	2	63
特別講演会	1	3	76
講 習 会	1	3	76
第 2 回定期講演会	1	3	76
第 2 回定期講演会	1	4	63
☆行事案内☆	2	5	53
第2回GTCJセミナー	2	6	48
第 2 回ガスタービンセミナー	2	7	47
第 3 厂定期講演会	2	7	48
第3回定期講演会プログラム(予定)	2	8	52
GTCJガスタービンセミナー(第3回)の開催	3	10	51
第 4 回定期講演会講演募集	3	11	47
第4回定期講演会プログラム (予定)	3	12	43
1 9 7 7 年国際ガスタービン会議東京大会論文募集	3	12	45
「航空原動機に関する講演会」講演募集	4	14	62
GTSJ ガスタービンセミナー (第 4 回) のお知らせ	4	15	51
1977年国際ガスタービン会議東京大会開催のご案内	4	16	56
第 5 回定期講演会プログラム	5	18	42
第6回定期講演会会告	5	18	43
GTSJ ガスタービンセミナー(第5回)のお知らせ	5	18	43
見学会・技術懇談会のお知らせ	5	18	43
GTSJ ガスタービンセミナー (第 5 回) のお知らせ	5	19	47
第 6 回定期講演会論文募集 ····································	5	19	48
第 1 8 回航空原動機に関する講演会プログラム ····································	5	19	49
第 6 回日本ガスタービン学会定期講演会	5	20	44
日本ガスタービン学会 第3期通常総会開催のお知らせ	5	20	45
姓別藩演会のお知らせ	5	20	45
複合サイクルに関するパネル討論会	5	20	45
第 4 6 9 回講習会= 流体機械の騒音 ····································	5	20	46
2 C V program pad dody VIII 1 1 PAN PAN A Man bet	-	20	
☆会則·規定☆			
日本ガスタービン会議会則 ···································	1	1	73
日本ガスタービン会議細則	1	1	75
会報編集規定	1	1	76
自由投稿規定	1	1	76
会報編集規定	1	2	70
自由投稿規定	1	2	70
技術論文投稿要領	5	20	43

☆後記☆				巻	号	頁
研究発表についての一つの提案	小 茂 鳥	和	生	. 3	12	44
「ガスタービン学会誌」の発足に当って	小 茂 鳥	和	生	4	13	77
ガスタービン設計者に	小 茂 鳥	和	生	4	14	87
ガスタービン技術の独立自尊	小 茂 鳥	和	生	4	15	58
開かれた、個性的な学会誌の為に	小 茂 鳥	和	生	4	16	57
	鳥 崎	忠	雄	4	17	7.2
☆後 記☆	須 之 部	量	寛	5	18	44
☆後 記☆	葉 山	真		5	19	50
	村 尾	麟		5	20	42

後記

編集理事 村 尾 麟 一

- A すまないがちよっとちえを借してくれないか。
- B お安いご用だといったいが一体何の話だね。
- A えーと…「投稿論文は本会以外の刊行物に未 投稿でかつ本会主催の講演会または本会との共 催講演会以外で未発表のものに限る」この意味 ご理解いただけるかな。
- B まてよ、本会以外の刊行物に未投稿……これ はわかる。本会主催の講演会以外で未発表とい うことは本会の講演会で発表したものというこ とか? それと共催講演会もよい……それが一 体どうしたのかね。
- A すまんすまん。実はガスタービン編集委員会で技術論文の投稿要領を成分化することになって、この原案が宿題になったんだよ。
- B 了解。しかしどこが宿題なんだ。はっきりと本会講演会で発表したものに限るとしちゃいけないのかね。
- A そこなんだよ。本会講演会発表済のものはも ちろんいゝが、本会講演会で発表しなくても未 だどこでも講演したことのないものならよいと いう意味を含めたいんだよ。
- B なるほど。これがそういう意味になるのかな。
- A 本会以外で未発表…つまり本会で発表したか どうかは問わない。
- B ちよっと待ってくれ、こんがらかってきた。 うーん、そういわれるとわかったような気がし ないでもないが。しかし理屈はとも角、も少し わかり易いいゝかたはないかね。
- A そこで宿題というわけだよ。
- B 編集委員会ではそんなことをやるのか。もっとかんじんな仕事はないのかね。
- A これだっていゝかげんにはできないが、編集 委員の一番の仕事は原稿集めだね。原稿といっ ても解説、展望など依頼原稿と論文、寄書など 投稿原稿があってこのバランスで学会誌の性格 が決まる。

- B ガスタービン学会誌はどんな具合だね
- A 技術論文が少ないので投稿をお願いしている のが実情だね。
- B あまりお固い技術論文ばかりでも積んどくに なってしまうしなあ。
- A 論文集を別に出しているわけでもないから学会誌にオリジナル論文が少ないのはさびしいね。 年四回の発行だからせめて各号一編程度は欲しいと思わないかね。といっても依頼しておいて査読で駄目といわれても心外だろうし、本来お願いするのはおかしいわけだよ。
- B 論説,解説の方はどうしているの。
- A つきつめれば委員の情報網にたよっているわけだが、同じ人が委員を続けていると種切れしてくるので、やはり新陳代謝でつないでいくということかなあ。
- B 会員の希望を反映する場が欲しいね。短いコ ラムを設けて若い人達にどんどん意見を書いて もらうというのはどうかね。
- A そういう御意見は大歓迎だよ。ついでに皮切りもしてくれないかなあ。
- B おいおい、それは話が別だよ。
- A いやいや、我々も会員の一人として、会に何 を期待するかより、どんな寄与ができるかを考 えなくちゃ。学会の独立自尊も会員一人一人の 自主独立から始まるのだから。

尚、技術論文投稿要領が本号会告に掲載されて おりますので、学会発展のためふるって投稿され るようお願いします。 下記の技術論文投稿要領が理事会で決定されました。第**Ⅲ**期(53年4月) 以后に受付けた技術論文から適用されます。

記

技術論文投稿要領

- 1. 投稿原稿は次の各項に該当すること。
 - 1)投稿論文は著者の原著で、ガスタービン技術に関するものであること。
 - 2) 投稿論文は日本文に限る。
 - 3) 投稿論文は本学会以外の刊行物に未投稿で,かつ本学会主催の講演会 (本学会との共催講演会を含む)以外で未発表のものに限る。
- 2. 投稿原稿の規定頁数は原則として8頁以内とする、但し1頁につき 10,000円の著者負担で4頁以内の増頁をすることができる。
- 3. 投稿原稿は正1部,副2部を提出すること。
- 4. 投稿原稿は原稿執筆要領に従うこと。
 - 尚,投稿論文の採否は本学会に一任願います。

第6回 日本ガスタービン学会定期講演会

開催期日 昭和53年6月2日(金) 9:20~17:00

会 場 機械振興会館 地下3階研修1,2号室

東京都港区芝公園 3-5-8 東京タワー前 TEL 434-8211

講演 予定 題 目 1 号室 2 号 室 1. ガスタービン用燃焼器排ガスの研究(第1報) 1. 円柱, 平板及び2次元翼列によるフィルム冷却の *熊倉考尚,羽島和夫(船研) 実験的研究 *坂田公夫,吉田豊明,佐々木誠,高原北雄 (航技研) 2. 低カロリーガス燃焼の基礎的研究 2. 前面膜冷却方式における主流乱れの影響 *石橋洋二,丸山好弘,大森隆司(日立) *井本正美,平田賢,笠木伸英(東大) 3. 高圧力比多段軸流圧縮機の可変静翼角および抽気 3. ガスタービン翼の冷却の研究 に関する実験 (その1,冷却流路の配置に対する熱力学的考察) *菅原昇,大山耕一,斉藤喜夫,田村敦宏(航技研) 中山恒, 他2名(日立) 宮本徹之(石播) 4. 実機エンジン FJR 710/10によるインレット 4. 冷却動翼の三次元熱伝導計算 ディストーション試験(I) *塩田裕次,長島義悟(三井造船) *森田光男,関根静雄,吉田晃,中山普(航技研) 吉田公則(川重) 5. S-MET過給機の開発 5. 航空機用ガスタービンの動翼温度の計測 *山下勝義,野村滋郎,木村淑人(三菱) 小玉哲博,*勝又一郎(石播) 6. 円形翼列の非定常力特性(内向き流れの場合) 6. 2 軸式ガスタービン発電機の試作開発 榊義洋、藤川泰雄、鍾ヶ江英俊 *西岡凊,河野美登(防大) *仲西啓一(日産) 7. 1000 kW 級発電用中型ガスタービンの開発 7. 入口案内翼の二次元翼列の実験的研究 *阪口哲也,射延功(川重) (正の大迎角をもつ場合) *義田光弘,山崎紀雄(航技研) 8. 10000 kW ガスタービン移動電源車の開発 8. 旋回流による円垂ディフューザーの性能向上 *中杉武雄, 永井治(石播) *吉識晴夫,田代伸一,高門信行(東大)

9. 車両用ガスタービンの動特性

11. ガスタービンロータ系の振動

神吉博(三菱)

*吉川雄二,井口泉,原敬二,鶴岡省二(防大)

10. 入口案内翼のウエーフ制御とファン騒音

*西脇英夫,藤井昭一,武田克已(航技研)

* 印は講演者

験結果

参加登録については追って御連絡致します。

9. MW 252 - C型 2 軸ガスタービンの件能試験

10. 抗内ガス利用ガスタービンの1年間の運転実績

11. ファンジェットエンジンFJR710/20 高空性能試

伊藤源嗣, *鷺谷儀正, 渡辺康之(石播) 山本伸一 (川重), 猿渡敬治(三菱)

*山本一,片寄成美,斉藤初雄(東芝)

福江一郎,他(三菱)

尚、当日、講演会終了後、会員各位の親睦をはかり、さらに講演者を交えて親しくご懇談いただくために、 懇親会を開催致しますのでお気軽にご参加下さい。

日本ガスタービン学会 第 3 期 通 常 総 会 開 催 の お 知 ら せ

下記により標記総会を開催いたします。詳細については改めてご案内申上げます。

記

日 時: 昭和53年5月11日(木)13時30分~14時20分(予定)通常総会

会 場:機械振興会館 地下2階ホール

§ 特別講演会のお知らせ

例年の通り通常総会終了後特別講演会を次の要領で開催致します。

日 時: 昭和53年5月11日(木)総会終了後15:00頃~17:00

場 所 : 機械振興会館 地下2階ホール

参加費:無料

講 演 題 目 : 「1978年国際ガスタービン会議ロンドン大会に参加して」

司会飯島孝氏

内容 1. 基礎技術

2. 産業用ガスタービン

3. 航空機用ガスタービン

4. 自動車用ガスタービン

講演者は本大会に参加した方に依頼する予定です。

§ 複合サイクルに関するパネル討論会

日 時:昭和53年6月30日(金)午後1時~4時半

会 場:機械振興会館 66号室

参 加 費: 3000円

専門家数名に話題を提供して頂いた後、パネルディスカッションを予定しております。

日本ガスタービン学会 第 3 期 通 常 総 会 開 催 の お 知 ら せ

下記により標記総会を開催いたします。詳細については改めてご案内申上げます。

記

日 時: 昭和53年5月11日(木)13時30分~14時20分(予定)通常総会

会 場:機械振興会館 地下2階ホール

§ 特別講演会のお知らせ

例年の通り通常総会終了後特別講演会を次の要領で開催致します。

日 時: 昭和53年5月11日(木)総会終了後15:00頃~17:00

場 所 : 機械振興会館 地下2階ホール

参加費:無料

講 演 題 目 : 「1978年国際ガスタービン会議ロンドン大会に参加して」

司会飯島孝氏

内容 1. 基礎技術

2. 産業用ガスタービン

3. 航空機用ガスタービン

4. 自動車用ガスタービン

講演者は本大会に参加した方に依頼する予定です。

§ 複合サイクルに関するパネル討論会

日 時:昭和53年6月30日(金)午後1時~4時半

会 場:機械振興会館 66号室

参 加 費: 3000円

専門家数名に話題を提供して頂いた後、パネルディスカッションを予定しております。

日本ガスタービン学会 第 3 期 通 常 総 会 開 催 の お 知 ら せ

下記により標記総会を開催いたします。詳細については改めてご案内申上げます。

記

日 時: 昭和53年5月11日(木)13時30分~14時20分(予定)通常総会

会 場:機械振興会館 地下2階ホール

§ 特別講演会のお知らせ

例年の通り通常総会終了後特別講演会を次の要領で開催致します。

日 時: 昭和53年5月11日(木)総会終了後15:00頃~17:00

場 所 : 機械振興会館 地下2階ホール

参加費:無料

講 演 題 目 : 「1978年国際ガスタービン会議ロンドン大会に参加して」

司会飯島孝氏

内容 1. 基礎技術

2. 産業用ガスタービン

3. 航空機用ガスタービン

4. 自動車用ガスタービン

講演者は本大会に参加した方に依頼する予定です。

§ 複合サイクルに関するパネル討論会

日 時:昭和53年6月30日(金)午後1時~4時半

会 場:機械振興会館 66号室

参 加 費: 3000円

専門家数名に話題を提供して頂いた後、パネルディスカッションを予定しております。

第469回講習会 = 流体機械の騒音

─ その発生から規制まで ─

申込締切 5月22日 • 開催6月8,9日 (申込先:下記参照)

[協賛:日本ガスタービン学会・ターボ機械協会]

B 畤 昭和53年6月8日(木),9日(金)9.30~16.50

会 ダイヤモンドホール(ダイヤモンド社ビル 10階)

〔東京都千代田区霞ケ関1-4-2,電話(03)504-6779,地下鉄銀座線=虎の門駅下車徒歩3分〕

趣 盲 近年,環境問題のアセスメントが強く叫ばれるようになって,騒音に関する対策や,これを対処 する研究・開発が一段と進展している。法規・条令等による規制がますます厳しくなる反面, 流体機械は急激に大型化,高速化あるいは大出力化されつつあり,それに伴って流体機械のメ カはもとよりユーザも改めて騒音問題に取り組まねばならない現状にある。

> 本講習会は従来数多く行なわれた流体機械の騒音に関する講習会と若干趣きを変えて、聴講者 が自らの手で騒音問題を解けるように、基礎から最新の研究・開発成果、さらに実例を織りま ぜて解説を行なうよう企画した。

> 流体機械の関係者に限らず、騒音問題にご関心のある向きは、メーカ、ユーザ、管理者、研究 者および学生諸君を含み、多数の参加を期待する。

題目・講師

	日	時	題目	講	師
6	9:30	~11:00	(1)流体機械騒音発生のメカニズム	東京大学教授工学部工博	梶昭次郎君
月	11:10	~12:40	(2)流体機械騒音のパワーレベルの推定法	東京工業大学教授工博	辻 茂 君
8 日 休	13:40	~15:10	(3)遮へいと減衰効果の予測	三菱重工業会社高砂研究所	空力研究室長 斉藤保夫君
VIV	15:20	~16:50	(4)吸音装置の選定と減衰特性計算法	東京大学助手工学部工博	小幡輝夫君
6	9:30-	~11:00	(5)吸音·遮音材料	財団法人小林理学研究所所長期	財 子安勝君
月	11:10	~12:40	(6)制振材料	東京大学教授工学部工博	井形直弘君
. 9 日	13:40	~15:10	(7)防音エンジニアリングの実例	石川島防音工業会社社長工博	中野有朋君
(()	15:20	~16:50	(8)製鉄所における騒音の予測と対策 の実例	新日本製鉄会社大分製鉄所設 室課長	備部設備技術 境 卓也君

定 員 100名、申込先着順により満員になりしだい締切ります。

聴 構 料 会員 12000 円(学生員 3000 円), 会員外 25000 円(いずれも教材 1冊分代を含む)

教 教材のみご希望の方, または聴講者で教材を余分にご希望の方は, 1冊につき会員 2000 円,会員外3000円にて頒布いたしますので5月22日(月)までに予約ご送金ください。

講習会終了後発送いたします。

申込方法 - B6判用紙に「第469回講習会申込み」と題記し、(1)住所、(2)勤務先の名称・所属部課科 名・所在地、(3)通信先、(4)氏名(ふりがな)を記入、聴講料を添えてなるべく現金書留でご 送付下さい。

申 込 先 〒151 東京都渋谷区代々木2-4-9(三信北星ビル5階)日本機械学会

ご注 (1) 聴講決定者にほ後日聴講券を送りますからご来聴の際はご持参ください。

- (2) 聴講決定後は取消しのお申し出がありましても聴講料は返金いたしません。
- (3) 会社,工場などを通信先にご指定の場合は部課名まで詳細にご記入ください。

詳細は日本機械学会へお問合せ下さい。(Tel 03-379-6781 担当 大室)

gas turbine newsletter

GAS TURBINE DIVISION—THE AMERICAN SOCIETY OF MECHANICAL ENGINEERS

VOL. XIX

January, 1978

No. 1

CHAIRMAN'S COMMENTS By PAUL PUCCI

The 1978 International Gas Turbine Conference and Products Show to be held at the Wembley Conference Centre, London, will be our largest ever. To accommodate the enthusiastic response of the gas turbine community, a total of 63 sessions will be presented and the Conference is extended to four full days Eight simultaneous sessions are required. A digest of the program appears elsewhere in this Newsletter. Examine it to see the breadth of coverage of current gas turbine technology. I am sure you will want to join me in London to take advantage of this unique opportunity.

In April of this year, the Gas Turbine Division will lose the staff services of our highly respected Exhibit Director, Jack Sawyer. He has asked to be relieved as Exhibit Director following the London Conference. We shall certainly miss his effective leadership in developing the Products Show to its current status. At the same time, our efficient Technical Committees and Meetings Coordinator, Wendy Lubarsky, has asked to be relieved of her staff position in order to expand another carear opportunity. And then, our faithful Executive Secretary, Tom Stott, has requested leave from his duties. We will miss the active participation of these dedicated persons in the management of the operations of the Division.

With these important changes in staff personnel, the Executive Committee directed me to appoint an Ad Hoc Committee on Organization, to examine alternate administrative structures for the Division. It gave the opportunity to examine the history of the Division to reflect on its growth and change, to look at our current needs and responsibilities, and to be concerned with the future in exponding the service of the Division to its membership. The Committee met on five separate and long days, seeking advice from senior Division members and that from ASME Headquarters staff. The final recommendation was made to and adopted by the

(Continued on Page 2)

A. A. HAFER, of General Electric Co., Gas Turbine Div., Awarded Fellow Membership at ASME, Winter Annual Meeting in Atlanta.

LONDON CONFERENCE— OVERVIEW OF TECHNICAL PROGRAM

Perhaps the most salient feature of the technical program planned for the London Conference is not only the broad scope, but also the size. According to the Chairman of Conferences for the Division, John P. Davis (Transcontinental Gas Pipeline Corporation), the technical program will encompass 54 technical sessions and 9 panel sessions, comprising about 221 papers. Accordingly, the conference has been extended from the usual 3½ days to 4 days. Many silmultaneous sessions are necessary.

Regardless of the more stringent screening and review procedures to keep, and increase, the quality of the technical papers, interest and en-

THE 23rd ANNUAL
INTERNATIONAL ASME
GAS TURBINE CONFERENCE
IN COOPERATION WITH
INSTITUTE OF
MECHANICAL ENGINEERS
WILL BE AT THE
WEMBLEY
CONFERENCE CENTRE
LONDON, ENGLAND

(Continued on Pages 2, 3, 22 and 25 to 28)

thusiasm for participation in the Gas Turbine Industry continues to grow reflecting the continued growth in gas turbine development activities and markets.

As indicated by the shaded blocks in the accompanying Program Chart (Page 3), over 50% of the sessions are user oriented. This is another reflection of the growth and development of the Industry.

Continued thrust toward future growth are reflected in the sessions oriented toward coal utilization and closed cycles (See committee articles). Approximately equal participation by European, Japanese, as well as American organizations continues to emphasize the multinational nature of the Gas Turbine Industry and its markets.

PAUL F. PUCCI, Chairman

EDWARD S. WRIGHT, Vice Chairman

R. A. HARMON, Editor

NANCY POTTER, Publisher's Secretary

Official publication of the Gas Turbine Division of the American Society of Mechanical Engineers published quarterly.

PUBLISHER -- R. Tom Sawyer, Nauset Lane, Ridgewood, N. J. 07450

SECOND CLASS postage paid at Ridgewood, N. J.

POSTMASTER: In the event magazine is undeliverable, please send Form 3579 addressed to R. Tom Sawyer, P.O. Box 188, He-He-Kus, N. J. 07423.

ASME GAS TURBINE DIVISION のど好意により複写の許可を得ました。

FUTURE CONFERENCES

The following is an up-dated list of the gas turbine conferences and the conferences wherein the Division plans and supports one or more sessions on gas turbine technology. Please note that papers must be in for review by the date listed below as * or **.

- 1978—23rd Annual International Gas Turbine Conference** and Products Show, London, England, April 9-13, Wembley Conference Centre.
 - ---American Power Conference, April 24-26, Chicago, Ill., Palmer House.
 - —Joint Power Generation Conference, Dallas, Texas, Sept. 10-14, Sheraton-Lincoln.
 - —ASME Winter Annual Meeting,* San Francisco, Dec. 10-15, San Francisco Hilton.
- 1979—24th Annual International Gas Turbine Conference** and Products Show, San Diego, Cal., Mar. 11-15.
 - —American Power Conference, April 23-25, Chicago, Ill., Palmer House.
 - —Joint Power Generation Conference, Sept., Raleigh, N.C.
 - —ASME Winter Annual Meeting,* New York, N.Y., Dec. 2-7, Statler Hilton.
- 1980—25th Annual International Gas Turbine Conference** and Products Show, Rivergate, New Orleans, La., Mar. 9-13.
 - —American Power Conference, April 21-23, Chicago, III., Palmer House.
 - Joint Power Generation Conference, Sept. 28-Oct. 2, Phoenix, Az., Hyatt Renecy.
 - —ASME Winter Annual Meeting,* Nov. 16-21, Chicago, Ill., Conrad Hilton.
 - * Submit paper before June 1st for review. The green sheets should have been sent in before Feb. 1st.
 - ** Submit paper before October 1st for review. The green sheets should have been sent in before June 1st.

PROGRAM CHAIRMEN

1978 Conference

A. A. MIKOLAJCZAK Manager, Aerodynamic, Thermodynamic and Control Systems Pratt & Whitney Aircraft Group 400 Main Street, Adm. 1N East Hartford, CT 06108 203-565-4174 Home: 203-677-2272

1978 Conference, Chairman of Local Committee

W. RIZK, Managing Director GEC Gas Turbines Ltd. Cambridge Rd., Whetstone Leicester LE8 3LH, England

FOR FURTHER DATA ON FUTURE CONFERENCES CONTACT

Executive Secretary

THOMAS E. STOTT, Pres. Stal-Laval, Inc., 400 Executive Bld. Elmsford, N.Y. 10523 Office: 915-592-4710 Home: 413-528-2679

PAY YOUR OWN WAY OVER AND BACK TO ENGLAND AND/OR AUSTRALIA

We knew a man whose boss told him that they had a short job to be done in Australia. He asked the man if he wanted to go and the reply was in the affirmative. As an afterthought, the boss told him he would have to pay his own way but that was fine with the man and off he went!

TIME TO START PLANNING FOR '78 WAM AND '79 CONFERENCE

Authors should start planning now for papers to be presented at the 1978 ASME Winter Annual Meeting in San Francisco, California, December 10-15, and at the 1979 International Gas Turbine Conference and Products Show in San Diego, California, March 11-15.

- The deadline for manuscripts to be submitted for review for San Francisco is June 1, 1978.
- The deadline for manuscripts for review for the San Diego Conference is October 1, 1978.

ANNOUNCEMENT AND CALL FOR PAPERS, '78 WAM, SAN FRANCISCO, "HEAT TRANSFER IN GAS TURBINE HOT SECTION COMPONENTS"

The Gas Turbine Committee of the ASME's Heat Transfer Division will sponsor a technical session entitled "Heat Transfer in Gas Turbine Hot Section Components" at the 1978 Winter Annual Meeting in San Francisco, California, December 10-15, 1978. Authors are invited to submit abstracts for papers describing recent experimental and/or analytical studies of heat transfer in gas turbine engines. Emphasis will be on turbine airfoil and shroud cooling, disk heat transfer and combustion cooling. Papers related to heat exchanger technology are also welcomed.

Preliminary acceptance of papers will be based on abstracts only. Three copies of the abstract must be received by March 15, 1978. Authors will be notified of prelminary acceptance by April 1, 1978. Complete manuscripts must be submitted before May 15, 1978. Authors are invited to submit abstracts or address inquiries to:

> Dr. Vernon L. Eriksen Director of Engineering Deltak Corporation P. O. Box 9496 Minneapolis, Minnesoto 55440

Chairman's Comments

(Continued from Page 1)

Executive Committee at its meeting in Atlanta during the WAM. The Executive Committee will set up a central Gas Turbine Division office, managed by a full time Director of Operations who will report directly to the Executive Committee. The new office will incorporate all administrative functions of the Division except Treasurer. The Gas Turbine Division Office will, in time, establish a Gas Turbine Division Information Center to assist our membership and the public at large, a new outreach for the Division. It is important to note that considerable thought was given to financial implications. The new organization involves risk, but its potential benefits for the membership more than justify taking this risk. At the direction of the Executive Committee, I have appointed Glenn Kahle, Chairman of a Search Committee to seek the best qualified person for Director of Operations. I urge all of you to help seek out suitable condidates.

Again in 1978 we will co-sponsor an international meeting just as we did in May 1977 in Tokyo. This time it is with Technion—Israel Institute of Technology at Haifa, Israel. The meeting is planned for December 27-29, 1978. Please see the announcement in this Newsletter for details.

CALL FOR PAPERS 1978 TECHNION JOINT GAS TURBINE CONGRESS December 27-29, 1978

The Gas Turbine Division has been invited to join the Technion—Israel Institute of Technology in Haifa, Israel, in co-sponsoring a meeting. All aspects of gas turbine technology, jet and power shoft engines, accessories, services and education will be included in the technical program. Many are interested in participating which means there may be about 70 papers presented at this conference. If interested in participating, please contact our Program Representative:

Mr. Ben Koff, Chief Engineer Aircraft Engine Group General Electric Company Cincinnati, Ohio 45215 513-243-2144

TO MAKE SURE YOU GET YOUR NEWSLETTER Mail this change of address notice to your publisher today. Paste here old address label from copy of publication (if available). Omit items 1, 2 and 3 when oddress label is furnished. 1. No. and Street, Apt., Suite, P.O. Box or R.R. No. 2. Post Office, State, and ZIP Code OLD 3. Show All Additional Dates and Nos. Included in Address Label (Necessary for identification) 4. No. and Street, Apt., Suite, P.O. Box or R.R. No. NEW 5. Post Office, State, and ZIP Code 6. Name of Subscriber (Print or type) 7. Date of Address Chanae Return this to R. Tom Sawyer, Box 188, Ho-Ho-Kus, N. J. 07423

TECHNICAL PROGRAM — 1978 GAS TURBINE CONFERENCE 50% USER ORIENTED SESSIONS (SHADED SESSIONS ARE USER ORIENTED)

APRIL 10, 1978	APRIL 10, 1978	APRIL 11, 1978	APRIL 11, 1978	APRIL 12, 1978	APRIL 12, 1978	APRIL 13, 1978	APRIL 13, 1978
MONDAY - A.M.	MONDAY - P.M.	TUESDAY A.M.	TUESDAY - P.M.	WEDNESDAY - A.M.	WEDNESDAY - P.M.	THURSDAY - A.M.	THURSDAY - P.M.
TURBOMACHINERY	TURBOMACHINERY	TURBOMACHINERY	TURBOMACHINERY	TURBOMACHINERY	TURBOMACHINERY	TURBOMACHINERY	TURBOMACHINERY
A Review of Progress and a Look Ahead	Axial Turbomachinery — I	Axial Turbomachinery — II	Axial Turbomachinery — III	Geometric Effects in Turbomachinery	Axial Turbomachinery — IV	Flow Instabilities in Turbomachines — I	Flow Instabilities in Turbomachines — II
MATERIAL AND	VEHICULAR	VEHICULAR	EDUCATION	TURBOMACHINERY	TURBOMACHINERY	TURBOMACHINERY	TURBOMACHINERY
Employed Yadding Employments	Vehicular Turbine Components – I	Vehicular Turbine Components – 11	Education in Gas Turbines	Radial Turbo- machinery Development — I	Turbomachinery Non-Steady Flow	Radial Turbo- machinery Development II	Radial Turbo- machinery Development III
COME, UTILIZATION Conversion of Control Control Control Underly Control Underly Control Contro	COAR INTILIZATION Open Cycle Co Turblin Comming With a Cost Defined To the Cost Cost Cost Cost Cost Cost Cost Cost	Posterior No.	COALUTHIZATION/ ELECTRIC HUTHTIES PANEL:	ELECTRIC UTILITIES Special Applications of Gas Turbines	ELECTRIC UTILITIES Fuets	ELECTRIC UTILITIES Gas Turbine Operating & Maintenance Experience - 1	ELECTRIC UTILITIES Ges Turbine Operating & Maintenance Experience II
PIPELINES LAPPLICATIONS European Use of Gar Tubins 19 the U.K. Gas Th	PEPELINES & APPLICATIONS Internation Cor Technic for Photoschic		Area Desired Control of Control o	PIPELINES & APPLICATIONS Ges Turbine Gestation Techniques & The store	PROCESS INDUSTRIES General	PROCESS INDUSTRIES PANEL: Impact of figureory Activities, Fraunt and Projected	PROCESS INDUSTRIES PANEL: Heat Re- covery Applica- tion/Experience
STRUCTURES & DYNAMICS Turbine Stress, Erosion & Cooling	STRUCTURE & DYNAMICS Gas Turbine Rotor Systems & Vibration Measurement		PANISTE STATE OF THE STATE OF T	MARINE OR THE STREET OF THE ST	Marine Carlos Directors Turk	MARTINE Ser Turner Designment	MARINE Ü.K. Deresopments
	# 15 # 15 # 15 # 15 # 15 # 15 # 15 # 15		STRUCTURES & DYNAMICS Aeroelastic Analysis		COMBUSTION & FUELS Combustion	COMBUSTION & FUELS Combustors	COMBUSTION & FUELS Emissions
Landour .		AIRCRAFT V/STOL Propulsion Systems		AIRCRAFT Propulsion System Integration	EDUCATION PANEL: Education to Meet Manpower Needs of Gas Tur- bine Industry	AIRCRAFT Aircraft Gas Turbine Propulsion Technology	AIRCRAFT Propulsion Tech nology
	HEAT TRANSFER Heat Transfer in Hot Section Components — 1	HEAT TRANSFER Heat Transfer in Hot Section Components — II	HEAT TRANSFER Heat Transfer in Hot Section Com- ponents — III	CLOSED CYCLES Food Charle Find Closed Cycle Ger Turbling	ASME GAS TURBINE/ ASTM: Suries Be- heater of Super- alloys: What The Designer Should Know	CERAMICS PANEL:	CERAMICS PANEL:

ASME/IOWA STATE UNIVERSITY FLUID DYNAMICS OF TURBOMACHINERY COURSE. AUGUST 7-17, 1978

The ASME Turbomachinery Institute, with the cooperation of lowa State University, will offer the advanced level program FLUID DYNAMICS OF TURBOMACHINERY during the period 7 through 17 August 1978 on the Iowa State Campus in Ames, lowa. Established through presentations in 1968, 1973 and 1975, the course gives participants an opportunity to interact with a carefully selected international faculty of turbomachinery specialists during a series of lectures and discussions. Detailed lecture notes will be provided to each participant and to each organization sponsoring a registrant. Additional sets of notes will be available to registrants and their sponsors only. Individuals enrolling should be recommended and sponsored by their employer and should have a good background in fluid dynamics and thermodynamics including graduate credit or the equivalent in experience. The tuition fee will be \$1400. Interested persons should contact

George K, Serovy (515-294-2023) or Ted Okiishi (515-294-2022) Mechanical Engineering Dept. Iowa State University Ames, Iowa 50011

The 1978 course will consist of 29 90-minute lectures on the topics indicated below. In addition, a special panel discussion, "Turbomachine Technology — Objectives for Research und comment," will occur on the final day of the scheduled

Robert O. Bullock, AiResearch Manufacturing Co.--Some realities of turbomachinery develop-

Dr. N. A. Cumpsty, Whittle Laboratory, University of Cambridge—Overview of the turbomochinery noise problem.

Franklin O. Carta, United Technologies Research Center—Application of unsteady aerodynamic re-sults in aeromechanical turbomachine design.

Jean Fabri, Office National D'etudes et de Recherches Aerospatiales—Unsteady flow and flow instabilities in turbomachines.

Dr. William H. Heiser, Arnold Engine Development Center—Requirements and contents of oxial-flow turbine design systems.

Dr. John H. Horlock, University of Salford—Introduction to flow models and methods of analysis for turbomachine primary and secondary flows.

Dr. David Japikse, Creare, Inc.—Fluid me-chanics of centrifugal compressors and pumps. Henry McDonald, Scientific Research Associates,

Inc.—Boundary layers in turbomachines. Richard A. Novak, General Electric Co.— -Com-

utation methods of turbomachine flows by streamline curvature.

Dr. George K. Serovy, Iowa State University-Requirements and content of axial flow compressor and pump design systems.

Dr. Hans Starken, Institut für Luftstrahlantriebe DFVLR—Transonic and supersonic flows in turbomachine cascades.

Panelists

Melvin J. Hartmann, Fan and Compressor Branch, NASA Lewis Research Center.

Dr. A. A. Mikolajczak, Aerodynamic, Thermodynamic and Control Systems, Pratt and Whitney Aircraft Group.

Dr. Leroy H. Smith Jr., Advanced Turbomachinery Aerodynamics, General Electric Co.

William G. Steltz, Steam Turbine Div., Westing-

house Electric Corp.
Dr. Arthur J. Wennerstrom, Air Force Aero Propulsion Lab., Air Force Systems Command.

GAS TURBINES AT AMERICAN **POWER CONFERENCE**

present the still tentative program includes the following gas turbine papers in the Mechanical II—Gas Turbines and Advanced Cycles session:

- "Huntorf, 290 MW—The World's First Air Storage System Energy Transfer (ASSET) Plant: Construction, Commissioning and Preliminary Operation," E. Buerk, Brown, Boveri, Switzerland and Z. S. Stys, Brown Boveri, USA.
 "Gasification Combined Cycle Test Facility at
- Powerton Station of Commonwealth Edison Company," F. E. Stauffer and D. E. Welty, Commonwealth Research Corporation; A. Sacker, Fluor Engineers and Constructors, Inc.; and W. A. Boothe, General Electric Company.
- "Gas Turbines for Advanced Power Systems and Improved Reliability," Cooper & Duncan, EPRI.
- "Operational Characteristics and Maintenance of

Wembley Conference Centre, London, England April 9-13, 1978

Preliminary travel notice of the 1978 Gas Turbine Conference scheduled for the Wembley Conference Centre, London, England, April 9-13, 1978.

If you are a member of the Gas Turbine Division you do not have to send these forms in as you will be receiving the complete instructions. If you are a Non-Member from North and South America only, please send these forms to:

ASME COORDINATORS I.C.C.A. VACATIONLAND-TRAVELTOURS, Inc. 25 West 43rd Street, New York, N. Y. 10036

If you are a Non-Member of ASME and located outside of North and South America, please these forms to:

> I. Mech. E. -- General Arrangements Committee 1, Birdcage Walk, Westminster LONDON, SW1H 9J5, England

The ASME Travel Coordinators have planned a basic program in London which will include air hotel accommodations, transportation, breakfast, service charge and a sightseeing tour of London.

In addition to the basic Congress program there will be offered post Congress tours to Great Britain and the Continent as indicated in the survey below.

In order to help us plan the most convenient and economical travel arrangements, please indicate your travel interest on short survey below and mail it to us as soon as possible.

ASME TRAVEL COORDINATORS

1.C.C.A.-International Congress

and Convention Association or I. Mech. E.

I would like to receive more information or Post Congress Program:	1
Scotland & WalesIreland	i
France — Paris & Chateaux de Loire Valley	,

.....Self-drive car/train tours in Britain

- Pl	ease	return	this	survey	with	the	other	re-
quest	at y	our ea	rliest	conven	ience	to:		
	Inte	ernation	ial C	ongress	and	Conv	ention	
		Associa	ation	(ICCA)	or I.	Mech	. E.	

Name
Address
City
State Zip
Country
Telephone (Home)
(Office)
Number of persons expected to travel:
Adults Children
I want to stay a total of days on this trip.
I would like to receive more information on:
Basic program—April 9-13, 1978.
My gateway for my flight will be:
New York Boston Philadelphia Washington Miami
Chicago Detroit Los Angeles Montreal Toronto
{Please circle.} or

Gas Turbine HTGR," C. F. McDonald et al, Gen-

eral Atomic Company.

In addition to the session on Gas Turbines, eral Atomic Company.

In addition to the session on Gas Turbines, there will be 35 technical sessions with a total of 150 papers covering virtually every engineering aspect of the power industry. Among the sessions will be one on Cogeneration and one on Central

Stations, both with papers involving gas turbines.
The Conference will be held on April 24-26,
1978 in the Palmer House in Chicago. Further details including a complete list of papers to be pre-sented, together with hotel and conference registration forms may be obtained by calling or writ-

> American Power Conference Illinois Institute of Technology Chicago, Illinois 60616 Telephone 312-567-3196 or 3197

CIMAC GAS TURBINE CONGRESS VIENNA, 22-29 APRIL, 1979 DEADLINE CLOSE FOR CIMAC ABSTRACTS

Following the successful Conference held in Tokyo in May 1977, the next biennial CIMAC Gas Turbine Congress will be held in Vienna from 22-29' April, 1979. Another good program is planned for this charming Austrian city.

The CIMAC Gas Turbine Technical Program Committee is actively seeking technical papers. The proposed subject areas are listed below, although the program is very flexible. Papers on any aspect of Gas Turbine Technology for non-aero and non-automotive applications are acceptable. As for previous Conferences, the Committee seeks submissions from Universities and Academic Institutes covering theoretical studies and rig evaluation, from gas turbine or component manufacturers, from users of equipment, or joint papers.

Due to the relevance of many new developments in the field of gas turbines and fuels in respect to energy policies, the Program Committee encourages participation of Government representatives, who are associated with their respective countries energy programs.

The major areas suggested for Vienna are:

- 1. Coal Derived Fuels—Gasification and direct combustion and including aspects of low BTU gases.
- 2. Material and Anti-Corrosion Techniques-Both dirty gas and liquid fuels including non-distillate or blended fuels. Intake air contamination.
 - 3. Combustion Processes—Aspects of difficult

"ONWARD AND UPWARD WITH GAS TURBINES" by Arthur Kent, ASCAP

......

NO CHARGE TO	AND EXHIBITORS
Gold Lapel Button Yes □ No □ \$15.00	"Onward and Upward With Gas Turbines." Yes Please send me a 45 RPM record — \$1.00, No the official Gas Turbine Division Song.
Type Member	Name
For Lapel Button	Company
	Address.
7///	City State Zip
Mail to: R. To	om Sawver, Box 188, Ho-Ho-Kus, N. J. 07423

Onward and upward with gas turbines, The finest kind of power of them all; Small ones and large ones The simplest kind of units to install. Now there are turbines on the ocean On the land and in the air They're even used in outer space Turbines, turbines every place! Onward and upward with gas turbines; We love to hear their gentle, quiet call The greatest kind of power of them all! Now we are building combined cycles, With energy from any kind of fuel; We're making projections In many directions That turbine power's gonna be the rule. This is a vision of the future, For centuries to come: Turbine cars are so complete All the rest are obsolete!

Perfect solution to cut pollution, We love to hear their gentle, quiet call, Gas turbines are the greatest of them all! fuels or developments aimed at reduced pollution standards

- 4. Offshore Applications—Operational experience and power unit installation requirements.

 5. Component/Gas Turbine/Cycle Performance
- Theoretical and practical advances in performance at today's operating conditions, and future trends at temperatures of 2000°C (3632°F).

 Abstracts will be required by 15 Feb., 1978.

Paper manuscripts will be required by 15 Sept., 1978.

The Committee recognizes the elapsed time between preparation of a paper and the date of the Congress, and therefore we welcome updating at the time of the Congress.

CIMAC is a worldwide technical organization representing all of the major countries that manufacture internal combustion engines and gas turbines. The U.S. National Committee is sponsored by the Gas Turbine Division and the Diesel and Gas Engine Power Division of the American Society of Mechanical Engineers. Although the papers pre-sented at the CIMAC meetings are of the same high quality as papers presented at engineering meetings in the United States, it is emphasized that the procedures for their preparation and acceptance is considerably more detailed. A brief resume or synopsis of the proposed paper and qualifica-tions of the author must be submitted, taking into consideration the following:

- The resume of the proposed paper should indicate object and not exceed two typed pages .

 • Ten copies of the resume and the author's quali-
- fications are required in both English and French
- for gas turbine proposals.

 A list of probable photographs, figures, graphs and tables shall be included.
- All papers of a purely descriptive nature or which contain advertising or other commercial matter shall be excluded
- Purely theoretical papers will not be accepted. Papers will be accepted only if they contain new matter not previously published or pre-sented at another conference or symposium.

To be submitted with the abstract is the author's name, position and qualifications which are relevant to the subject of the proposed paper, including the following:

- Education and degrees.
- Present position
- Previous experience.
- Technical society memberships.
 List of author's previous publications in the same field as the proposed paper.

We look forward to your participation and support in Vienna. For further details and the necessary AUTHOR FORMS, please contact:

U.S.A. Member Gas Turbine Technical Program Committee, CIMAC Kenneth A. Teumer Woadward Governor Company P. O. Box 1519, Fort Collins, CO 80522

NEW GAS TURBINE MOVIE AVAILABLE FOR VIEWING

ASME's Director of Public Relations has available copies of the new ASME film dealing with the gas turbine engine for viewing by interested par-ties. The film was produced by a professional organization with film clips provided by a number of manufacturers. It deals with the fundamentals and applications of the gas turbine in a nontechnical manner suitable for general audiences and would be useful for introducing the subject at meetings, television talk shows, management brief-

ings, social occasions, etc.

Members desiring the loan of a capy of the film should contact the Director of Public Relations film should contact the Director of Public Relations directly at the following address. Copies are also for sale at \$100 each. The film is 16mm, color, and is in sound. Running time is eight minutes.

Director of Public Relations, ASME

345 East 47th St., New York, N. Y. 10017

"NO-COST" ASME MEMBERSHIPS AVAILABLE

'No-cost' memberships are available in ASME. Here's how to do it.

1) Apply for ASME membership.

- Pay your \$30 annual dues.
- Apply for \$24,000 life insurance through ASME. You will find that the substantial dividend credit awarded annually on your ASME life insurance will probably, at least, cover the cost of your annual dues. Check the table below for your sav-

Premium Contributions for \$24,000 Policy -ASME Life

Member's	First	Second	Your
Age	6 Months	6 Months*	Savings
Under 30	\$20.00	\$0	\$20.00
30-34	23.30	0	23.30
35-39	32.00	0	32.00
40-44	50.00	0	50.00
45-49	81.00	0	81.00
50-54	126.00	0	126.00
55-59	195.00	0	195.00
*Based on 50 of the last		credit awarded	for four

Incidentally, you should compare the cost of what you are currently paying for mortgage insurance versus cost of ASME life insurance. Typically, ASME life insurance will cost only one-half as much per \$1000 as conventional mortgage insurance does, so cancel your mortgage insurance and replace it with ASME life insurance and pocket additional profits!

So talk up ASME membership among your professional acquaintances. They will appreciate your interest, ASME membership, and low cost member life insurance!

IF YOU'RE READING THIS **NEWSLETTER YOU OUGHT** TO BE A MEMBER OF THE GAS TURBINE DIVISION And We Would Like To Have You Join Us

It's that simple. If you are interested enough the gas turbine industry to be reading this

newsletter, you should be interested in joining and participating in the Gas Turbine Division.

Our Newsletter covers only the highlights of what's going on in the industry. And what's going on with the Gas Turbine Division.

To get a more complete industry picture, you have to be there. And that kind of participation is best obtained through active membership in GT Division programs.

Clip and mail to: THE EXECUTIVE SECRETARY, THOMAS E. STOTT, Pres.

SPECIAL COURSES AND SEMINARS-1978

Three-Day Seminar on Turbomachinery Vibra-tions, March 7-9, 1978, San Diego, California. Mechanical Technology Incorporated will pre-

sent a three-day Seminar covering the basic aspects of rotor-bearing system dynamics. The course provides:

- A fundamental understanding of rotating machinery vibrations
- An awareness of available tools and techniques for the analysis and diagnosis of rotor vibration problems
- An appreciation of how these techniques are applied to correct vibration problems.

The Seminar is scheduled for March 7-9, 1978, in San Diego, California. Contact Mr. John E. Travers (213-799-0919) for further information on this regional session.

DAY 1

Fundamentals of Vibration Theory will be reviewed and their relevance to rotor vibrations demonstrated. The particular significance of bearings as elastic and dissipative elements in the vibrating system will be identified. Fluid-Film bearing design will be covered in detail, including performance data for common bearing geometries. Lecture titles are:

Machinery Vibration Fundamentals Lateral Vibration Characteristics Fluid Film Bearings Rotor Bearing System Dynamics

DAY 2

A description of torsional vibrations, their causes, analysis and prevention will be reviewed. Rolling element bearing design and performance will be covered. The complete rotor-bearing system will be emphasized. The sources of laterial excitation will be identified and rotor response to these mechanisms will be described. The subject of rotor instability will be presented. Techniques for rotor balancing will be covered. Lecture titles are:

(Continued on Page 24)

Division membership brings you in closer contact with the industry—with benefits such as tech-nical information updates, career and technical stimulation, participation in Division activities.

It also provides tangible benefits. Like reduced fees at conferences, discounts on technical papers, substantial savings with group life, health and accident insurance programs. To mention only a few.

Why not take a few minutes now to fill in the form attached and send it along to us. We'll respond with a free booklet outlining ASME GT Division membership benefits, information on how you qualify for membership and an application form.

We would like to have you join us.

Stal-Lavai, Inc., 400	Executive Blvd., Elmsford. N.Y.	10523
I'm interested in joining the Gas Turbine	Division of ASME.	
Send me your free booklet on	ASME membership.	
Enclose a membership applicat	tion form.	
Name		
Title Compo	any	
Company Address		
City	State	Zip Code
Company Phone	Extension	Country

Home Address, if desired

Torsional Vibrations Rolling Element Bearings Rotor Response to Various Forcing Mechanisms Rotor Instability Rotor Balancing

DAY 3

Concentration on the subject of Vibration Instrumentation. Instruments for sensing vibrations will be described, followed by a demonstration of instruments utilized by MTI for the analysis of vibration data. Signature analysis will be covered and the course will conclude with a periad devoted to trouble-shooting procedures. Lecture titles are:

Vibration Sensing Instruments Data Analysis Instruments Signature Analysis Techniques Machine Vibration Diagnosis

Instructors will be:

- Dr. Robert H. Badgley, Manager, Machinery Dynamics Center
- Dr. Anthony Smalley, Asst. Mgr., Machinery Dynamics Center
- Mr. Stanley Malanoski, Supervisor, Analysis Mr. Robert Hamm, Supervisor, Field Services
- Mr. Leo Winn, Manager, Applied Tribology

Any questions regarding this seminar may also be directed to Mr. Paul E. Babson, Marketing Manager, Machinery Diagnostics, MTI, 518-785-

VON KARMAN INSTITUTE LECTURES IN 1978

COMBINED CYCLES FOR POWER GENERATION (April 24-28, 1978)

The world energy crisis has stimulated the development of combined cycles for power generation because of their great potential for improving cycle efficiency. The programme will include the following types of combined cycle: open gas turbine/steam turbine with unfired and fired boiler, open gas turbine/steam turbine with integrated coal gasification, closed cycle gas turbine/steam turbine with organic fluid bottom cycle M H D/ steam turbine.

The cost of each lecture is 8,000 B.F. (about \$225.00). Those requiring further information about above programmes are requested to write to: The Director, von Karman Institute for Fluid Dynamics, Chassee de Waterloo 72, 1640 Rhode-Saint-Genese, Belgium. Please give your full name and company name and address and nationality.

CALL FOR PAPERS

The Structures and Dynamics Committee of the Gas Turbine Division of ASME is sponsoring technical sessions in the area of vibration measureat the 1978 Winter Annual Meeting scheduled in San Francisco Dec. 10-15. Emphasis will be placed on advanced developments in the technology of measurement of vibration in machinery components and techniques of data reduction.

Technical Papers are solicited covering various novel methods of monitoring and reducing vibra-tion data including (but not restricted to) holographic, photo electric, photo elastic, speckle, optiheterodyning, telemetry, advanced strain gage and sputtered gage techniques.

Authors interested in contributing to the sessions should indicate their intention by filling in appropriate information in the enclosed form and eturning the same to Dr. A. A. Srinivasan, United Technologies Research Center (M.S. 16), Silver Lane, East Hartford, CT 06108.

Four copies of the manuscript, prepared in strict accordance with current ASME standards should reach Dr. Srinivasan by April 30. Authors of Papers accepted for publication and/or presentation will be notified by 15th of July.

CALL FOR PAPERS -HEAT TRANSFER IN GAS TURBINE SYSTEMS

The Heat Transfer Committee of the ASME Gas Turbine Division will sponsor up to three technical sessions at the 1979 International Gas Turbine Conference in San Diego 11-15 March 1979. The session topics will be organized as:

- Recent advances in analytical techniques (and their comparison to experiment).
- Heat transfer and/or flow in turbine end wall regions.
- Heat transfer in gas turbine systems in general.

Authors are invited to submit papers describing recent experimental, numerical or analytical studies of heat transfer in turbines, compressors, heat exchangers and ductwork related to gas turbine cycles. Appropriate subjects include, but are not limited to, turbine airfoil and shroud cooling, compressible and incompressible flows, augmentation techniques, waste heat recovery, heat trans-fer to ceramics, thermal stress, disk heat transfer and combustion cooling.

Authors intending to submit papers are requested to send green sheets (abstracts) in triplicate as early as possible and, in any event to arrive not later than 1 May 1978. Acceptance of presentations for the sessions will be based on the completed papers which will be due on 1 August 1978. Completed papers must conform to ASME standards as published in its technical journals. Papers should be submitted in five copies with the original line drawings or glossy prints. Experimental papers will be required to include the results of an adequate analysis of the estimated experimental uncertainties in the output results (for example, by the method of Kline and McClintock Mech, Engr, 1953). Authors will be notified of acceptance finally by the Gas Turbine Division Review Chairman.

Abstracts, papers and inquiries should be forwarded to

> Professor Donald M. McEliant Aerospace & Mechanical Engineering Dept. University of Arizona Tucson, Arizona 85721

IS ANYONE LISTENING **OUT THERE?!!!**

The division has been sending out over 7000 copies of the Newsletter four times a year for the last couple of years. Periodically, discussion comes up in the Executive Committee about the adequacy and the editorial direction of the Newsletter and

Please send your questions and comments to-

ROBERT A. HARMON Editor of Newsletter 25 Schalren Drive Latham, N.Y. 12110

Since publishing the above over a year ago several complimentary letters have been received. We will be glad to get your comments.

"GASOLINE"

Why use gasoline when diesel or jet fuel is excellent for the gas turbine car—not a dangerous

"GASOLINE IS DANGEROUS-Is it worth risking your life and your car. Motorists who carry an extra 5 gallons of gasoline in the car trunk are exposing themselves to the danger of explosion and fire."

Quoted—Fire Dept.

LEGISLATIVE ACTION AND THE UTILITIES

By Paul Hoppe, Utility Committee

On November 11, 1977, Senate and House Conferees completed action on compromise legislation, combining S-977 and HR-8444, Part F. The name of the new Bill is "The Natural Gas and Petroleum Conservation and Coal Utilization Policy

In general, the combined bill appears slightly less restrictive than S-9777, reportedly largely due to a final concentrated lobbying effort by major Utilities and Industrial Users.

The effect on the utilization of Gas Turbines and Combined Cycle Plants can be summarized as follows:

New Electric Power Plants (Above 10 MW)

Statutory prohibition from being constructed with the capability to use and using natural gas and petroleum as their primary energy source (contiguous 48 States and Alaska). Exemptions

The Secretary of Energy may grant temporary (5 years) or permanent exemptions. All exemptions (except where noted) are conditioned on a "reliability test," i.e. "despite good faith efforts, no adequate alternative supply of electric power is available on a short or long-term basis at a reasonable price and distance without impairing system reliability. Exemptions are also condi-tioned on approval by appropriate State Energy Regulatory Agency.

Temporary or Permanent exemptions are to be granted, subject to above conditions (providing the use of coal at reasonable alternate sites was considered) due to, or for-

- Inability to meet Federal and State environmental requirements.
- Site limitations (such as inadequate coal transportation or storage facilities, etc.)
 Public interest.
- State and local laws (except zoning and building costs).
- Emergency powerplants (as defined by rule by the Secretary).
- New peak load powerplants (1500 hrs/year or less where certified by applicant solely for peak load service.
 - From Petroleum prohibition.
 - From natural gas prohibition only if located in a national primary ambient air non-attainment area.
- Impairment of reliability of service.
 Certain co-generation facilities (where its economic and other benefits cannot be obtained if coal or other fuels are used).

Temporary exemptions (up to 10 years) are to be granted and are not subject to the ity test," if synthetic fuels derived from coal or other fuel will be used eventually (conditioned on binding contracts and a compliant plant).

New, intermediate-load power plants (4000 hrs/year) may be granted a similar, temporary exemption from the petroleum prohibition only,

- Constructed in non-attainment areas for particulates and SOx.
- Greater than 36% efficient.

 Convertible to coal-derived fuels when available. New Major Fuel Burning Installations

Restrictions for **boilers** are generally similar to those for electric generating plants. Non-boiler categories (including gas turbines and combined cycle plants) fall under discretionary authority of he Secretary rather than under a statutory prohi-

It appears that this section is considerably liberalized over the S-977 provisions.

Effective Date is one hundred eighty days after enactment. Prior to that date, the Department of Energy is empowered to promulgate the regulations.

SPECIAL COURSES ON GAS TURBINE, TURBOMACHINERY & COMPACT HEAT EXCHANGERS

By Dr. B. Lakshminarayana

ASME Gas Turbine Division recognizes its obligation to assist both its members and the engineering profession to update and maintain theoretical and professional skills in the area of gas turbines. To meet this commitment, the Division is proud to offer the four following courses at the 23rd Annual Gas Turbine Conference and Products Show, April 9-13, 1978, Wembley Conference Centre, London, England. The course descriptions are given below. Please contact Jill Jacobson (ASME, United Engineering Center, 345 E. 47th St., New York, NY 10017) for administrative details, cost, etc. A certificate of completion and CEU's will be awarded upon completion of the course. Please tear out above address, so we can make appropriate plans.

(1) INTRODUCTION TO THE GAS TURBINE Sunday, April 9, 1978, 2:00 to 5:00 p.m.

Thermodynamics of gas turbine cycles, comparison with other heat engines, regenerative cycles, and combined cycles. Component and accessory design fundamentals. Characteristics, advantages and, problems relative to specific applications such as aircraft, vehicular, marine, electric power, process industries, oil and pipelines, total energy. Characteristics of gas turbine materials. Common and exotic fuels, including distillated, residuals, methanol, gaseous, coal, solar, nuclear. Reliability and maintenance considerations. Anticipated future developments and the future potential of the gas turbine.

The course is particularly suitable to newcomers to the gas turbine field, particularly in the user category. In oddition, specialists in gas turbine engineering will find this overview broadening and interesting.

Course director: Edward S. Wright United Technologies Research Center 400 Main Street East Hartford, Conn. 06108

(2) FOUNDATIONS OF TURBOMACHINERY (AXIAL) AERODYNAMICS Sunday, April 9, 1978, 9:00 a.m. to 5:00 p.m.

Classification and one dimensional performance, including types of blading, energy and momentum equations, performance analysis, efficiency and nature of flows (incompressible, transonic and supersonic) in Turbomachinery. Cascade theory; expressions for lift and drag, theoretical prediction, transonic and supersonic cascade flows. Nature and estimate of losses; boundary layer development, profile loss correlation, secondary and leakage loss, shock losses and efficiency prediction. Unsteady flows and blade-flow interactions, including stall, surge and flutter phenomena.

The course will be aimed primarily at engineers with a B.S. degree and who have had at least one course in fluid mechanics at the undergraduate level. The course objective is to provide a quick and effective exposure to Foundations of Turbomachinery Aerodynamics to newcomers as well as a quick review to specialists.

Instructors of the course are: Dr. B. Lakshminarayana, Prof. J. Chauvin, Institute of Fluid Mechanics, Marseille, France; Dr. A. A. Mikolajczak, Pratt and Whitney Aircraft, East Hartford, Conn.; Dr. G. K. Serovy, Iowa State University, Ames, Iowa.

Course director:

Dr. B. Lakshminarayana The Pennsylvania State Univ. Dept. of Aerospace Engineering 153 Hammond Building University Park, PA 16802

(3) BLADE DESIGN DEVELOPMENT AND FIELD EXPERIENCE

Sunday, April 9, 1978, 9:00 a.m. to 5:00 p.m. Gas turbine blades are simple beams. However, their simplicity is deceiving and some of the most sophisticated technology has been required to provide reliable long life and high performance. This course traces the life of blades from a mechanical standpoint beginning with their conceptual start to final use in field service. The course intends to acquaint Gas Turbine Engineers with techniques used in blade design, development and trouble shooting. Ample references will be given for anyone who needs to dig deeper. The course will be given as follows:

- Design Considerations for Blades by C. L. Smith (Detroit Diesel Allison)
- Blade Vibration—Theory and Practice by D. J. Leone (University of Hartford)
- Blade Flutter—Design Principles by L. E. Snyder (Detroit Diesel Allison)
- 4. Three Dimensional Perception by J. W. Tumaviscus (Perceptor Company)
- Blade Development and Testing by J. Stargardter (Pratt & Whitney Aircraft)
 Field Problems—Failures and Prevention by N.
- Field Problems—Failures and Prevention by N. Jansen (Northern Research) Course Director:

Dr. H. Stargardter Pratt & Whitney Aircraft 400 Main Street East Hartford, Conn. 06108

(4) COMPACT HEAT EXCHANGERS

Sunday, April 9, 1978, 9:00a.m. to 5:00 p.m. In this course, a comprehensive review is made of the methods and problems associated with the design of compact heat exchangers. Many of the aspects discussed are also applicable to the design of not-so-compact heat exchangers. Major emphasis is placed on the heat transfer and pressure drop performance, and the flow distribution, vibra-

tions and fouling problems with the compact heat exchangers. The course is intended for the practicing engineers and researchers working in the field of heat transfer equipment, as well as for those associated with energy conservation who would like to know how the heat exchangers perform.

Course outline:

heat exchanger systems—functions and types heat exchanger design procedure—an overview heat transfer and pressure drop analysis surface basic heat transfer and flow friction characteristics

surface selection
optimization of heat exchanger design
header design and flaw distribution
illustrative example of heat exchanger design
transient response of heat exchangers
flow induced vibrations in heat exchangers
fouling and corrosion of heat exchanger surfaces
laminar flow surfaces
liquid-coupled indirect transfer heat exchanger
systems

A. L. London, Prof. Stanford, will be working with the course director:

Dr. R. K. Shah Harrison Radiator Division General Motors Corporation Lockport, NY

All courses will be given at the Grosvenor House, London, England—The Gas Turbine Division Headquarters hotel. The charge for each course will be: #1—\$50.00, #2—\$150.00, #3—\$150.00, #4—\$150.00. #2, 3 & 4 are all day.

For further information and for registration in one of the above four special courses please send in this registration form or phone Jill Jacobson at 212-644-7743.

REGISTRATION FORM	R	E	G	I	S	T	R	Α	T	I	0	Ν	F	0	R	N	1
-------------------	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---

Please print or type entire form.	
Your Name	************
Address	
Phone No.	
Please designate which course you wish to register for — ☐ 1, ☐ 2, ☐ 3,	□ 4
For any further information state what you want:	
Send this form to:	
Jill Jacobson, A.S.M.E Professional Development Program	

345 East 47th Street, New York, N. Y. 10017

GAS TURBINE DIVISION MEMBERSHIP DEVELOPMENT

Eugene P. Weinert

The Gas Turbine Division has long recognized the potential for new membership among the non-member attendees at its Annual Conference. New emphasis was placed on an active Membership Development Committee (MDC) invitation program beginning at the 1975 Houston Conference. Results in new membership were encouraging.

An impressive MDC booth and comfortable information center was then centrally located at the 1976 Conference at New Orleans. Services of two membership experienced ASME Field Services Directors were added to those of the Division's own MDC chairman. The many benefits of membership were discussed with 199 interested non-members.

After the New Orleans meeting, invitations to consider membership were mailed through the Western Field Service office at San Francisco to over 550 non-member attendees. To top off the New Orleans program, a second letter was set early in 1977 to the same New Orleans non-members to advise them of the approaching Philadelphia Conference and further urge consideration of becoming a member.

It worked! To date nearly 100 new members have been traced to the all-out effort at New Orleans. Results of the on-site MDC operation at the 1977 Philadelphia Conference are already caming in! A differently-timed mailing was made recently, not only to invite new applications but to make sure the Philadelphia non-member attendes know they will be welcome at the 1978 Conference in the Wembley Conference Center in London from April 9 to 13.

Now is the time for all of us to begin thinking of membership promotion at London and after London! A heavy emphasis is planned on the Membership booth there. You can help by making sure every non-member attendee is pointed in the direction of that booth.

New members are the life blood of our Society and essential to our Gas Turbine Division. It has been estimated that, in dues alone, each member represents an average of \$500 in a lifetime of services to the Society. But the direct income is of small value compared with the member's participation — Committee Service — Conferences Attended — Publications Purchased — all in a lifetime of ASME membership. But no participation by us is more important than influencing a colleague to sign up with ASME. Then we know we are helping him in innumerable ways—to advance and stay ahead in his chosen profession of engineering.

PIPELINE COMMITTEE PAPERS FOR LONDON

The following Session Chairmen have been appointed and have been successful in finalizing papers as follows.

Session Theme: European Use of Gas Turbines as Pipeline Compressor Drives with four papers. Session Chairman: P. H. Dixon, British Gas Corp., U.K.

Session Theme: Gas Turbine Evaluation Techniques & Practices with four papers, Session Chairman: T. C. Heard, General Electric Co., Schenectady, N.Y.

Session Theme: Intermediate Gas Turbines for Pipeline Use with four papers. Session Chairmon: R. A. Neill, Rolls-Royce (Canada) Ltd.

Chris E. M. Preston of Rolls-Royce having a nice chat with Air Commodore Sir Frank Whittle. In 1930 Sir Frank invented the JET used to propel aircraft. Today the Jet is used in industry to drive generators up to 100 MW. Sir Frank did a great deal to help Rolls-Royce and other gas turbine manufacturers to get into the electrical and mechanical power field.

George Manning having a good talk with Winfred Crim, probably about coal utilization in both open and closed cycle gas turbines. Both of them work together in the Department of Energy in Washington, D.C.

Session Theme: Gas Turbine Maintenance in Pipeline Operation with Panel Discussion. Session Chairman: H. Singleton, Tennessee Gas Pipeline, Houston, Texas.

Current members of the Committee are asked to attend the Committee Meeting to be held during the London meeting, to ensure a very active program for the year 78/79. Also, additional members would be welcome and names should be sent to Mr. T. Albone, Chairman, Pipeline Applications Committee, Polar Gas Project, P.O. Box 90, Commerce Court West, Toronto, Ontario, Canada M5L IH3.

VEHICULAR TURBINE **DEVELOPMENTS WORLDWIDE**

At the London Conference there is to be a panel session Monday morning, April 10th. The first big panel session on vehicular gas turbines was held last May at the Gas Turbine Society of Japan's Congress in Tokyo.

Practically the same excellent panel met again in November at Atlanta, Georgia. This panel had about 10 men representing automotive companies worldwide in Tokyo as well as at Atlanta during the Winter Annual Meeting. It will be wonderful to have this panel session in London because those on the panel come from Japan, the U.S.A. and Europe so the third time this session will be held it will be only a short trip for the Europeans.

You will find this one of the most interesting sessions in London, the same as it was in Tokyo and Atlanta. All three locations were organized by Roy Kamo and in London he will be the Modera-The Chairman will be L. W. Farrow from England.

This panel in Tokyo and at Atlanta made the statement that the future auto would be driven by a hor gas turbine because it would have less parts and it would be more economical than the diesel engine and use diesel fuel oil.

Be sure to be there Monday morning, April 10, at the Wembley Conference Hall.

For further information please contact-Mr. Roy Kamo, Director Advanced Engines & Systems Cummins Engine Co., Inc. Columbus, Ind. 47201 Phone 812-379-5591

At the turn of the century, James Thurber's grandmother suspected this new fangled electricity of leaking all over the house. Such fears—if less wittily expressed—lie behind much of today's antinuclear sentiment.

Today we have thousands of people like this old lady that are afraid of nuclear power because they don't know about it any more than the old

lady knew about electricity.
Copr. c 1933, 1961 James Thurber, from MY LIFE AND HARD TIMES, Harper & Row.
Copied from ASME Executive Newsletter—VERY IN-

TERESTING.

TO GET THIS **NEWSLETTER** REGISTER IN THE GAS TURBINE DIVISION

Headquarters for the London Conference at the Wembley Conference Centre for all Exhibits and all Technical Papers.

The following is a list of panelists at Atlanta and their topics of discussion:

Roy Kamo, Chairman and Session Organizer. Cummins Engine Co.

John J. Jones, Keynote Speech, Williams Research Corporation

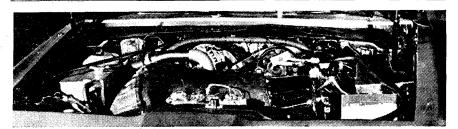
George J. Huebner, Jr., Future Outlook, Research Institute of Michigan

H. Barrett, Two Shaft Turbines, Detroit Diesel Allison Division

K. Kinoshita, Two Shaft Turbines, Nissan Motors Company

S. O. Kronogard, Three Shaft Turbines, United Turbine AB

K. Nakamura, Turbine Hybrid Systems, Toyota Motors Company


G. Peitsch, Heat Exchangers , Ford Motor Co.

H. Schelp, Components, AiResearch Co.

P. Walzer, Ceramic Applications, Volkswagen.

Dr. W. Rizk, Chairman Local Committee, London Conference, is Managing Director, GEC Gas Turbines Ltd., Whetstone,

TURBINE CONCEPT car with a new dramatic aerodynamic design to go with the Upgraded Engine has been built for the U.S. Department of Energy by Chrysler Corp. The base car, a Chrysler LeBaron, was restyled as shown. Photo obtained by Bob Harmon at DOE Contractors meeting.

EXHIBITORS - 1978 LONDON PRODUCTS SHOW

AAR Technical Service Center ACMI Industrial Division, AAR Technical Service Center
ACMI Industrial Division,
American Cystoscope Makers, Inc.
AEG—Kanis Turbinenfabrik GmbH
A.E. Turbine Components Ltd.
Alfa-Laval/DeLaval
American Air Filter Co., Inc.
The American Society of Mechanical
Engineers, Membership Dev.
The American Society of Mechanical
Engineers Paper Sales
Associated Engineering Group
A.E. Turbine Components Ltd.
The Glacier Metal Co., Ltd.
Baird Atomic, Inc.
BBC—Brown, Boveri & Co. Ltd.
BEAMA—British Electrical and Allied
Manufacturers Association Limited
Bell & Howell Electronics
& Instrument Group
Bently Nevada Corp.
Bescon Div. of the Plenty Group
Brush Electric Machines Ltd.
Ceagfilter und Entstraubungstechnik
GMBH
Central Electricity Generation Board Central Electricity Generation Board Chemtree Corp.
Cooper Energy Services
Curtiss-Wright Corporation Curtiss-Wright Corporation
Dana Corporation—
Turbo Products Division
Deritend Vacuum Castings Ltd.
Detroit Diesel Allison Div., G.M. Corp.
Diesel and Gas Turbine Progress
Qualdson Co., Inc.
Donaldson Europe S.V.
Daniel Doncaster and Sons, Ltd.
Doncasters Blaenavon Ltd. Doncasters Blaenavon Ltd.
Doncasters Monk Bridge Ltd.
Hingley Rings Ltd.
Doncasters Blaenavon Ltd.
Doncasters Monk Bridge Ltd. Elliot Co.
ETSCO, Ltd.
Power Services, Inc.
Energy International Environmental Elements Corporation Fabrique Nationale Herstal S.A.
GKN Farr Filtration Ltd.
Fern Engineering Co., Inc.
Fiat Termomeccanica E Turbogas S.P.A, Firth Brown Ltd. The Firth-Derihon Stampings, Ltd. The Firth-Dermon Statispings, Ltd.
Fluidyne Instrumentation
The Garrett Corp. AiResearch
Manufacturing Co. of Arizona Div.
Gas Turbine Corp.
Gas Turbine Publications, Inc. have Gas Turbine Publications, Inc.
changed—see
Turbomachinery Publications
GEC, Gas Turbines Ltd.
General Electric Co.
Gilbert Gikes & Gordon, Ltd.
Glacter Metal Co. Ltd.
Closter Sava Ltd.

INTERNATIONAL GAS TURBINE 1978 CONFERENCE and invites your firm PRODUCTS SHOW to participate at WEMBLEY CONFERENCE CENTRE LONDON, ENGLAND, APRIL 9-13, 1978

For information on the Products Show please contact: J. W. Sawyer, Exhibit Director, Gas Turbine Division, ASME 24 WALNUT COURT, HENDERSONVILLE, N. C. 28739
Telephone: 704-693-0188

Telex: 899133 WHITEXPO

Harrison Radiator Div. GM Corp.
Hawker Siddeley Dynamics
Engineering, Ltd.
Hawker Siddeley Group Ltd.
Brush Electrical Machines Ltd.
Gloster Saro Ltd.
Hawker Siddeley Dynamics
Engineering Ltd.
High Duty Alloys Forgings Ltd.
High Duty Alloys Forgings Ltd.
Hingley Rings Ltd.
Hollymatic Corp.
Howmet Turbine Components Corp.
Industrial Acoustics Co., Ltd. Industrial Acoustics Co., Ltd.
The Institution of Mechanical Engineers IRD Mechanalysis (UK) Ltd.
Ivar Rivenaes A/S John Brown Engineering Johnson and Firth Brown Ltd. Firth Brown Ltd. Firth Derihon Stampings Ltd. River Don Stampings Ltd. Kahn Industries Inc.
KEYMED (Medical & Industrial
Equipment) Ltd. & Olympus Corp. of America
Kingsbury, Inc.
Kraftwerk Union A.G.
Kulie Semiconductor Products, Inc. Lucas Aerospace, Ltd. MAAG Gear-Wheel Co. Ltd. MAL Tool & Eng. Co. Maschinenfabrik Paul Leistritz GMBH Mechanical Engineering Publications, Ltd. (of I. Mech. E.) Metrix Instruments Co. Noel Penny Gas Turbines Nuovo Pignone SpA Olympus Corp. (see KEYMED) Orion Corp. Pequot Publishing Co. Gas Turbine World Petrolite Corporation Power Services, Inc. (see Elliott) Projects, Inc. River Don Stampings, Ltd.
Rolls-Royce Limited
Industrial and Marine Division
Ruston Gas Turbines Ltd.
Serek Heat Transfer

Herman Smith Ltd.
(SNECMA) Hispano-Suiza
Solar Turbines International of
International Harvester Co.
A.P.V. Spiro-Gills Ltd.
SSS Gears Ltd.
Stal-Laval Turbin AB
Sulzer Brothers Ltd. TRW Defense & Space Systems Group Turbine Industrie
Turbomachinery Publications
Turbomachinery International
Turbomachinery Catalog & Work Book Ultra Electronics, Ltd.
U.S. Dept. of Energy
United Technologies Corp.
Utica Division, Kelsey-Hayes Co. Vibro-Meter, Ltd.
Vibro-Meter, Ltd.
Vosper Thornycroft (UK) Ltd.
James Walker & Co. Ltd.
Westinghouse Electric Corp.
Henry Wiggins & Co., Ltd.
Woodward Governor Company

DIVISION SEARCH FOR DIRECTOR OF OPERATIONS

As noted in the Chairman's comments, the Division Search Committee will screen candidates for the new position, Director of Operations. The fol-lowing notes appear in the January issues of the Association Management and Mechanical Engineer-

SEASONED TECHNICAL / ADMINISTRATIVE SEASONED TECHNICAL / ADMINISTRATIVE EXECUTIVE for directing operations of an important segment of a major engineering society. Engineering baccalaureate required with graduate degree desirable. Should have experience in the industrial/business world including administrative program management. Must have initiative, be innovative as position requires congestion, with majorium supervises. requires operation with minimum supervision. Salary Open.

All correspondence concerning this position should be directed to the attention of Mr. Stan Gonick, Director, Personnel Administra-tion, ASME Headquarters, 345 East 47th Street, New York, NY 10017.

If you know of any eligible, qualified candidates who might be interested in this position, please encourage them to indicate this interest.

Recent Exhibits in U.S. and Overseas

Gloster Saro Ltd.

	1971	1972	1973	1974	1975	1976	1977
Location	Tokyo	San Francisco	Washington	Zurich	Houston	New Orleans	Philadelphia
Number of Exhibitors	40	111	121	106	122	100	102
Number of Booths	60	267	277	260	259	230	2782
Attendance	3630	2210	2556	3210	2836	2800	224
Number of Companies Represented	566(67)b	674(93)a	663 (94) a	714	802(124)a	774(170)a	640(140)a
Number of Countries Represented	17	1 <i>7</i>	21	43	24	22	29
a. Organizations Outside U.S.A.	b. Outside Japan						

Simmonds Precision Products Inc.

Sermetel Inc.

学 会 誌 編 集 規 定

- 1. 原稿は依頼原稿と会員の自由投稿による原稿の2種類とする。依頼原稿とは、会よりあるテーマについて特定の方に執筆を依頼するもので、自由投稿による原稿とは会員から自由に投稿された原稿である。
- 2. 原稿の内容は、ガスタービンに関連のある論説、解説、論文、速報(研究速報、技術速報)、 奇書、随筆、ニュース、新製品の紹介および書評などとする。
- 3. 原稿は都合により修正を依頼する場合がある。
- 4. 原稿用紙は横書き 4 0 0 字詰のものを使用する。
- 5. 学会誌は刷上り1頁約1800字であって,

1編について、それぞれ次の通り頁数を制限する。

論説 4~5 頁,解説および論文 6~8 頁, 速報および寄書 3~4 頁,随筆 2~3 頁, ニュース 1 頁以内,新製品紹介 1 頁以内, 書評 1 頁以内

- 6. 原稿は用済後執筆者に返却する。
- 7. 依頼原稿には規定の原稿料を支払う。
- 8. 原稿は下記の事務局宛送付する。 〒160 東京都新宿区新宿3-17-7, 紀伊国屋ビル,財団法人慶応工学会内 日本ガスタービン学会事務局 (Tel 03-352-8926)

自 由 投稿規定

- 1. 投稿原稿の採否は編集幹事会で決定する。
- 2. 原稿料は支払わない。
- 3. 投稿は随時とする。たぶし学会誌への掲載 は投稿後6~9ヶ月の予定。
- 4. 原稿執筆要領については事務局に問合せること。

日本ガスタービン学会誌

第 5 巻 第 2 0 号

昭和 53 年 3 月

編集者鳥崎忠雄

発 行 者 岡 崎 卓 郎

(社) 日本 ガスタービン学会

〒160 東京都新宿区新宿3丁目17の7 紀伊国屋ビル(財)慶応工学会内

TEL (03)352-8926

振替 東京179578

印刷所 日青工業株式会社

東京都港区西新橋 2の5の10

TEL (03)501-5151

非 売 品