ガスタービン人生論

慶応義塾大学理工学部 佐藤 豪

戦時中に航空工業の技術者として,ジェットエ ンジンの開発に,心を躍らせながら従事してから, ガスタービンと深い縁に結ばれて,既に40年近い 歳月が流れました。人生の大半をガスタービンと 共に生きてきますと,ガスタービンから人生を考 えるというようになってきます。

そういえば、1本の軸で結び付けられた圧縮機 とタービンは、それぞれ der Kompressorと die Turbineで、男性と女性です。この男性と女性を 固く結びつける1本の軸が、 "固いきずな"なの でしょうか。この男性と女性を結びつけるもう一 つは燃焼器です。ここでは "愛情の火"が燃えて います。この火は、一度点火されると、ガスター ビンが停止するまで、連続的に燃え続けます。

夫と妻で構成される家庭が、このガスタービン に非常によく似ているということに、すでにお気 付きでしょう。ここで、最も大切なのは、"愛情の 火"です。これが消えると、家庭の出力はなくな り、社会における存在意義もなくなります。

この"愛情の火"によって生じるタービン入口温 度が高い程,最適圧力比は高くなり,出力やサイ クル効率も上昇します。

家庭において,夫と妻の間の"愛情の火"でバ ランスよくかもし出されるポテンシャルの高さが その家族の社会に対する貢献度となって表われる のも,まさにガスタービンに見られる通りです。

ところで,夫が一生懸命働いても,妻はいつも "火の車"で"きりきり舞い"をしていると感じて

(昭和57年7月16日原稿受付)

いるようで,タービンに女性冠詞をつけたドイツ 人は,ウィットに富んでいるなと思います。

さて,人生いつでも設計点通りで全負荷,定常 というわけにはまいりません。部分負荷時などの オフ・デザインの性能や,減加速時などの非定常 な特性も考える必要があります。

圧縮機の特性とタービンの特性は全く異ります。 特性曲線をよく見ていると、この二つを一つの軸 で結び付けることを思いついた先人の無暴さに驚 きます。だが、これを結び付けて回すと、そこそ こうまく回ります。これは、この両者の特性のフ レキシビリティと燃焼器のお蔭です。

このマッチングする範囲は意外に狭いというこ とも、よく心得ておく必要があるでしょう。家庭 でも、頑固おやじとコチコチ奥さんでは、マッチ ングは甚だ悪く、波瀾万丈の人生を乗りこえるの は難しそうです。夫も妻も、先づ相手の特性が自 分とは全く異なるのだという認識をもつことが大 切です。夫にはサージといってこれ以上のことを 要求すると破壊しかねない特性が、そして妻には チョークといって、流せるだけしか流せない"特 性があることを、互に知っておきたいものです。

このサージを逃がれるため, Air Bleedという 方法があります。これは"抽気"と呼ばれていま すが, 直訳すれば"息抜き"です。圧縮機の方, すなわち夫の方にだけ, この"息抜き"が必要だし, 許されることです。ただし, この"息抜き"をや ると, 経済性を損うのは, 御想像の通りです。

圧縮機やタービンは,最近は可変静翼や可変ノ ズルなどが用いられています。システムに柔軟性 をもたせるために,構成要素のフレキシブル化が 行われています。このように,夫も妻も,その特 性曲面を拡げる努力をする必要がありそうです。 言葉をかえれば,人間の巾を拡げることに努めな ければいけないということでしょう。

"ガスタービン, この人間的なもの"というの が,最近の私の心境です。 翼と軸系の連成曲げ振動(平板翼での解析と実験)

日立・機械研究所 萩 原 憲 明

1. 緒 言

性能向上を目ざす軸流回転機械は、高速軽量化 あるいは翼の長大化に進む傾向にある。これに伴 ない従来の解析技術では予測しえない現象が発生 する可能性がある。一例として、単独翼としてで なく、円板や羽根車と軸系の連成振動⁽⁶⁾と同様に、 翼全体系と軸系との連成による振動現象があげら れる。この分野では、航空機のピストンエンジン を中心に、軸系ねじり振動との連成⁽¹⁾や、エンジ ンナセルとの連成振動の研究^{(2)~(4)}が行なわれて いる。しかし、いずれも翼枚数に制約⁽⁵⁾があった り、連成振動の基本特性に及ぼす翼剛性の影響を 系統的に研究されたものではない。

そこで、本報告では平板翼と片持梁軸系の連成 曲げ振動に関して、Galerkin法を用いた解析と 実験を基に、連成時の固有振動数や不つりあい応 答を明らかにする。

記号の説明

- EI:曲げ剛性 F:軸に作用するせん断力
- **G** : 翼剛性の影響 関数 P: 翼に作用する分布荷重
- I_{do}, I_{po}: 円板の直径と回転軸回りの慣性モーメント
- I_{db}, I_{pb}: 翼全体の直径と回転軸回りの慣性モー メント
- k_{xx},k_{yy},c_{xx},c_{yy}:軸受部水平と鉛直方向の剛性 と減衰
- 1_b,1_s: 翼ならびに軸の長さ,
- M:翼,円板,軸質量の総和

 M_x, M_y :軸に作用する偶力 N:翼枚数 N \geq 3 r:翼取付半径 T_1, T_2 :翼振動の時間関数 $\mathbf{Z}, \mathbf{Z}_{\theta}$: 複素数表示の変位,角変位 $\mathbf{Z} = \mathbf{u} + \mathbf{j}\mathbf{u},$ $\mathbf{Z}_{\theta} = \psi + \mathbf{j}\varphi$

 $\overline{\mathbf{Z}}$: 共役複素数 $\overline{\mathbf{Z}}$ = u - ju,

w,W:翼振動変位とモード

 α, β, r : 片持梁軸系の剛性係数, ω : 回転角振動

(昭和57年2月18日原稿受付)

数

φ_i: i 番目翼の取付位置 μ: 単位長さ当りの翼
 質量

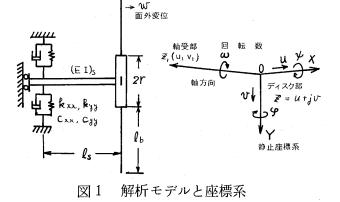
添字bは翼, sは軸に関するものを意味する。

2. 理論解析

解析モデルは図1に示す片持梁軸系の先端に、 N枚の平板翼が組み込まれた系とする。解析上の 主な仮定として、1)軸質量は円板部に等価な集中 質量で表わす。2)各翼は一様で同方向に等間隔に N枚(N \geq 3)ある。を考えると翼を含めた全体 振動方程式は不つりあい加振では次式で表わせる。

$$M \mathbf{Z}^{\bullet} + \alpha (\mathbf{Z} - \mathbf{Z}_{1}) - j r \mathbf{Z}_{\theta} = M \varepsilon \boldsymbol{\omega}^{2} e^{j \boldsymbol{\omega} t} \qquad (1)$$

$$I_{do} \mathbf{Z}_{\theta} - j I_{po} \boldsymbol{\omega} \mathbf{Z}_{\theta} + \beta \mathbf{Z}_{\theta} + j r (\mathbf{Z} - \mathbf{Z}_{1})$$
$$= (M_{x} + jM_{y})$$
(2)


$$\frac{(\mathbf{k}_{\mathbf{x}\mathbf{x}} + \mathbf{k}_{\mathbf{y}\mathbf{y}})}{2} \mathbf{Z}_{1} + \frac{(\mathbf{c}_{\mathbf{x}\mathbf{x}} + \mathbf{c}_{\mathbf{y}\mathbf{y}})}{2} \mathbf{\dot{Z}}_{1}$$

$$- \alpha(\mathbf{Z} - \mathbf{Z}_{1}) + \mathbf{j} \mathbf{r} \mathbf{Z}_{0}$$

$$+ \frac{(\mathbf{k}_{\mathbf{x}\mathbf{x}} - \mathbf{k}_{\mathbf{y}})}{2} \mathbf{\ddot{Z}}_{1} + \frac{(\mathbf{c}_{\mathbf{x}\mathbf{x}} - \mathbf{c}_{\mathbf{y}\mathbf{y}})}{2} \mathbf{\dot{Z}}_{1} = 0 \quad (3)$$

$$(EI)_{b} \frac{\partial^{4} w_{i}}{\partial x^{4}} - \frac{\mu \omega^{2}}{2} \left\{ \frac{\partial^{2} w_{i}}{\partial x^{2}} \left[(r+1)^{2} - (r+x)^{2} \right] \right\}$$

$$-2\frac{\partial w_1}{\partial x}(r+x)\bigg\} = -\mu\frac{\partial^2 w_i}{\partial t^2} + p(x,t) \quad (4)$$

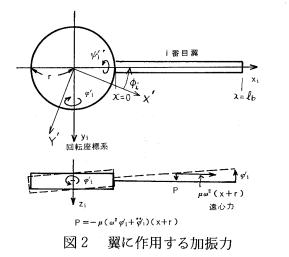
Download service for the GTSJ member of ID , via 18.191.28.129, 2025/05/17.

ここで $\mathbf{\hat{z}}$ の・は時間に関する微分を意味し, α , β , rの剛性係数は, 一様断面の片持梁軸系では,

$$\alpha = \frac{12(\text{EI})_{\text{s}}}{1} / l_{\text{s}}^{3}, r = \frac{6(\text{EI})_{\text{s}}}{1} / l_{\text{s}}^{2},$$
$$\beta = \frac{4(\text{EI})_{\text{s}}}{1} / l_{\text{s}}$$

と求めることができる。軸系振動により i 番目の 翼の x 点に作用する荷重 p は,図 2 に示すように 回転座標系 (x_j, y_i, z_i) での軸のたわみ角変位 φ_i を用いて,次式のように表わすことができる。

$$P(x, t) = \mu(\omega^2 \varphi'_i + \varphi'_i)(x+r)$$
(6)


上式を静止座標系(x,y,z)での軸変位で書き直 すと,

$$P(x,t) = \mu \left[(\overset{\bullet}{\varphi} - 2 \overset{\bullet}{\psi} \boldsymbol{\omega}) \cos(\boldsymbol{\omega} t + \boldsymbol{\phi}_{i}) - (\overset{\bullet}{\psi} + 2 \overset{\bullet}{\varphi} \boldsymbol{\omega}) \sin(\boldsymbol{\omega} t + \boldsymbol{\phi}_{i}) \right] (x+r)$$
(7)

となる。この力は(x+r) に比例した分布力とし て翼の面外たわみ方向に作用する。この分布力に 対する翼振動の厳密解を求めるのは複雑すぎる。 そこで、同分布力が静的に翼に作用した場合の静たわ みを基底関数とするGalerkin法による近似解を 採用してみる。翼変位wを静たわみモードWと時 間変動項 $T_{1,2}$ とに変数分離して次式のように表 わす。

$$w_{i}(x, t) = W(x) \left[T_{1}(t) \cos \phi_{i} + T_{2}(t) \sin \phi_{i} \right]$$
(8)

$$W(x) = \frac{1}{(EI)_{b}} \left[\frac{(x+r)^{5}}{120} - \frac{(1_{b}+r)^{2}x^{3}}{12} + \frac{(1_{b}+r)^{2}(21_{b}-r)x^{2}}{12} - \frac{r^{4}x}{24} - \frac{r^{5}}{120} \right] (9)$$

翼変位は, 翼の片持梁としての境界条件である次 式を満たすものである。

$$w_{i} = \frac{\partial w_{i}}{\partial x} = 0 (x=0),$$

$$\frac{\partial^{2} w_{i}}{\partial x^{2}} = \frac{\partial^{3} w_{i}}{\partial x^{3}} = 0 (x=1_{b})$$
(10)

時間関数 T_1 , T_2 は, Galerkin 法を用いて次のように求めることができる。

$$\int_{0}^{1_{b}} \left[\left((EI)_{b} \frac{\partial^{4} w_{i}}{\partial x^{4}} - \frac{\mu \omega^{2}}{2} \left\{ \frac{\partial^{2} w_{i}}{\partial x^{2}} \left[(r+1_{b})^{2} - (r+x)^{2} \right] - 2 \frac{\partial w_{i}}{\partial x} (r+x) \right\} - P + \mu \frac{\partial^{2} w_{i}}{\partial t^{2}} \right] W(x) dx = 0$$
(11)

定常振動の場合には,

(5)

$$\varphi = \varphi_0 e^{\lambda t} \quad , \quad \psi = \psi_0 e^{\lambda t} \tag{12}$$

$$\begin{split} & \iota \zeta \, \xi \, \mathcal{D} \,, \quad \mathrm{T}_{1}(\, \mathrm{t}\,) = \mathrm{T}_{0}\left(\,\lambda + \,\mathrm{j}\omega\,\right) \left[\,\mathrm{H}_{1}\left(\psi_{0} \,,\varphi_{0}\right) \right] \\ & + \,\mathrm{j} \,\mathrm{H}_{2}\left(\psi_{0} \,,\varphi_{0}\right) \,\right] \,\mathrm{e}^{\left(\,\lambda + \,\mathrm{j}\,\omega\,\right)\,\mathrm{t}} \\ & + \,\mathrm{T}_{0}\left(\,\lambda - \,\mathrm{j}\omega\,\right) \left[\,\mathrm{H}_{1}\left(\psi_{0} \,,\varphi_{0}\right) \right] \\ & - \,\mathrm{j} \,\mathrm{H}_{2}\left(\psi_{0} \,,\varphi_{0}\right) \,\right] \,\mathrm{e}^{\left(\,\lambda - \,\mathrm{j}\,\omega\,\right)\,\mathrm{t}} \tag{13} \\ & - \,\mathrm{T}_{2}(\,\mathrm{t}\,) = \,\mathrm{T}_{0}\left(\,\lambda + \,\mathrm{j}\omega\,\right) \left[\,\mathrm{H}_{2}\left(\psi_{0} \,,\varphi_{0}\right) \right] \\ & - \,\mathrm{j} \,\mathrm{H}_{1}\left(\psi_{0} \,,\varphi_{0}\right) \,\right] \,\mathrm{e}^{\left(\,\lambda + \,\mathrm{j}\,\omega\,\right)\,\mathrm{t}} \\ & + \,\mathrm{T}_{0}\left(\,\lambda - \,\mathrm{j}\,\omega\,\right) \left[\,\mathrm{H}_{2}\left(\psi_{0} \,,\varphi_{0}\right) \right] \\ & + \,\,\mathrm{j} \,\mathrm{H}_{1}\left(\psi_{0} \,,\varphi_{0}\right) \,\right] \,\mathrm{e}^{\left(\,\lambda - \,\mathrm{j}\,\omega\,\right)\,\mathrm{t}} \tag{14} \\ & \mathrm{T}_{0}\left(\,z\right) = \,\mathrm{c}_{1}\,\,\mu / \,2\left(\,\mathrm{c}_{1} - \,\mathrm{c}_{3}\,\,\frac{\mu}{\left(\mathrm{EI}\,\right)_{\mathrm{b}}}\,\,\omega^{2} \\ & + \,\,\mathrm{c}_{2}\,\,\frac{\mu}{\left(\mathrm{EI}\,\right)_{\mathrm{b}}}\,\,z^{2}\,\,\right), \,\,z = \,\lambda + \,\,\mathrm{j}\,\omega, \,\,\lambda - \,\mathrm{j}\,\omega \tag{15} \\ & \mathrm{H}_{1}\left(\psi_{0} \,,\varphi_{0}\right) = \,\lambda^{2}\,\varphi_{0} - \,2\,\lambda\omega\psi_{0} \end{split}$$

$$H_{2}(\psi_{0},\varphi_{0}) = \lambda^{2}\psi_{0} + 2\lambda\omega\varphi_{0}$$
(16)

と書ける。ここで c1, c2, c3は(11)式の積分方程式 で定義される定数である。さらに, 翼から軸系に 作用するモーメントは各翼取付部の荷重を総和す ることにより次のように定義することができる。

Download service for the GTSJ member of ID , via 18.191.28.129, 2025/05/1 \mathfrak{Z} —

$$M_{x} = \sum_{i=1}^{N} (M_{i}' + r F_{i}') \sin(\omega t + \phi_{i})$$
 (18)

$$M_{y} = \sum_{i=1}^{N} (M_{i}' + rF_{i}') \cos(\omega t + \phi_{i})$$
(19)

以上の関係から、軸系と連成した翼の振動は軸振 動変位で表わすことができ、最終的には翼剛性を 含んだ軸系の振動方程式だけに帰着することがで きる。特に、翼系と軸系の連成を表わす式(2)は、

$$\sum_{i=1}^{N} \cos^{2} \phi_{i} = \sum_{i=1}^{N} \sin^{2} \phi_{i} = \frac{N}{2} ,$$
$$\sum_{i=1}^{N} \sin \phi_{i} \cos \phi_{i} = 0 \qquad (N \ge 3) \qquad (20)$$

$$\mathbf{Z}_{\theta} = (\psi_0 + j \varphi_0) e^{\lambda t}$$
(21)

などの関係を用いると次式のように書き直せる。

$$I_{d} \overset{\bullet}{\mathbf{Z}}_{\theta} - j I_{p} \boldsymbol{\omega} \overset{\bullet}{\mathbf{Z}}_{\theta} + \beta \mathbf{Z}_{\theta} + \mathbf{G}(\lambda) \mathbf{Z}_{\theta} + jr (\mathbf{Z} - \mathbf{Z}_{1}) = 0$$

$$\mathbf{G}(\lambda) = I_{db} (\lambda^{2} - 2 j \lambda \boldsymbol{\omega}) \left[\frac{(\lambda - j \boldsymbol{\omega})^{2}}{\boldsymbol{\omega}_{b}^{2}} - \frac{c_{3}}{c_{2}} (\frac{\boldsymbol{\omega}}{\boldsymbol{\omega}_{b}})^{2} \right] / \left[1 - \frac{c_{3}}{c_{2}} (\frac{\boldsymbol{\omega}}{\boldsymbol{\omega}_{b}})^{2} + (\frac{\lambda - j \boldsymbol{\omega}}{\boldsymbol{\omega}_{b}})^{2} \right]$$
(2)

$$I_{d} = I_{d0} + I_{db}, I_{p} = I_{p0} + I_{pb} = 2 I_{d},$$

$$(I_{pb} = 2I_{db}, I_{p0} = 2I_{d0})$$
 (24)

 $\omega_{\rm b}^2 = \frac{c_1}{c_2} \frac{(\rm EI)_{\rm b}}{\mu}$:静止時翼固有振動数 (25)

先のモーメント M_x , M_y との間には,

$$- (M_{x} + jM_{y}) = I_{db} \ddot{\mathbf{Z}}_{\theta} - j I_{pb} \boldsymbol{\omega} \dot{\mathbf{Z}}_{\theta}$$
$$+ \mathbf{G} (\lambda) \mathbf{Z}_{\theta}$$

$$G(\lambda) \rightarrow 0$$
となり,式(22)は通常の軸系運動方程式に
なる。従がって,G(λ)が軸系振動に及ぼす翼剛
性の影響を表わす関数になる。軸受が無減衰の等
方性の場合には特性方程式は無次元化すると,
(K= $k_{xx} = k_{yy}$)

の関係が成立しており, 翼が剛体ならば ω_b =∞で

(26)

 $\begin{aligned} 1 - p^{2}, & -j \frac{r}{\alpha}, -1 \\ j \frac{r}{\beta} \kappa_{\theta}^{2}, & \kappa_{\theta}^{2} + 2\omega^{*} P - P^{2} + \mathbb{G}^{*}(P), -j \frac{r}{\beta} \kappa_{\theta}^{2} \\ -1, & j \frac{r}{\alpha}, & 1 + \frac{k}{\alpha} \end{aligned} = 0$ $(\begin{tabular}{l} (\begin{tabular}{l} \$ 5 \begin{tabular}{l} + 1 \\ (\begin{tabular}{l} \ast 5 \begin{tabular}{l} + 1 \\ (\begin{tabular}{l} \ast 5 \begin{tabular}{l} + 1 \\ (\begin{tabular}{l} \ast 5 \begin{tabular}{l} + 1 \\ (\begin{tabular}{l} + 1 \begin{tabular}{l} + 1 \\ (\begin{$

 $I^{*} = I_{db}/I_{d}, \omega_{u}^{2} = \alpha/M, \quad \omega_{\theta}^{2} = \beta/I_{d}, \quad \kappa_{\theta}^{2} = (\omega_{\theta}/\omega_{u})^{2}, \quad \kappa_{b}^{2} = (\omega_{b}/\omega_{u})^{2}, \quad \omega^{*} = \omega/\omega_{u}$ P = f/\omega_{u}, \lambda = jf(連成時の固有振動数)

と表わせる。以下に実験との比較において固有振 動数,不つりあい振動応答特性を記す。

3. 連成振動モデル実験と固有振動数

試験装置の概要と翼形状を図3,4にそれぞれ示 す。本ロータは直流モータにより回転数を可変で きるようにしてあり,かつ軸系はオーバハング部 を他部分より細くして,解析モデルに近くした。 振動測定は非接触振動計により軸先端近くの水平 と鉛直方向成分の軸振動を中心に計測した。

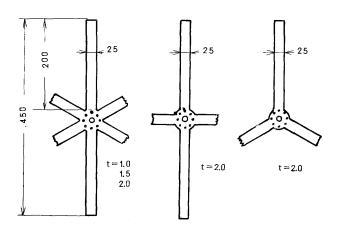


図4 試験翼形状

打撃による自由振動波形から、ボス部を固定し た静止時の翼固有振動数と翼を組込んだ軸系の固 有振動数を測定した。図5は翼の曲げ1次固有振 動数を表わし、片持梁としての計算値と良い一致 を示すことがわかる。図6は6枚翼で板厚を変え た場合の軸系の固有振動数測定値を示す。同図に は、翼を剛体とした場合と剛性を考慮した場合の 固有振動数計算値も示してある。実測の固有振動 数は,板厚が1mmの場合二つの値が存在する。こ れは、翼の固有振動数と軸系固有振動数とが近い 値を持ったため、連成効果により固有振動数が分 離したものと考える。翼剛性を考慮した計算でも その傾向を予測している。剛体翼とした計算では 全般的に実測値より高目の値となり、かつ翼板厚 が変わっても分離することなく単調な変化を示す に過ぎない。弾性翼による軸系固有振動数低下の 現象は、定性的には次のように説明できる。軸系 全体のなかで翼重量の占る割合が大きいため、剛 体翼軸系の固有振動数は、翼質量と軸剛性でほぼ 決る。これに対して、弾性翼の場合は、1/(等 価剛性)=1/(軸剛性)+1/(翼剛性)の関 係から(等価剛性) <(軸剛性)となるため、剛 性低下が固有振動数低下の要因となるからである。

ここで、上記固有振動数計算の際、用いた軸受 部の剛性は、鉛直方向はほぼ剛であるとし(k_{yy} = $10^4 kg f/mm$)水平方向成分を $k_{xx} = 10 kg f/mm$ の推定値とした。これは、図7に示すように、危 険速度の半分の回転数で発生する二次的危険速度 の実測値(図11参照)と、剛体翼の軸系危険速 度の計算値との比較結果から得られたものである。

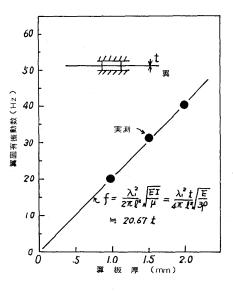
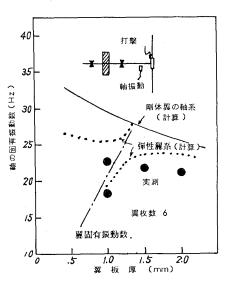
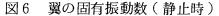
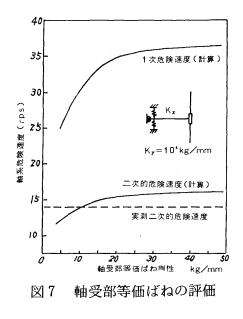





図5 翼の固有振動数(静止時)

4. 不つりあい振動応答比較

不つりあい振動では静止座標系で定義された複 素固有振動数入は,

(29)

 $\lambda = j \omega$

となる。上式を翼振動を表わす T_1 , T_2 (式(13), (14)) に代入すると,各式の右辺第一項は回転数の 2 倍 の周波数となり,第二項は時間によらず一定値と なる。かつ各式の第一項の係数が, $\psi \neq j\varphi$ の場 合,つまり,軸振動が真円軌跡ではなく楕円軌跡 のふれまわり振動を行っている場合に,式(31)の回 転数で

$$T_{0}(2\omega) = \mu/2 \left[1 - \frac{C_{3}}{C_{2}} \left(\frac{\omega}{\omega_{b}} \right)^{2} - \left(\frac{2\omega}{\omega_{b}} \right)^{2} \right] \rightarrow \infty \qquad (30)$$
$$\left(\frac{\omega}{\omega_{b}} \right)^{2} \rightarrow 1/\left(4 + \frac{C_{3}}{C_{2}} \right) \qquad (31)$$

翼の共振が発生することを意味している。言い換 えると、不つりあい振動で楕円軌跡のふれまわり により生じた回転数の2倍周波数の加振力成分が 回転時の翼の固有振動数に接近した時(式(31)の条 件)翼共振現象が発生することになる。この場合 翼共振が発生すると軸系振動も影響を受け、軸系 でも共振現象の様相を現わすことになる。(図8 ~10参照)この現象を非接触振動計により静止座 標系で観測すると、回転数成分の振動となる。以 上の現象は、円板や羽根車と軸系との連成不つり あい振動の場合と同様なもので⁽⁷⁾、軸系振動の力 学で言われる後向きふれまわりモードの共振現象 の一例である。

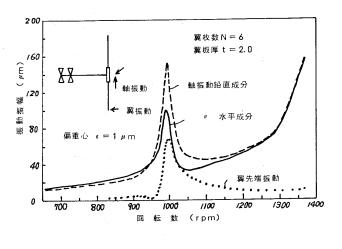
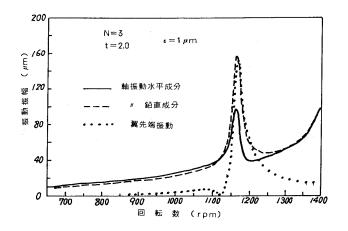
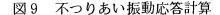




図8 不つりあい振動応答計算

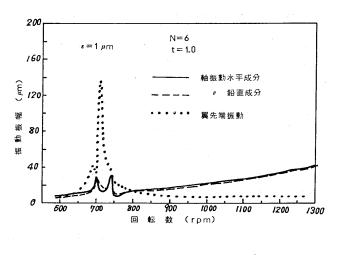


図10 不つりあい振動応答計算

以上の理論的推測を検証するために、実験結果 との比較検証を行ってみる。各種の翼を組み変え た一連の回転試験結果を図11~14に示す。いずれ の結果でも、静止系での非接触振動計の波形に回 転数の2倍周波数成分の振動となる二次的危険速 度に対応する共振現象が発生していた。一方、翼 と軸系の連成による共振現象は図11に示される翼 枚数6枚で板厚2㎜の場合が顕著に現われた。翼 板厚が 1.5 と 1.0 mm の 実測 結果では、二次的危険 速度は発生しても、連成による共振現象は軸振動 のみの波形では判明しがたくなった。このような 翼板厚の相違による共振応答性への影響は、計算 結果でも同様な傾向を示す。(図 8 ~10参照) この理由は、軸系振動に及ぼす翼剛性の影響を表 わす関数**G***(式(24))で,翼全体慣性モーメントI_{db} と全体慣性モーメント Id との比 I* が板厚が小さ くなるにつれて、小さくなるためであると説明で

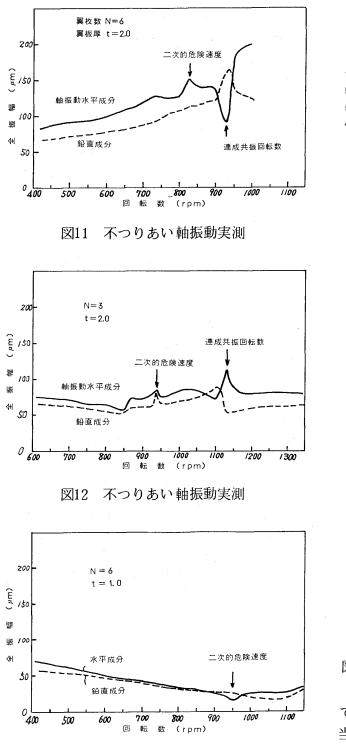


図13 不つりあい振動実測

きる。なお、板厚 1.0 mmの翼系と重量を等しくし た剛体円板の場合では、図14に示すように二次的 危険速度の現象は発生するが、連成による共振現 象は発生していないことがわかる。

さらに,連成系の固有振動数が回転数とともに どのように変化し,不つりあい加振力との関係で どこに共振発生の可能性があるかについて検討し

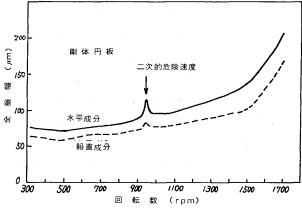


図14 不つりあい軸振動実測(剛体円板軸系)

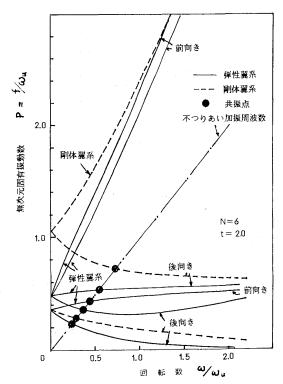


図15 回転時固有振動数と共振点(静止座標系)

てみた。図15は翼枚数6枚、板厚2mmの場合に相 当するもので、回転数増加に伴ない主として翼の ジャイロ効果により前後向きふれまわりモードの 固有振動数に分離する様子がわかる。特に、翼共 振発生点に関しては、前述のように後向きふれま わりの固有振動数と不つりあいによる回転数加振 周波数とが一致した点に対応する。ただし、軸系 振動は、軸受など支持系に異方性があることで生 ずる楕円軌跡を呈しているものとする。なお、図 15中の共振点の中で最低次のものが、実測でも観 測された共振現象に対応している。また、前向き 固有振動数と不つりあい加振との一致点での共振 は、従来の言わゆる危険速度に対応する。

以上の実測と解析の結果を共振回転数と翼枚数 との関係で比較したのが図16である。計算結果に は、翼振動特性に遠心力効果を考慮した場合とし ない場合(式(15)中の $C_3 = 0$)とを併記してある。 連成振動解析にGalerkin 法による近似解析でも, 実測と比較して十分な精度が得られていると考え 3.

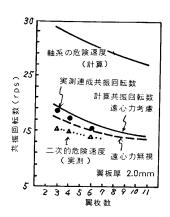


図16 翼枚数の影響

5. 結 宮

片持梁軸系の先端に平板翼が取付けられた振動 系に対し、解析と実験により連成時の振動特性に 関して次のようなことが明らかになった。

1) 翼剛性は軸系固有振動数ならびに危険速度を 低下させる効果を持つ。

- 2) 不つりあい力により、連成系での後向きふれ まわりモードに対応した固有振動数で翼共振発 生の可能性がある。(共振時の振動は回転座標 系では回転数の2倍,静止系では同期周波数と なる。)
- 3) 翼・軸系連成の不つりあい共振では、不つり あい共振では、不つりあい偏心量が同一ならば 翼枚数や板厚が大きくなる程,慣性効果(I*) により、応答振幅が大きくなる。

終りに, Cambridge 大学のWhitehead 教授な らびに日立機械研究所の加賀部長、菊地主任研究 員の研究への御理解と御支援に対し感謝の意を表 します。

参考文献

- (1) Biot, M.A., J. Aeronautical Sci., Vol. 7(1940), 376.
- (2) Coleman, R.P. and Feingold, A.M. NACA TR 1351, (1958)
- (3) Hohenemser, K.K. and Yin, SK., J. Amer. Helicopten Soc. Vol. 17(1972), 3.
- (4) Crandall, S.H. and Dugundji, J., I. Mech. E., Cambridge, C290/80, 1980.
- (5) Dimentberg, F.M., Flexunal Vibrations of Rotating Shaft, 1961, Butten worth.
- (6) Hagiwara, N, ほか4名, Trans. ASME, J. Mech. Des. Vol. 102(1980), 162.
- (7) 萩原, ほか3名, 機械学会論文集, 47-423 (昭56-11), 1457.

§ 入 会 勧 誘 の お ね が い 日本ガスタービン学会では賛助会員、正会員、学生会員の入会を呼びかけております。 ガスタービン関係の方々に是非ご入会いただきますよう各方面でのご勧誘をおねがいいたし ます。 5 0,0 0 0 円 賛助会員 1 🗆 入会金 1000円 正会員 3,0 0 0 円 入会金 500円 学生会員 1,000円 入会金 500円 (年度は4月から翌年3月まで) 入会申込など詳細は下記事務所へ 〒160 新宿区西新宿7-5-13 第3工新ビル402 (社)日本ガスタービン学会事務局 Tel 365-0095

固有振動数と不つりあい加振との一致点での共振 は、従来の言わゆる危険速度に対応する。

以上の実測と解析の結果を共振回転数と翼枚数 との関係で比較したのが図16である。計算結果に は、翼振動特性に遠心力効果を考慮した場合とし ない場合(式(15)中の $C_3 = 0$)とを併記してある。 連成振動解析にGalerkin 法による近似解析でも, 実測と比較して十分な精度が得られていると考え 3.

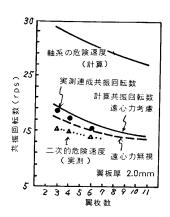


図16 翼枚数の影響

5. 結 宮

片持梁軸系の先端に平板翼が取付けられた振動 系に対し、解析と実験により連成時の振動特性に 関して次のようなことが明らかになった。

1) 翼剛性は軸系固有振動数ならびに危険速度を 低下させる効果を持つ。

- 2) 不つりあい力により、連成系での後向きふれ まわりモードに対応した固有振動数で翼共振発 生の可能性がある。(共振時の振動は回転座標 系では回転数の2倍,静止系では同期周波数と なる。)
- 3) 翼・軸系連成の不つりあい共振では、不つり あい共振では、不つりあい偏心量が同一ならば 翼枚数や板厚が大きくなる程,慣性効果(I*) により、応答振幅が大きくなる。

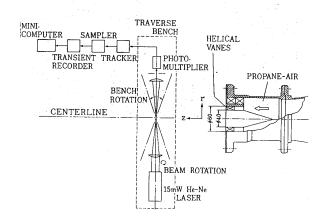
終りに, Cambridge 大学のWhitehead 教授な らびに日立機械研究所の加賀部長、菊地主任研究 員の研究への御理解と御支援に対し感謝の意を表 します。

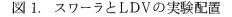
参考文献

- (1) Biot, M.A., J. Aeronautical Sci., Vol. 7(1940), 376.
- (2) Coleman, R.P. and Feingold, A.M. NACA TR 1351, (1958)
- (3) Hohenemser, K.K. and Yin, SK., J. Amer. Helicopten Soc. Vol. 17(1972), 3.
- (4) Crandall, S.H. and Dugundji, J., I. Mech. E., Cambridge, C290/80, 1980.
- (5) Dimentberg, F.M., Flexunal Vibrations of Rotating Shaft, 1961, Butten worth.
- (6) Hagiwara, N, ほか4名, Trans. ASME, J. Mech. Des. Vol. 102(1980), 162.
- (7) 萩原, ほか3名, 機械学会論文集, 47-423 (昭56-11), 1457.

§ 入 会 勧 誘 の お ね が い 日本ガスタービン学会では賛助会員、正会員、学生会員の入会を呼びかけております。 ガスタービン関係の方々に是非ご入会いただきますよう各方面でのご勧誘をおねがいいたし ます。 5 0,0 0 0 円 賛助会員 1 🗆 入会金 1000円 正会員 3,0 0 0 円 入会金 500円 学生会員 1,000円 入会金 500円 (年度は4月から翌年3月まで) 入会申込など詳細は下記事務所へ 〒160 新宿区西新宿7-5-13 第3工新ビル402 (社)日本ガスタービン学会事務局 Tel 365-0095

旋回ジェットの燃焼時および非燃焼時特性


1. はじめに


ガスタービン燃焼器には古くからスワーラ保炎 器が使われて来た。保炎機構や有害物質の生成が、 スワーラ後方に形成される再循環流領域と密接に 結びついていることは知られている。従って、過 去に多くの研究報告があり、代表的なものとして スワーラの大きさや形状と空力特性の関係を非燃 焼の条件下で調べたもの^{1)~3}、LDV(レーザドプラ ー流速計)を用いて燃焼状態で計測したもの^{4)~6)} が挙げられる。一方、筆者らもレーザを利用した 燃焼研究を行っており^{7)~8}、その一環としてスワー ラ保炎器にみられる旋回流れの燃焼時と非燃焼時 の特性を調べた。最初に空力面に主眼をおいた研 究を発表した⁹⁾。次の段階として、本報告では、 燃焼現象との関連において旋回流れを論じている。

2. 実 験

2-1. 装置 実験装置やLDVに関する計測法 は既報⁹⁾で述べたので,ここでは必要最小限にと どめる。

供試スワーラとLDVの配置関係を図1に示す。 スワーラは OuterとInner の2つから成る二重スワ

(昭和57年2月22日原稿受付)

航 技 研 原 動 機 部	江	П	邦	久
航技研公害グループ	五	味	光	男
航技研公害グループ	藤	井	昭	

ーラであり、今回の実験では、Innerのみの単一ス ワーラを用いた。使用スワーラは機械加工した16 枚のヘリカル羽根より成っており、45度の旋回角 を有している。純プロパン燃料と空気の予混合気 をプレナムチャンバーよりスワーラに送り、大気 中において旋回ジェットを形成し、かつ燃焼させた。

LDVは15mW He – Ne レーザを光源とし前方散 乱デュアルビームモードで使用した。逆流域を測定 するため5MHzの周波数シフトを行った。使用し たLDVの特長は、一つの散乱粒子からただ一つの 信号を抽出する独自の処理系にある^{10),11)}。図1の サンプラー(Sampler)が主としてこの働きをする。 よって、トラッカに接続することにより、元来は アナログ信号であったものをデジタル化し、かつ 一粒子あたり一信号の動作は、あたかも周波数カ ウンタを使用したことに相当する。しかもS/N比 の良くない条件でも比較的安定するトラッカの長 所を残しており、一種の「ハイブリッドカウンタ」 と呼べる。本研究の目的の一つは、このハイブリ ッドカウンタを旋回ジェットのような三次元性の 強い流れの場に適用することにあった。

上記の空力パラメータに加えて、温度及び化学 成分濃度の詳細な測定も行った。温度計はPt/Pt $-13\% R_h$ 熱電対で 0.3 mm直径の素線にシリカコー ティングしたものを使用した。最も高い温度領域 を把握するのが主目的であり、相対値にのみ注目 したので、本実験では不確定要素が多分にある輻 射及び伝導の補正は試みなかった。次に、化学成 分については、CO₂とCOをNDIR法、NOとNO_x を化学発光法、火炎イオン化検出法で未燃炭化水 素成分、ダンベル型電磁モーメント検出法で O₂ をそれぞれ測定した。ガス採取プローブには、ス ワーラに近い領域では外径 1.7 mmの石英管、その他 では、外径 8 mmの水冷ステンレス管を採用した。 ガスは電気的に 140℃に加熱した テフロンチューブ を通して分析計に送られた。

2-2. 計測方法 レーザチューブ,受光器及 び光学レンズ全体を図1に示すトラバース台に配 置し,台の中心軸まわりの回転 r 及び z 方向にそ れぞれ移動させ,所望の空間上の一点において平 均速度(U, V, W)及び乱れ速度の相関(u^2 , v^2 , w^2 , \overline{uv} , \overline{vu} , \overline{wu})を,連立方程式を解いて求めた。

速度,温度及び濃度測定位置の関係を表1に示 す。燃焼条件を表2にまとめた。

Type of Measure-	Axial Distance from Swirl-
ment	er Exit mm
Axial Mean-Flow	<i>z</i> = 20, 40, 60, 80, 100, 120, 140,
Only	160, 180, 200, 220
Three Dimensional	<i>z</i> = 30, 60, 90, 150
Flow	
Temperature	<i>z</i> = 10, 20, 40, 60, 80, 100, 120,
	140, 160, 180, 200, 220
Gas Composition	<i>z</i> = 30, 60, 90, 120, 150, 180

	-	+ 1 La
表		軸方向測定断面
\sim		
s.	- ·	

	表 2. 燃	焼 条 件
	Swirl Number S*	0.844
Jet Velocity U ₀ m/s		30
	Reo	1.24×10^{5}
	Fuel	Propane (>99.9%C ₃ H ₈)
	Initial Equivalence	
	Ratio	0.92

3. 実験結果と考察

3-1. 火炎観察 予備実験の段階で,スワー ラからの噴出速度が20m/s以上ならば浮力の影響 は無視できることがわかった。また,流れの軸対 称性は,予備実験により確認されたので,ここで 示されるデータはすべて上半面のものである。燃 料 — 空気の当量比0.67付近が希薄側の吹消え限 界で,実験した噴出速度16~53m/sの範囲では, 速度にはあまり依存しなかった。そこで実験は噴 出速度30m/s 一定で行った。写真1~3 は火炎形 状を示す。可視火炎は旋回羽根のハブ付近に付着 しており,その後流ではV形に再循環流域の外側 に広がっている。当量比0.75の吹消え近傍では, チューリップ状になり,さらに燃料を増加させると, 旋回羽根の枚数に相当した数の明るいすじが生じ た。写真2(当量比0.98)では,火炎の輪郭が直線 的に広がっていることがわかる。燃料過濃側にな ると,火炎域が厚くなると同時に双曲形へと変化 した。

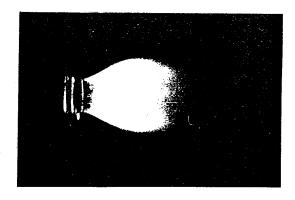


写真 1. 旋回ジェット火炎の直接写真($\phi_0=0.75$)

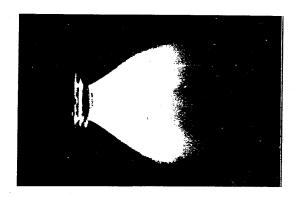


写真 2. 旋回ジェット火炎の直接写真(ϕ_0 =0.98)

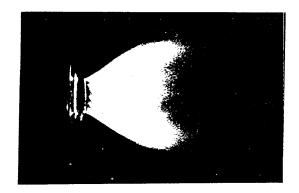


写真 3. 旋回ジェット火炎の直接写真($\phi_0 = 1.22$)

3 − 2. 平均流 時間平均した軸流速度U及び
 密度を用いて流線関数 ψ が求められる。図 2 (a),
 (b)は燃焼及び非燃焼時の流線を比較したものである。 ψ はスワーラ入口での流量を100% として表示した。元来このような流れは非定常性が著しく

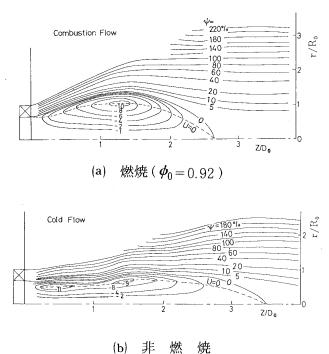


図 2. 流線パタン $\psi/\psi_0 \times 100$

再循環流域を正確に決定することは,実験技法上 困難である。中でも後方のよどみ点付近の把握は 不可能に近い。それで再循環流域の軸方向の大き さは,中心軸へ沿う平均軸流速分布のカーブを内 挿して決めた。このようなデータに基づき,逆流 している流量を調べたのが図3である。入口での

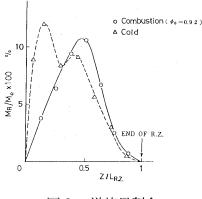


図 3. 逆流量割合

流量で無次元化しパーセント表示した。さらに, 当量比と再循環流域の大きさとの関係を図4にプ ロットした。

図 2.3 を見比べると、非燃焼時では $z/D_0=0.5$ 及び 1.4 付近を中心とした 2つの環状渦とそれに対応する 2 つの逆流量 ピークが観察され、燃焼する とこれが 1 つになっている。 2 つの環状渦の出現

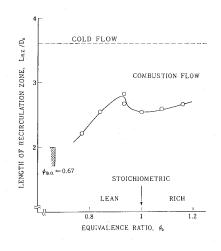


図 4. 再循環流領域の長さ

はスワール数と密接に結びついている。すなわち この現象は非燃焼時における一連の実験でも⁹⁾,ス ワール数 = 1.5及び二重スワーラの場合にのみ認 められた。理由は後述するが,燃焼するとスワー ル数としては低下するので,環状渦が1つになっ たと見られる。

図 2~4 と同様のデータ整理を,周囲が壁面で閉 じ込めたブラフボディ保炎器について行った結果⁸⁾ と比べると、すべてが逆の形になっている。この 相違は明らかに、外周へ向かって自由に反応した 高温流体が膨張できるか否かによるものである。 ここで扱っている大気開放型の火炎では、非燃焼 時に比べて、再循環流域の幅は大きくなり、逆流 量MRの最大点も下流へ移動し、かつ理論混合比付 近で再循環流域の長さは最大を呈する。なお、図 4に描いた実線は便宜上のものであって、前述した ように、再循環流の長さの決定には相当の実験誤 差が含まれている。従って、これを勘案して理論 混合比付近に長さの最大値があると判断した。さ らに、図4に関連して、理論当量比付近は、化学 反応により最高温度が得られるので流れの増速に伴 って、周囲から誘引される空気量が増した結果、 再循環流域を最大にしたと推察できる。これに反 して,壁で囲まれた火炎⁸⁾では,上記のような作 用が働かないから、再循環流も最小にすることに より保炎に必要な熱量を調節している。

スワーラの設計で常に問題となるスワール数(旋 回強度を表わす)についても図5に示した。スワ ール数は軸方向及び半径方向への運動方程式を, $r=0 \rightarrow \infty$ まで積分して, $S = G_{\theta} / R_0 G_z$ と定義される。ただし、 $G_{\theta} = \int_0^{\infty} \rho r^2 U W dr$, $G_z = \int_0^{\infty} \rho r (U^2 - W^2/2) dr$ とする。粘性項を無視すれ ば、静圧バランスは $\partial P / \partial r = -\rho W^2 / r$ によって 保たれるわけであるが、この効果を無視して G_z の 代りに $G_{zd} = \int_0^{\infty} \rho r U^2 dr$ を用いたものを S_d とす る。 S^* は純粋に旋回羽根の幾何学的寸法及び形 状から決められるスワール数である。ところで、

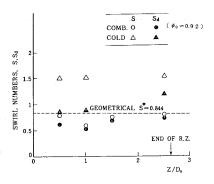
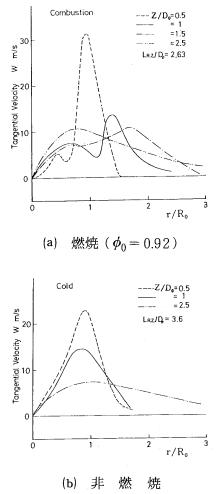


図 5. スワール数の軸方向変化

 G_{θ} や G_z には、厳密に言えば、レイノルズ応力に 起因する粘性項を含ませるべきであるが、 uw/U $W, \overline{u^2}/U^2$ などは、今回の実験データによるとい ずれも1/20以下になるので無視できる。よって、 各スワール数の軸方向への変動は粘性項を無視し た影響よりも、UやWを測定する実験上の誤差を 意味するであろう。図5の結果によると、非燃焼 時では、 $S \geq S_d$ の差は無視できず、各軸方向断面 での静止勾配が著しいことがわかる。しかし、燃 焼すると、どれもがS*に近づいた。すなわち、燃 焼により軸方向スラストが極めて大きくなり,遠 心力項が無視できる。実験データによると、G_θの 値は非燃焼時及び燃焼時ともほぼ同じであるが, G_{*} については、燃焼時の値が非燃焼時に比べ2.2 ~2.5倍程度大きくなっている。大気開放型の旋回ジェ ット火炎は、旋回成分があるにも拘わらず,等圧 火炎に近いと考えられる。よって、実験値を必要 としないS*で代表させても大差のないことが判明 した。



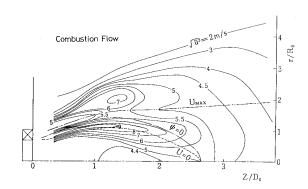
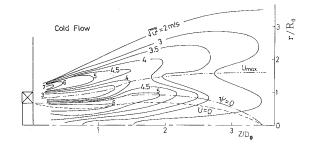

図 6. 旋回平均速度分布の比較

図6に旋回速度成分Wの分布を示した。図6の (a)は燃焼データであるが、非燃焼時に比して、ス ーラで与えられた剛体うず形式 (Solid-body Rotation)が最も化学反応が著しく進む領域(z/D0=0.5 ~1.0)でくずれている。後に示す温度データとつ き合わせてみると、最高温度域付近でのみ生じた 現象である。このような密度変化を伴う流れでは, Rayleighの安定条件から、PWr が半径方向に向か って減少すれば流れは不安定になると言われてい る。しかし,高温域付近の P の変化を考慮しても, 元来、剛体うず形式は安定であり、上記の不安定 現象を必ずしも説明できない。顕著なことは、高 温域での ∂U/∂r が極めて大きくなっている点であ る。 $(\partial U/\partial r)^2$ は乱流生成の主力項であるから、 遠心力項との比で与えられる修正リチャードソン 数の立場から調べてみると、粘性力項が遠心力項 を大きく上回っていることになる。しかし、修正 リチャードソン数は、流れの不安定性の中でも、


遷移もしくはその反対の層流化(Laminarization) のような状態を説明するために多くの場合引用さ れており、レイノルズ数が十分大きくすでに著し い乱流場にある所への適用には限界があるかもし れない。また、Wと、後述する乱流成分 $\sqrt{w^2}$ は 形式的には分離させているが、共に旋回成分を形 成し、現象論的には合わせて考えるべきである。 すなわち、Wの不安定性は w^2 のそれに起因するか 又はこの逆も成立するであろう。いずれにしても、流れ と化学反応の干渉によって生じた一つの新しい発 見と思われる。

3-3. 乱流特性 図 7 (a), (b) に軸方向の乱流 速度 R. M. S.の等高線を描いた。Umaxを結ぶ線の 両側、すなわち、そこは軸流速度の半径方向勾配 $(\partial U/\partial r)$ が大きく、高い乱れを示す領域となって いる。Umax線の外側に見られる乱れの強い領域は 旋回 ジェットと周囲との間に生じる Shear Layer に 相当する。図8(a), (b), (c)は乱れの等方性を調べ るために示した。非燃焼時にはほぼ線で表示でき るので、実験点そのものはプロットしなかった。 非燃焼は、軸流速度Uの勾配が強くなる $0.6 \leq r/$ *R*₀ ≤1の領域を除いておおむね等方性を有してい た。しかし燃焼すると $\overline{u^2}/\overline{v^2}$ は1に近づくものの、 $\overline{w^2}/\overline{u^2}$ 及び $\overline{w^2}/\overline{v^2}$ のように $\overline{w^2}$ の成分を含むもの は、データのばらつきが大きくなり、実験点を一 つの線で結べない。 ww, wu の速度相関について も同じことが生じた。これらのことは、Wの不安 定性が起こった軸断面全域において観察された。 なお、図8(b)の $r/R_0=1.6$ 付近では、非燃焼時の データが著しい非等方性を示しているが、これは 図2(b)と見比べればわかるように、その半径位置 が噴流の外側に位置しており、周囲の影響を受け て散乱粒子の濃度が不均一になるため LDV 特有 のバイアス誤差が生じていると思われる。

スワール数の大小が燃焼特性を左右することは 古くから実証されている。本研究によって,さら に旋回速度成分が変動値を含めて反応成分の混合, 熱移動などの決定的因子であることが推定できる。 中でも, w^2 のデータが燃焼反応を伴うとランダム に離散してばらついた。このことは,他の成分 u^2 , v^2 ,uvのデータにばらつきがないので,必ずしも 測定精度によることを意味しない。むしろ,本計 測法では十分に捕捉できないほど非定常性が強く, かつ乱流スケールの大きい渦の存在を示唆してお

(a) 燃焼 ($\phi_0 = 0.92$)

(b) 非 燃 焼 図 7. 軸流速度の R.M.S.等高線

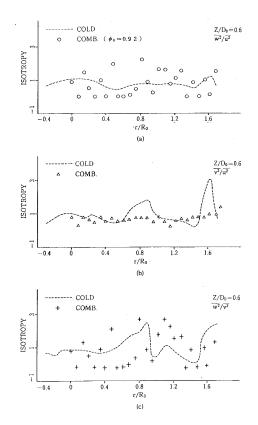


図 8. 乱れの等方向(燃焼時 $\phi_0 = 0.92$)

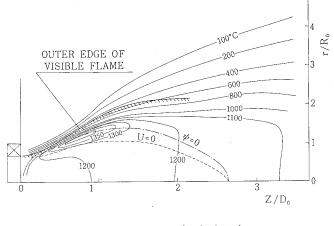
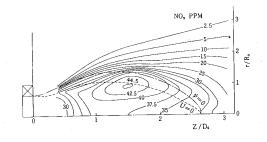
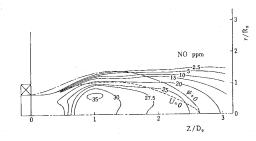
り,化学成分,密度,温度などのスカラー量のふ るまいも相当に支配されていると考えられる。

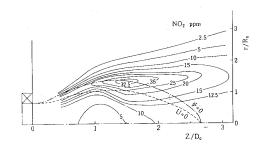
速度乱れのヒストグラムから, 歪度, 尖度など のデータを得たが燃焼, 非燃焼時とも大差なくほ ぼガウス分布に近かった。この点は, 閉じ込めた 火炎の実験結果⁸⁾と大いに異なり, 自由旋回ジェ ットは拘束条件がゆるいので, 火炎の有無は乱流 構造の歪に対してはあまり影響を与えない。

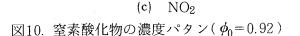
3-4. 温度、NO_x, NO及びNO₂の分布

図 9, 図10(a), (b), (c)に温度, NO_xなどの等高 線を示した。図 9に見るように,最高温度(>1400 °C)は $z/D_0=0.7$,局所当量比約 0.8の付近にあり, 旋回成分Wの不安定性が生じた領域である。図10 (c)の NO₂の値は NO_x とNOの測定値の差で表示し た。このようにすると,NO,NO₂及び NO_xの各々 のピーク値が生じる場所が互いに異なり,NO, NO_xのピーク域は共に可視火炎の内側で,かつ再 循環流域内に存在した。

比較的温度の高い領域(1200~1300°C)において 多くのNO₂が検出された。よく議論される^{12~14)}よう に、本実験で得たNO₂の測定量にも、プローブや 測定ラインの通過中にNO+O→NO₂の反応によって 生じたものが多分に寄与していると考えられる。 **3-5. 濃度生成** 各断面を通過する成分 χ_i につい て、2 $\pi \int_0^\infty \rho \chi_i Urdr を求めプロットしたのが図11$ である。燃焼効率 η_c はCO及び未燃炭化水素及び UHC(C₃H₈として)の残留エンタルピから求めた。 ただし計算にはH₂を除いた。測定成分中の炭素数 から求められる全炭化水素の積分量(fuel mass flux)は軸方向に一定にならねばならないが、実


図 9. 等温線パタンと可視火炎($\phi_0 = 0.92$)



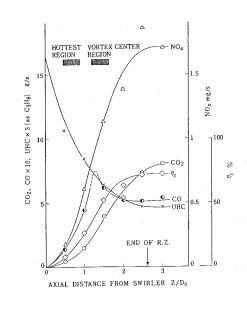


図11. 化学種成分の生成と消費

際には最大25%程度の変動値が、勾配の大きい $z/D_0=0.5$ 、1で生じた。プローブを化学反応の著しい領域に挿入するために生じたバイアス誤差であろう。図中、渦中心領域(vortex center region)とあるのは図3で逆流量 M_R が最高になった付近を指す。 $z/D_0=1$ を中心に化学成分の生成が激しく起こっており、再循環流の終端で反応が凍結している様子がみられる。

4. 結 論

スワール数の比較的大きい旋回ジェット火炎(\cong 0.8)について、LDV、温度計、濃度検出器により、定量的かつ局所的に測定し、非燃焼時の流れ特性と比較した。その結果、以下のことが判明した。

(1) 大気開放型火炎では,非燃焼時に比べて,逆 流量が最大になる渦中心領域は後流側に移動し,

再循環流域の幅は大きくなる。理論混合比付近に 再循環流の長さが最大になるのは,自由に外周へ 向かって高温部が膨張し周囲空気が流入したため である。これらの一連の現象は閉じ込めた火炎と 全く逆で,著しい対照性を呈した。

(2) 測定値を基に、スワール数を調べたところ、 強いスワール数の存在する燃焼場でも静圧勾配を 無視できた。燃焼によって軸方向運動量が著しく 増加し、スワールによる遠心力項を無視できるた めである。

(3) 旋回方向の平均速度成分は,化学反応の最も 著しい高温領域に限って不安定になり,剛体うず 形成にならなかった。 $W \ge w^2$ は,厳密に分離して 考えられるものでない。遷移もしくは層流化を説 明するために用いられる修正リチャードソン数が, 今回の場合にも適用できると仮定すれば,粘性項 が遠心力項を上回ったことになる。

(4) 旋回方向の速度変動値も、燃焼すると、データ相互にばらつきが目立った。ただし、平均速度と違って、最高温度域を含む軸断面全体にわたって観察されていることから、乱流スケールの大きな渦が存在している可能性がある。この渦は影響 半径が大きいので物質や熱の移動に重要な因子になっていることが推定される。

(5) LDVの信号処理に組み込んだ独自のハイブリ ッドカウンタは、三次元流れの著しい場合でも適用 できることがわかった。 今回の結果において、化学成分の濃度や測定は、 反応場へのプローブ挿入のため、必ずしも精度の よいデータを提出できなかった。そのため、現在 レーザを利用し、空間上の一点において流れと非 接触で測定する研究を進めている¹⁵⁻¹⁷。

参考文献

- Kerr, N. M. and Fraser, D., J. Inst. Fuel, 38(1965) 527.
- Mathur, M.L. and Maccallum, N.R.I., J. Inst. Fuel, 40(1967), 214.
- (3) Chigier, N.A. and Gilbert, J.L., J. Inst. Fuel, (1968), 105.
- (4) Chigier, N. A. and Dvorak, K., 15Sym. (Int'1) on Comb., (1975), 573.
- (5) Baker, R.J., ほか3名, 同, 553.
- (6) Gupta, A.K. and Beer, J.M., Comb. Sci. and Tech., 17 (1978), 197.
- (7) Fujii,S., Gomi, M. and Eguchi,K., Trans. AS ME, J. F. E., 100-3(1978-9), 323.
- (8) Fujii, S. and Eguchi, K., Trans. ASME, J.F.E., 103-2(1981-6), 328.
- (9) Fujii,S., Eguchi,K.and Gomi, M.,AIAA Jour., 19-11(1981-11), 1438.
- (10) 五味,貴俵,藤井,航技研報告 TR-521(1978-1)
- (11) 藤井, 機械の研究, 32-5(1980-5), 607.
- (12) Allen, J.D., Comb. and Flame, 24(1975), 133.
- Cernansky, N.P., Progress in Astro. and Aeronaut., 53 (1977), 83.
- (14) Hayhaust, A.N. and Vince, I.M., Progress in Energy and Comb. Sci., 6(1980), 35.
- (15) Fujii,S., ほか2名, Comb.and Flame(1982, 近刊)
- (16) 藤井, 江口, 五味, 1981年航技研公開発表前刷.
- (17) 藤井, 江口, 五味, ほか3名, 18回伝熱シンポ講論
 集, (1981-6), 106及び109.

記号

B ハブ比

- D_h, D_o スワーラ内径,外径
- G_{θ} 角運動量
- G_z 軸方向運動量
- G_{zd} 軸方向ダイナミック運動量
- LR.Z. 再循環流域長さ
- M。 入口流量
- M_R 逆流量

r半径座標z軸座標
$$R_o$$
スワーラ半径= $D_o/2$ β 旋回角度 S^* 幾何学的スワール数= $\frac{2}{3}\frac{1-B^3}{1-B^2}\tan\beta$ γ_c 燃焼効率 S $=G_{\theta}/R_oG_z$ ρ 密 S $=G_{\theta}/R_oG_z$ ϕ_o \mathcal{T} ロパンー空気のスワーラ入口での当量比 T 温度 χ_i 化学種の濃度 U, V, W 軸方向,半径方向及び旋回方向平均速度 ψ 流線関数 = $2\pi \int_0^r \rho Ur dr$ u, v, w 乱れ速度 U_o スワーラ噴出流速 = $4M_o/\pi \rho (D_o^2 - D_h^2)$ $(u^2)^{1/2}$ 軸方向速度変動 R. M. S. $S.$

	_{関西支部} 第 101 回講習会=燃焼のモデリングと数値解析
W	聴講申込締切 10月9日・開催 10月14,15日 (申込先:本会関西支部)
	【協賛: 燃料協会, 化学工学協会, 自動車技術会, 日本舶用機関学会, 日本ガスタービン学会, 日本工業炉協会, 省エネルギーセンター】
日時	昭和57年10月14日(木),15日(金)9.30~16.45
会場	大阪科学技術センター 8 階中ホール 「大阪市西区籾本町 1-8-4, 電話(06)443-5321(代)
5 15	○「西梅田」または「難波」より地下鉄・四ツ橋線に乗車、「本町」下車,北へ200m,うつぼ公園角↓ 最近のコンピュータの高速,大容量化には目覚しいものがあり,燃焼関連分野でも従来実用上計算不可能であった
趣 旨	最近のコンピュータの高速, 人谷童化には自見しいものがあり, 然死肉連方針でも従来天市上司第八方能での5万 諸問題にまで解析可能範囲が広がってきました. 今後, 数値解析を適用して現象分析を行ったり, 燃焼器の設計指
	針を得る方法がますます多用されることが予想されます. このような数値解析を有用ならしめるためには数値計算
	の技術以外に基礎的な現象の把握と適切なモデリングの知識が必要であることは言うまでもありません. そこで、今回,燃焼場の数値解析技術を中心に,流動,反応,乱流燃焼,ふく射伝熱等のモデル構成法と計算手法,
	燃焼騒音、振動燃焼ならびに火炎の動的挙動のシミュレーションを主眼にしたテーマで講習会を開催するすること
陆 謙	になりました. 燃焼関係の研究者, 技術者の多数の参加を期待します.
聴 講 申込締切	10月9日(土)
定員	
聴講群料	 ・会員18000円(大学,官公庁関係9000円,大学院生および学生員4000円),会員外27000円.ただし、いずれも教材1冊分代金を含む。
	。教材のみご希望の方は,1冊につき会員3000円,会員外4000円を添えてお申込みください.
	・協賛学協会会員の方も本会会員と同じにお取り扱いいたします。
申込方法	B 6 判用紙(会誌半裁)に「関西支部第 101 回講習会申込み」と題記し、(1) 氏名・所属学会名・会員資格、(2) 勤務先(部課名も記載)および所在地・電話番号、(3) 通信先、(4) 送金内訳および送金額を記入のうえ、なるべく現
	務元 (前床石も記載) および所任地・電品留方, (6) 題信元, (4) 込金行(4)よび込金額を記入(7) え, なる (5) 金書留でお申込みください.
申 込 先	日本機械学会関西支部 〒 550 大阪市西区籾本町一丁目8番4号 大阪科学技術センタービル内 (電話 (06) 443-2073 直通 (09) 443-5321 内線 369)

r半径座標z軸座標
$$R_o$$
スワーラ半径= $D_o/2$ β 旋回角度 S^* 幾何学的スワール数= $\frac{2}{3}\frac{1-B^3}{1-B^2}\tan\beta$ γ_c 燃焼効率 S $=G_{\theta}/R_oG_z$ ρ 密 S $=G_{\theta}/R_oG_z$ ϕ_o \mathcal{T} ロパンー空気のスワーラ入口での当量比 T 温度 χ_i 化学種の濃度 U, V, W 軸方向,半径方向及び旋回方向平均速度 ψ 流線関数 = $2\pi \int_0^r \rho Ur dr$ u, v, w 乱れ速度 U_o スワーラ噴出流速 = $4M_o/\pi \rho (D_o^2 - D_h^2)$ $(u^2)^{1/2}$ 軸方向速度変動 R. M. S. $S.$

	_{関西支部} 第 101 回講習会=燃焼のモデリングと数値解析
W	聴講申込締切 10月9日・開催 10月14,15日 (申込先:本会関西支部)
	【協賛: 燃料協会, 化学工学協会, 自動車技術会, 日本舶用機関学会, 日本ガスタービン学会, 日本工業炉協会, 省エネルギーセンター】
日時	昭和57年10月14日(木),15日(金)9.30~16.45
会場	大阪科学技術センター 8 階中ホール 「大阪市西区籾本町 1-8-4, 電話(06)443-5321(代)
5 15	○「西梅田」または「難波」より地下鉄・四ツ橋線に乗車、「本町」下車,北へ200m,うつぼ公園角↓ 最近のコンピュータの高速,大容量化には目覚しいものがあり,燃焼関連分野でも従来実用上計算不可能であった
趣 旨	最近のコンピュータの高速, 人谷童化には自見しいものがあり, 然死肉連方針でも従来天市上司第八方能での5万 諸問題にまで解析可能範囲が広がってきました. 今後, 数値解析を適用して現象分析を行ったり, 燃焼器の設計指
	針を得る方法がますます多用されることが予想されます. このような数値解析を有用ならしめるためには数値計算
	の技術以外に基礎的な現象の把握と適切なモデリングの知識が必要であることは言うまでもありません. そこで、今回,燃焼場の数値解析技術を中心に,流動,反応,乱流燃焼,ふく射伝熱等のモデル構成法と計算手法,
	燃焼騒音、振動燃焼ならびに火炎の動的挙動のシミュレーションを主眼にしたテーマで講習会を開催するすること
陆 謙	になりました. 燃焼関係の研究者, 技術者の多数の参加を期待します.
聴 講 申込締切	10月9日(土)
定員	
聴講群料	 ・会員18000円(大学,官公庁関係9000円,大学院生および学生員4000円),会員外27000円.ただし、いずれも教材1冊分代金を含む。
	。教材のみご希望の方は,1冊につき会員3000円,会員外4000円を添えてお申込みください.
	・協賛学協会会員の方も本会会員と同じにお取り扱いいたします。
申込方法	B 6 判用紙(会誌半裁)に「関西支部第 101 回講習会申込み」と題記し、(1) 氏名・所属学会名・会員資格、(2) 勤務先(部課名も記載)および所在地・電話番号、(3) 通信先、(4) 送金内訳および送金額を記入のうえ、なるべく現
	務元 (前床石も記載) および所任地・電品留方, (6) 題信元, (4) 込金行(4)よび込金額を記入(7) え, なる (5) 金書留でお申込みください.
申 込 先	日本機械学会関西支部 〒 550 大阪市西区籾本町一丁目8番4号 大阪科学技術センタービル内 (電話 (06) 443-2073 直通 (09) 443-5321 内線 369)

三菱重工・長崎研究所における 排気ターボ過給機の研究状況

三菱重工•長崎研究所 辻 村 玄 隆

1. まえがき

三菱事工・長崎研究所における排気ターボ過給 機(以下過給機)の研究は,戦後の三菱UEディ ーゼル機関の開発着手にともなう,純国産大形過 給機の開発研究に始まっており,これが当所の本 格的ターボ機械研究の起源ともなっている。

今日,三菱重工では数万馬力の大形舶用機関向 けのMETシリーズ(長崎造船所担当)から,乗 用車あるいはオートバイ等の数十馬力のエンジン 用TCシリーズ(相模原製作所担当)に至る,超 大形から超小形までの過給機を供給出来る,世界 でも数少ない総合過給機メーカとしての体制が確 立されている。

当長崎研究所では,これら過給機の高性能化と 信頼性向上のため,遠心圧縮機や排気タービンの 空力性能をはじめ,材料,強度,振動,潤滑など 広範にわたる要素技術の高度化と総合化を目指し 以下に述べるような系統的研究開発が進められて いる。

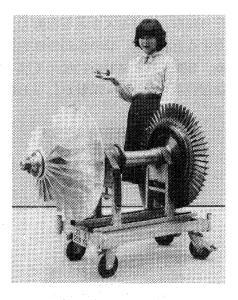


図1. 大形及び超小形過給機のロータ完備品

(昭和57年9月3日原稿受付)

図1は当所の研究成果を折込んだ,大形と超小 形の二つの過給機のロータ完備品の写真である。

2. 過給機・空力性能向上の研究

今日の過給機はその大小を問わず,エンジンの 総合経済性追求手段の主役として,その高効率化 の要求がきわめて厳しくなっている。

当所では、この様なすう勢に対処するため、大 中小3系統の過給機単独性能試験装置が常設され、 各種新形過給機の開発試験に活用されている。

また,遠心圧縮機やタービンの要素試験機による基礎試験用として,各馬力レンジ毎に直流電気動力計が整備されているが,最近これに1200 KW / 8万 R P Mの新鋭機が加わり,今後の有効活用が期待されている。

2-1 遠心圧縮機・空力性能の研究 最近 の高過給ディーゼル機関では圧力比3.5級の過給 用遠心圧縮機が要求され、その羽根車周速は400 m/sを超えるに至っている。

この様な高周速の羽根車内部の流れは,遠心力 場における高マッハ数の複雑な流れとなるので, その流動状況把握のための流れ解析技術の高度化 やレーザ流速計による内部流れ計測(図2)の試 みが進められており,これらの成果を折込んだ空

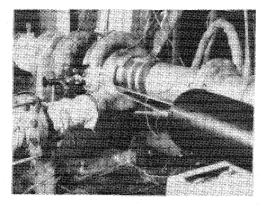


図 2. レーザ流速計による遠心圧縮機の内部流計測

力設計と試験機による入念な性能確認が実施されている。

最近の過給用遠心圧縮機は,従来の直線放射状 形から,サージマージン拡大と高効率化を狙った 後方彎曲形が主体となっており,当所でもこのす う勢にそった高性能機の開発に力が注がれている。

図3は最近当所で開発された,大形過給機用遠 心圧縮機の代表性能である。

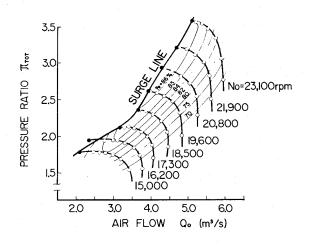


図3. 最近の過給用遠心圧縮機代表性能

2-2 排気タービン空力性能の研究 排気 タービンについては、軸流形とラジアル形の両形 式の研究が行なわれている。

軸流タービンでは,蒸気タービンやガスタービ ンとの共通要素技術としての,ノズルや動翼の翼 列性能に係る実験・解析両面からの系統的研究や, フローパターンの研究などの成果が,排気タービ ンの性能向上に適用されている。図4はタービン

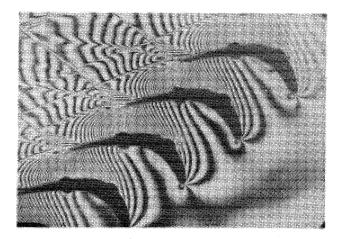


図 4. タービン動翼の高速翼列試験結果

動翼の高速翼列試験結果の一例である。

ラジアルタービンについても、遠心圧縮機と同 様に内部流れ解析を折込んだ空力設計と試験機に よる性能試験が実施されており、図5に示すよう なその翼車径が240mmから30mm前後までのラ ジアルタービンが中小形過給機用としてシリーズ 化され、更に高効率化や大流量化の努力が続けら れている。

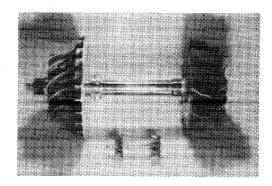


図 5. 中小形過給機のロータ完備品

3. 過給機・信頼性向上の研究

最近の中大形・高圧力比過給機の翼車類は400 ~500m/sの高周速で運転され,また乗用車 用超小形過給機の排気タービンは900℃以上の 高温ガスに曝されることになる。

これらの翼は非常に高い遠心応力と高温に耐え るとともに,流れ場の乱れによる空力励振力に対 して十分の強度を確保する必要がある。したがっ てこの空力励振力の質と大きさを把握し,その軽 減に努力するとともに,翼の振動特性を正確に求 めるため,3次元FEM解析に加えて図6に示す 羽根車などのホログラフィ試験が行なわれている。

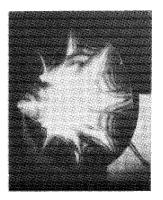


図 6. ホログラフィによる羽根車の 振動特性試験結果

研究だより

また新開発の過給機では,実負荷条件での各種の 共振状態において,特殊なテレメータ法により振 動応力を計測し,その信頼性の確証を行っている。

さらに,高速回転の軸系安定性や軸受潤滑の問 題についても基礎的な研究が行なわれている。

図7は多様な軸受形式についての動特性の研究 用に設けられた試験機であり、この装置を用いた 系統的実験結果は、回転軸系の振動特性解析法に 組込まれ、各種過給機の開発支援に威力を発揮し ている。

また,スラスト軸受についても,静荷重および 動荷重下における負荷能力増大と損失軽減の研究 が進められており,これら要素技術を総合して, 過給機の信頼性向上に努めている。

4. あとがき

最近の大形舶用機関の超低燃費化の達成あるい は乗用車エンジンのターボ過給化の急進展という, 内燃機関における眼を見張るばかりの2つの技術 的発展に対し,当所における過給機の研究が,応 分の役割を果してきたことは,関係者の誇りとす

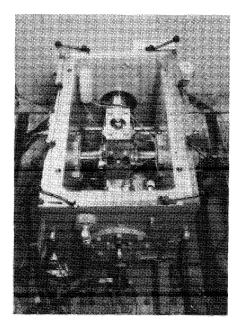


図7. 軸受の動特性試験装置

る所である。

今後とも,先輩が残した純国産技術の育成強化 の精神を伝承し,より一層の精進を約束したい。

 場所:三会堂ビリ 東京都港店 車、工業技術館 なご、工業技術館 なご、工業技術館 ない、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、	-機械技術研究所 (『 検滅学会 (社)日本ガ	30-16:20 TEL 03-582-7451 初日本産業技術振興協会 スタービン学会 (社)機械技術協会 (順不同、協賛依頼申請中)
東京都港II 東京都港II 東京都港II 唐京都港II 東京都港II 東京都道田 東京都田 東京都田 東京都田 東京都田 東京都田 東京都田 東京都田 東京都田 東京都田 東京都田 東京都田 東京都田	赤坂1-9-13 - 機械技術研究所 (『 ●械学会 (社)日本ガ	ば)日本産業技術振興協会 スタービン学会 (社)機械技術協会
注 催 :工業技術的 高 賛:(社)日本校 参加費:無料	-機械技術研究所 (『 検滅学会 (社)日本ガ	ば)日本産業技術振興協会 スタービン学会 (社)機械技術協会
岛 替 : (社)日本校 参 加 費 : 無 料	被学会 (社)日本ガ	スタービン学会 (社)機械技術協会
参加費 : 無料		
		(順不同、協賛依頼申請中)
申込先: (財)日本語		
	業技術振興協会 T	EL 03-591-6271
〒 105 5	〔京都港区西新橋2-7	- 4 第20森ビル8F
申込方法 : はがき又に	電話で参加者の会社名	、住所、所属、氏名等をお知らせ下さい。
	テラッド技術研究制	一般における最近の成果
		制先にありる最近の成未 載の基盤確立を目指して一
	- 木木のエイルイ 優切	(の 参照確立を目指して -
エネルギ供給構造のM 果題であります。	弱な我国にとって、新	エネルギ省エネルギ技術の研究開発は極めて重要な
機械技術研究所は、コ	業技術院のサンシャイ	ン計画、ムーンライト計画のもとで、機械工学のな
易から、将来のエネル=	機械の基盤技術を確立	すべく、研究・開発に力を注いでおります。
今回企画した講演会に	おいては、機械技術研	究所の研究成果を中心に最近のエネルギ技術に関す
る動向を展望します。		
詳細問合せ先		
〒305 孝	城県新治郡桜村並木1	- 2
E.	業技術院機械技術研究	所 企画室

研究だより

また新開発の過給機では,実負荷条件での各種の 共振状態において,特殊なテレメータ法により振 動応力を計測し,その信頼性の確証を行っている。

さらに,高速回転の軸系安定性や軸受潤滑の問 題についても基礎的な研究が行なわれている。

図7は多様な軸受形式についての動特性の研究 用に設けられた試験機であり、この装置を用いた 系統的実験結果は、回転軸系の振動特性解析法に 組込まれ、各種過給機の開発支援に威力を発揮し ている。

また,スラスト軸受についても,静荷重および 動荷重下における負荷能力増大と損失軽減の研究 が進められており,これら要素技術を総合して, 過給機の信頼性向上に努めている。

4. あとがき

最近の大形舶用機関の超低燃費化の達成あるい は乗用車エンジンのターボ過給化の急進展という, 内燃機関における眼を見張るばかりの2つの技術 的発展に対し,当所における過給機の研究が,応 分の役割を果してきたことは,関係者の誇りとす

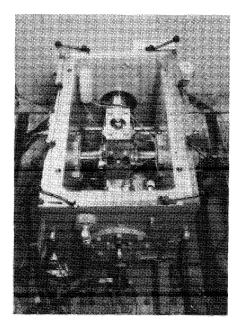


図7. 軸受の動特性試験装置

る所である。

今後とも,先輩が残した純国産技術の育成強化 の精神を伝承し,より一層の精進を約束したい。

 場所:三会堂ビリ 東京都港店 車、工業技術館 なご、工業技術館 なご、工業技術館 ない、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、	-機械技術研究所 (『 ・ ・ 械学会 (社)日本ガ	30-16:20 TEL 03-582-7451 初日本産業技術振興協会 スタービン学会 (社)機械技術協会 (順不同、協賛依頼申請中)
東京都港II 東京都港II 東京都港II 唐京都港II 東京都港II 東京都道田 東京都田 東京都田 東京都田 東京都田 東京都田 東京都田 東京都田 東京都田 東京都田 東京都田 東京都田 東京都田	赤坂1-9-13 2機械技術研究所 (F 機械学会 (社)日本ガ	ば)日本産業技術振興協会 スタービン学会 (社)機械技術協会
注 催 :工業技術的 高 賛:(社)日本校 参加費:無料	-機械技術研究所 (『 ・ ・ 械学会 (社)日本ガ	ば)日本産業技術振興協会 スタービン学会 (社)機械技術協会
岛 替 : (社)日本校 参 加 費 : 無 料	被学会 (社)日本ガ	スタービン学会 (社)機械技術協会
参加費 : 無料		
		(順不同、協賛依頼申請中)
申込先: (財)日本語		
	業技術振興協会 T	EL 03-591-6271
〒 105 5	〔京都港区西新橋2-7	- 4 第20森ビル8F
申込方法 : はがき又に	電話で参加者の会社名	、住所、所属、氏名等をお知らせ下さい。
	エラッド世術研究制	一般における最近の成果
		制先にありる最近の成未 載の基盤確立を目指して一
	- 木木のエイルイ 優切	(の 参照確立を目指して -
エネルギ供給構造のM 果題であります。	弱な我国にとって、新	エネルギ省エネルギ技術の研究開発は極めて重要な
機械技術研究所は、コ	業技術院のサンシャイ	ン計画、ムーンライト計画のもとで、機械工学のな
易から、将来のエネル=	機械の基盤技術を確立	すべく、研究・開発に力を注いでおります。
今回企画した講演会に	おいては、機械技術研	究所の研究成果を中心に最近のエネルギ技術に関す
る動向を展望します。		
詳細問合せ先		
〒305 孝	城県新治郡桜村並木1	- 2
E.	業技術院機械技術研究	所 企画室

三菱重工・高砂研究所における ガスタービンの要素研究

三菱重工業株式会社技術本部 高砂研究所 空力研究室 佐藤友彦

三菱重工は大容量発電用から航空用に亘り,種 々のガスタービンを製作しているが,これらの要 素研究を実施し,開発をサポートしているのが高 砂研究所である。

当社の研究所は要素研究室制を採っており,基本的には基礎技術・要素技術を専門的に研究しているので,材料・強度・構造・振動・燃焼伝熱・空力等の研究を束ねてガスタービンの研究を構成している。即ち,事業部・事業所が開発する種々のガスタービンに関する研究ニーズに対し,より深く研究を進めることが出来る体制となっている。

一方,より高度化するガスタービン技術に対し ては,実機に出来るだけ近い条件下のコンポーネ ント(燃焼器・空冷翼等)の検証が必要であり, 基礎研究と共にこれらの実証試験を併行して実施 する必要がある。

さて, ガスタービンの研究は新型エンジンの開 発に沿って進められるが, 最近では高効率化・高 信頼性の要求が強く, 高温技術の確立・空力性能 向上, 低公害, 軸系の信頼性向上が主研究テーマ として推進されている。以下に具体的テーマを示 す。

高温技術 — 空冷タービン翼 /空ス	
の確立 「燃焼器」 (高温	晶材料)
(寿4)	命評価技術 /
空力性能 圧縮機空力性能 / 翼列	可性能 \
向上 しタービン空力性能 (内部	部流動解析/
低公害 —— 低NO _x 燃焼器 /燃炸	
(内音	部流動解析/
軸系の信軸系 (軸打	辰動解析 \
頼性向上(ベアリング)(バ	ランシング

これらの中,低NO_x燃焼器および空冷翼の研

(昭和57年9月17日原稿受付)

究開発は最重要テーマであり,前者は拡散方式か ら予混方式,更に触媒方式へ,後者は対流冷却か らフイルム冷却・トランスピレーション冷却に到 る巾広い研究が進められている。

()内は基礎・要素技術であり、これらを束 ねたものをコンポーネント技術と称し、このレベ ルで纒った形でのみ実機へ寄与することが出来る。 このためには基礎試験とコンポーネント試験を組 合せて取進める必要がある。具体的進め方の一例 として空冷翼の研究について以下に述べる。

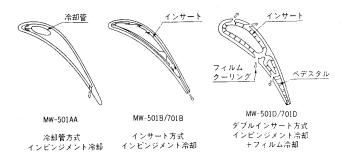
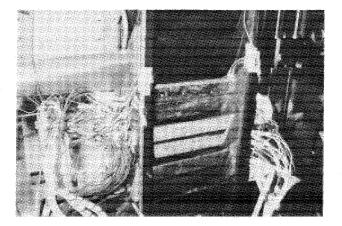
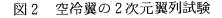




図1 大容量ガスタービン翼の冷却方式

図1に大形ガスタービン用空冷翼の変遷を示す。 この様な空冷翼の性能・信頼性を向上させる為に

Download service for the GTSJ member of ID , via 18.191.28.129, 2025, 209/17.

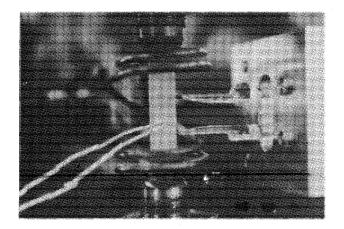


図3 耐熱材料の高温疲労試験

は、空力・冷却性能の研究と熱応力・材料強度の 研究を併せて実施し、総合的な技術として組立て なければならない。図2は2次元翼列による空 力・冷却性能試験の状況であり、図3は超合金の テストピースによる高温低サイクル試験の状況で ある。これらのデータは既に確立されている解析 システムのインプットとして計画的に組込まれ、 最終的にはコンピュータプログラムにビルトイン される。この様にして確立された技術は、最終的 に実機条件下のコンポーネント試験により総合的 に修正され、より精度の高いものとして確立される。

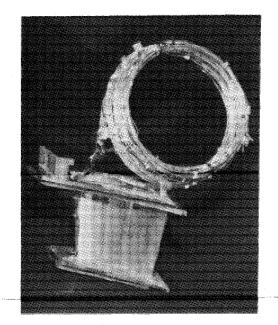


図4 コンポーネント試験用タービン翼(実寸大モデル)

図4はコンポーネント試験用実寸大モデルで, センサーの埋込み状況が伺える。

次に上記の試験等実機条件下の試験に使用され るガスタービン大形試験設備について紹介する。

この設備はガスタービンの高温・高圧化に伴っ て,ますます難しくなって来た燃焼器・タービン

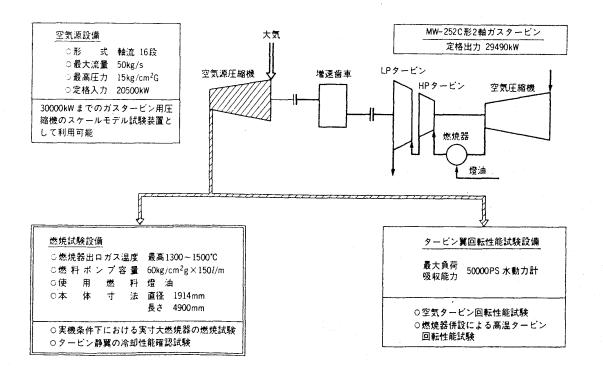


図5 ガスタービン用大形試験設備の構成と主要目

GTSJ 10-38 1982

の実証試験のため,昭和55年に建設されたもの である。本設備は図5に示す如く,ガスタービン 駆動の空気源圧縮機,燃焼試験設備,タービン翼 回転性能試験設備から構成されている。駆動源の ガスタービンは昭和53年に開発したMW252 C形2軸ガスタービンである。試験設備の全貌を 図6に示した。以下にこれらの主要目を示す。

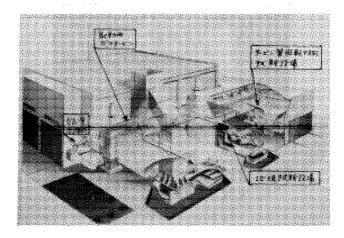


図6 試験設備鳥瞰図

。空気源圧縮機(図7)
16段軸流圧縮機	
流量	(max) 50 kg/s
圧力	$(\max) 15 \text{ kg/cm}G.$
 > 燃焼試験設備(図8))
燃焼器出口ガス温	度 (max)1300~1500℃
燃料	油焚及びガス焚
 タービン翼回転性能調 	试験設備
負荷吸収設備(水重	カカ計) 50.000ps

図7 空気源圧縮機

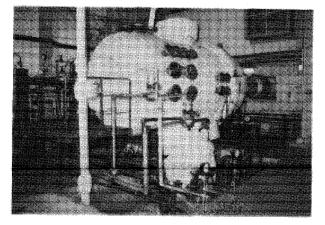
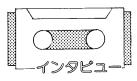


図8 燃焼試験設備


これらの設備は当社の大容量ガスタービンの研 究開発に活用され,貴重な成果を出しているが, 国家プロジェクトである高効率ガスタービンの開 発にも利用される等,巾広く使用されている。

以上,我々が日頃取組んでいるガスタービンの 要素研究の推め方について,研究テーマと設備の 面から紹介を試みてみた。概要を把んで戴ければ 幸いである。

以 上

民間航空エンジンの国際共同開発について

今井会長へのインタビュー

学会設立十周年記念行事のひとつとして今井会 長(伊藤源嗣氏代講)による「日英共同開発民間 航空エンジン RJ500の現状」と題する講演が行わ れたが¹⁾,その後これに対して多くの会員から,

この種の国際共同開発における問題点,あるいは 苦労話など,もっと立ち入ったところまで聞かせ てほしい,という希望が出された。そこで編集委 員会ではここに述べるような,今井会長へのイン タビューをいたしました。

なお,記録は森下輝夫(船舶技研)と宮地敏雄 (航技研)が担当しました。

日英共同開発の発端は?

Q. 民間航空用エンジンの開発について国際共同 開発を行っていることに対し深い関心をいだいて おりますが,ほかにもいくつかエンジンメーカー がある中から,特に英国の Rolls-Royce 社と共同 することにした,いきさつはどのようなことだっ たのでしょうか。

A. 我国での最初の事の起こりは約10年前に開始 された工業技術院大型プロジェクトによる FJR 710エンジンの開発で,これは我国の技術水準の 向上を目的として航空宇宙技術研究所が中心とな り,石川島播磨,川崎,三菱の三重工業㈱が協力 して行ったものです。

このときの第一の目標は技術水準の向上という ことですから、何をやっても良かったようなもの ですが、その当時、世界で実用中、あるいは計画 中のターボファンエンジンを見わたすと、推力5 トンくらい(100001bクラス)のところに空白があり ました。それと、当時考えられていた航空機は、 YS-11の後継機なのですが、双発で70~80人乗り の、短距離路線用旅客機のエンジンとして計画さ

(昭和57年9月1日 原稿受付)

インタビューアー:

㈱日立製作所 **大 島 亮一郎**

三井造船㈱遠藤 肇

れたものです。その当時,このクラスにはバイパ ス比の大きい,燃費が0.3kg/kgf・hr 台のものは ありませんでした。その後の開発の状況について は講演(6月号)でもお話ししたとおり非常に順調に 進んだのですが,我国にはエンジンの高空性能試 験設備がありませんので,英国の National Gas Turbine Establishmentで高空性能試験を行うこ とになりました。そして昭和52年秋に第1回の試 験を行いました。

このときエンジンには何の不具合もなく、試験 が進められましたので、英国側はこのエンジンを 高く評価するようになったようです。それからし ばらくして、Rolls-Royce社(以下RRと記す)から 共同開発をほのめかす手紙が来たわけです。

そして, 昭和 53年はじめに RRの Dr. Hooker が来日されました。

第1回目の会合の席で,英国側からいきなりFJ R710というエンジンはかくかく、しかじかの性能 で、圧縮機の効率は…で、燃焼器、タービンにつ いては…であると評価される、という説明がはじ まったので、びっくりしました。つまり、英国側 はNGTEで測定したデータからこのエンジンの全 体性能はもちろん、各要素の性能を推算し、評価 したわけで、これらの水準は英国と同程度だと見 たようです。そして、聞くところによれば、日本 ではこのエンジンをベースとしてさらに大きいエ ンジンを開発する計画があるそうだが、英国にも 200001b クラスエンジンを開発する計画がある。 200001b クラスというのは双発で120人乗りクラ スの旅客機用とするもので、1980年代後半から20 年内に大きい需要が予測される。これについて共 同でやろうではないか、という話になったわけで す。

この話がはじまった当時、日本では航空エンジ

ンの技術水準も上ったし,景気もそう悪くはない し,航空産業の将来に対する布石の意味もある, ということで,この共同事業に対する周囲の空気 も良かったと思います。

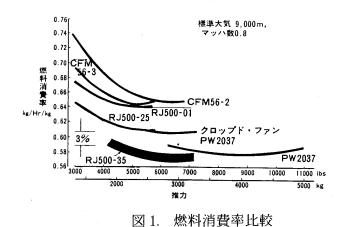
さて、開発費ですが、そのころ7億ドルといわ れ、今では10億ドル以上といわれるわけですが、 通産省の御援助も得られることになり、計画が始 まったわけです。

表 1. RJ 500ターボファン・エンジンの 国際共同開発

開発目的:民	間旅客機用]エンジンの市場参入による販
路	拡大	,
開発機種:推	力12 ton 級	るの高バイパス比ターボファン・
, I	ンジン	
想定搭載機:15	0席級中短	距離民間旅客機
開発形態:英	国 Rolls R	loyce社と日本(IHI, KHI,
Μ	HI)との国	際共同開発
経 緯:19	977年末	RR社より共同開発申入れ
19	79年12月	共同開発協定調印
19	80年4月	共同開発会社 RRJAEL社
		発足
19	82年 2月	RJ500-01D4(推力9ton)
		試運転開始
19	82年3月	推力 210001b 以上を達成

共同開発の組織は?

Q. このような共同開発を進めて行くときの,組織はどのような形なのでしょうか。また,そこでの技術的内容の意志決定はどのようになされたのでしょうか。


A. 昭和54年12月に collaboration agreementが 完成し調印するまで,いろいろありましたが,基 本的には金も責任も50%,50%でやるということ で,担当部位は日本が低圧系すなわちファンと低 圧タービン,英国が高圧系すなわち高圧圧縮機, 燃焼器,高圧タービンおよび補機とすることにな りました。この担当部位はそれぞれが目標値を与 えられるわけですが,この性能,耐久性,信頼性 などの目標値を達成するための費用はそれぞれ自 分持ちでやって行くのです。

Q. 高圧系を英国,低圧系を日本が担当すること になった理由はどういうことでしょうか。 A. まず,日本側が高圧系を取れるか,と考えて みますと、高圧圧縮機の技術もFJR710等で向上 してはいるんですが、全体の圧力比で25以上の十 分 proveされたものはなかったことと、タービン については冷却翼を十分使い込んではいなかった こと、また、試験装置の容量の点でも、その時点 では6000psのものしかなかったことなどの理由で、 日本側は低圧系を担当することにしたわけです。

Basic design は Bristol に事務所をおいて,日 英双方から多いときには合計70名くらいの技術者 が集まって行ったのです。そこでかなりの図面ま で作成し,それを持ち帰って,担当部分のそれぞ れ2台分の製作にとりかかったわけです。

昭和56年1月ごろまではこんな具合で進んでい たのですが、そのころマーケットがかなり変化し てきまして、最初の120人乗りがのびるという予想 が、150人乗りの方が良さそうだ、ということにな ってきました。こうなった理由はオイルショック による燃費率引下げ競争と、米国内の航空輸送の deregulation (規制緩和)なんです。米国内では航 空会社のルートの選択は全く自由になり、運賃の 協定もなくなったんです。こうなると120人乗りよ り150人乗りの方が良いことになります。

我々の計画エンジンの燃料消費率(以下ではSF Cと記す)はその当時使われていたエンジンより十 数%良かったのですが,昭和55年の終りごろにな ると,全体の圧力比を27~36に上げ,要素効率を 改善することによって,我々のエンジンより更に 10%くらいSFCを良くしたものが Pratt & Whitny 社(以下P & Wと記す)から発表されたのです。こ の PW2037というエンジンの基礎になっている技 術は 7~8年前からNASAがGEとP&W にやらせ ていたE³計画(Energy Efficient Engine)の中で

 行った要素研究の成果なのです。

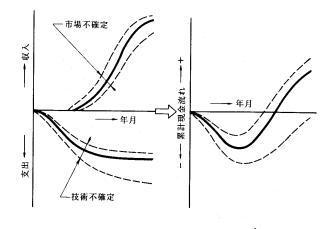
そのうえ, P&Wは Delta AirlinesのB757用エ ンジンについて,「RRより8%SFCを良くします。 もし悪かったらその分は払い戻します。」という驚く べき契約を結んだという噂が流れたのです。また, American Airlines は飛行機を決める前にP&W とエンジンの契約を結ぶようなことをしたのです。

これより前から、GEはB767用エンジンとして、 CF-6-32をHawai ian、Brazil などの航空会社 から受注していたのですが、P&Wがこんな契約 を結ぶので、この仕事から降りることになりまし た。これに対してRRは降りないで、P&Wと同じ だけSFCを良くすると宣言し、両社の猛烈な競争が 始まったのです。

さて、これらに対する我々のRJ500ですが、こ のような競争の激しいマーケットで生き残るため には、いかなる戦略でのぞむべきかについて日英 合同の会議を開いて協議したものです。その結果、 推力250001bクラスの150人乗り用に移行すること、 全圧力比を31くらいに上げ、タービン入口温度と 要素効率を上げることによってSFCを10%良くす ること、を基本とするRJ500-35,36の計画がで きたのです。ただし、最初の200001bエンジンRJ 500-01の計画は当面そのままつづけることにし ました。-01の計画をあえて続けることにした理 由は、なるべく早い時点でこういう形の国際協力 によってかなりの性能のエンジンが出来ることを 実証すれば、その後の開発にスムースにつなげて 行くことができると考えたからです。事実、今年 2月から3月にかけて-01の1号機と2号機はそれ ぞれ英国と日本で運転され,最大推力21300lbと 目標の106.5%を達成し、今後の開発の見通しが明 るくなりました。

製作の分担については?

Q. 開発の時期の製作の分担は日本側が低圧系, 英国側が高圧系とのことですが,共同開発が成功 して,商用化され,量産化されたとしますと,そ の時点での製作の分担はどのようにするお考えで しょうか。


A. 今までの考えでは開発時とほとんど同じ分担 で進めることになっています。それぞれが製作し た部品ないし要素をお互いに送って,両国で組み 立て,試験するわけです。先ほど,それぞれの担 当部位の目標を達成するための費用は自分持ちだ, と申しましたが, このような開発費をかけたもの を売ることを考えますと, 開発費が多くかかった んだから高く売る, というわけには行きません。 お客さんが買えるだけの値段, いわゆる market price というものがあります。量産に入ったとして, そのような値段で売って, 共通経費, 製造費を引 き, そのうえに開発費を割掛けして落として行け るか, ということは, 金利や為替の変動等を考え ると非常にむつかしい問題です。


それから,自分の製造コストが世界中でどのく らいのレベルにあるか,という問題です。これに ついては我々もかなり調べたんですが,現状では たしかに安いんです。米国のコストと太刀打ちで きると思います。ところが,米国のエンジンのコ ストは年々割安になっていますから,これに敗け ない値段で売って,初期の投資を回収できるか非 常にむつかしいところです。回収するには,かな りの数を売らなければならないことになり,回収 に15~20年かかることになるんです²⁾

Q. この計算は何台くらい売れるとした場合を考 えたのでしょうか。

A. トータル5000台と考えています。これはスペ アパーツも含めた数です。開発費を13億ドルと見 積っていますから,エンジン1台が260万ドルとす ると,開発費を10%割掛けしなければならないこ とになります。年500台のペースで10年間売れたと すると,そのへんで損益分岐点をこえます。

こんな大投資に耐えられるか,といったら世界 中の普通の企業は耐えられないと思います。英仏 は国営のような形ですし,我国でも国からの助成

GTSJ 10-38 1982

インタビュー

金がなかったら,とても困難です。P&W あたり が民間航空用エンジンをやって行けるのは,いく つかの開発が,適当な期間ずつはなれて進められ ていて,Aのプロジェクトが収益を上げ始めた時 期にBのプロジェクトを開始し,Bが育ってきた ころCを始める,という形ができているからです。

こういう民間航空用エンジン業界に新規に参加 することが、いかにむつかしいか、お判りいただ けると思いますが、一つのプロジェクトに成功す れば、この新しい分野に参加できる可能性がある と言えます。

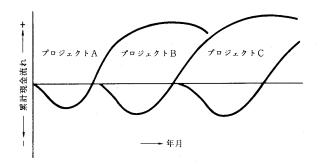


図 3. 順次新開発を行う場合の累計現金流れ

といっても、初期の投資の回収に20年近くかか ることですから、その間のリスクが大きく、子孫 に禍根を残すことになりかねない。このプロジェ クトを始めることを私達が決定して本当に良いの か、と考えざるを得ません。そこで、私達の会社 では日英共同開発の話し合いが始まったとき、関 係ある部長、課長クラスの人達に集まってもらっ て、この開発をやることについて腹蔵のない意見 を聞かせてもらいました。

開発における種々の問題?

Q. こうなってくると,企業にとって開発とは一体何と考えれば良いんでしょうか。

A. 私は開発とは企業の生死を分けるものと思い ます。開発をやらないで済むなら,やらない方が 利口でしょうが,やらないでいれば製品は陳腐化 し,遂には作るものがなくなって失業ということ になるでしょう。だから開発はやらなければなら ない。しかし,当然のことながら,リスクは最小 にしなければなりませんね。そこで現代の開発品 というものは advancedで proven の technologyの 固り,という性格になります。たとえば,方向性 凝固あるいは単結晶のタービン翼とか,粉末冶金 のタービンディスクとか, super critical wingを 使ったファン, 圧縮機などがそれです。

この種の開発品は一度成功すれば,かなり長期 間,いろいろな形で商売になります。民間航空機 とそのエンジンの場合は改良を加えられながら20 年は売れます。

Q. エンジンを中心にお聞きしていましたが、エンジンに対応する機体メーカと組んで開発する、
 ということはやられていないでしょうか。

A. それはあるんです。といいますか、この業界 ではメーカの数が非常に少なく、大型民間機メー カといえば、米国の Boeing, McDonnell Douglasとヨーロッパの Airbus くらいしかないんです から(Lockheed は民間輸送機はやめた), エンジン メーカはそれぞれこれらの機体メーカの要求をく みとったものを計画し、売り込んでいるわけです。 我々もこの3社に売り込み中であります。といって もですね、先ほども話が出ましたように、近ごろ は飛行機を実際に飛ばしている人達(Airlines)が エンジンを選ぶ傾向が強くなっています。そこで, 当然エンジンメーカは航空会社と密に接触してい ます。そこには非常に高度な技術的問題があり, また、航空会社にとってはお客の動向を左右する 景気とか、航空規制とか、いろいろな政治、経済 的なことをひっくるめて判断しなければならない 要素があるわけです。

Q. そういう情勢の中で、この日英共同開発に米国のP&Wと独のMTU、伊のFiat が参入する話が先頃からはじまっている、とお聞きしていますが、それはどういう意味を持つのでしょうか。

A. 150席機用エンジンのための莫大な開発費と, Marketの大きさを考えますと,これは国際共同開 発しかないというのが世界中の共通の認識だと思 います。P&Wと独のMTU,伊のFiatは以前か らPW2037エンジンについて一緒にTeamを組ん でやっていたのですが,日英共同開発が進んでい るのを見て,このTeamが一緒にやろうではない か,と申し込んで来たわけです。こちら側も130 席機用から150席機用にエンジンの目標が変わり, SFC改善のために盛り込む技術レベルも大幅に高 いものとなり,開発費は益々増える一方であるの で,それでは詳細をお話し合いしましょうという ことで,進めているのが実状です。 皆で協同して、150席機に最適のエンジンを世に 出そうというのが狙いです。

技術的・戦略的意志決定は?

Q. そのような共同開発の中で,技術的あるいは 戦略的な意志決定は,どういうステップをふんで 行われているんでしょうか。

A. 日英共同開発についていえば,基本的には, 「最終的にはそれしかない」という形で決まるんだと 思います。形としては日本側から4名,英国側か らも4名の代表を出してやっているんですが,今 まで採決が割れたことはありません。そういうと いかにもきれいごとですが,そこに至るまでは, 両者が互に資料を出し合い,質問し合い,また調

査,検討をくり返しているわけです。こういう仕 事を進めて行く場合にはお互いの信頼がなかった ら絶対だめですね。

Q. そういう場に, さらに米, 独, 伊が入って来 たら, たいへんなことではないんでしょうか。

A. お客の立場からすると, 五人で集まってエン ジンを作るそうだが, 誰が責任をとってくれるの か, という疑問が生じます。当然, single responsibility が guarantee することを要求してきます。

一方, エンジンメーカとしては, 20年間に5000 台売って回収する仕事を, 最初はせいぜい100~ 200台の注文を受けた時点で開始することを決心 しなければならないわけです。メーカは最初のお 客さんを launching customerといって, 非常に優 遇するんですが, もしメーカが200台くらい作っ てから, そのエンジンを放り出したら, それを採 用した航空会社もつぶれてしまいます。

ですから、五人がお互いを十分信頼し合って、 一つの考えのもとで、力を合わせて best engine を世に出そう、という国際協同の精神を実際に生 かすことにつきると思います。

Engineer には Engineering という共通の言葉が ありますから、これを元にお互いに理解し合い、 励まし合って行こうということになりたいと思っ ています。

Q. こういう共同開発に参加してやって行く場合, どういう要素が一番ものを言うと考えられますか。 A. 最も基本的なこととしては,先端的な技術を 少しでも多く持っていることだと思います。全般 的でなくても,何か特定の技術,例えば tip clearanceの測定と制御というようなことについて、こ れは世界一とか、それしかない、というのは強い ですね。

英あるいは米の立場からすると、日本は何をや ってくれるのか。今の日本の技術水準が十分高い ことは認めるが、我々は航空エンジンの開発に対 して1日200万ドルくらい使っている。それに対し 日本はどうしているのか、と考えていると思いま す。

我国の技術水準は?

Q. そこで、また技術の話ですが、この開発の中 には日本の誇り得る技術として、どんなものが入 っているのでしょうか。

A. ファンの設計については世界のトップレベル にあると思います。ファンについては, rig test を いくつかやって,設計,製作したわけです。

それから,生産技術といいますか,生産性,品 質安定性等が高いことは認められています。

これからも先端的な技術を持ち続けるには独で 行われている密接な産学協同のようなことが必要 じゃないか,と思います。

Q. 産学協同のお話が出ましたが,産業界として 航空エンジンの開発について,国のレベルでもっ と補強されたら良いとお考えではないかと思いま すが,

A. 日本には開発というのは非常に金がかかるも のだ,という意識がまだ十分定着していないよう に思います。特に航空エンジンは命を預けるもの ですから,その耐久性,耐空性を証明するための 膨大な試験に巨額の費用がかかります。これにつ いては,今までよりさらに一層の御理解をいただ きたいと思います。

お金以外の面では,最初にお話ししたFJR710 エンジンの開発について国立研究所の方々と,非 常につっこんだ議論をした上で,協力させていた だいたのは本当に良いことだったと思っています。 これからも,国立研究所と大学では長期的な見通 しに立って,先行的な研究を組織的に進めて行っ ていただきたいと思います。

それから、これは学会長的な発言になりますが、 ガスタービン学会をはじめとする各種の学会で、 産と学が本当の意味で話し合う機会が作れないか、 と思います。これは学会長としても、ぜひやりた いと思っています。

Q. 少し話題が変わりますが、日英共同開発にあ たって、各国の設計思想の違いについては、どの ようにお感じになりましたか。

A. 根底にある思想には違いがないように思いま す。それは先ず,お客で試験をしない,というこ と。言い換えれば well proven technology の組 み合わせでまとめることです。ただし,どの程度 ならば well provenかについてはいろいろな見方 があると思います。次に,必ず,世界のトップレ ベルであることです。

各国の特徴的な点としては大体次のようなこと がいえると思います。

米は computer を設計に使いこなしている点で は何と言っても世界一で、単に CAD (Computer Aided Design)とか CAM (Computer Aided Machining)といったことだけでなく、総合的な意味 でです。また、加工技術と設計の間の feed back についても米が一番うまくやっていると思います。 設計に最初から加工技術、信頼性技術の人達も加 わってやっています。将来は製造コストを今の½ にできると米は考えています。これに対して英は 非常に分化していて、各専門分野の連携は必ずし も良くないようです。独は非常に組織的にかっち りやるのは御承知の通りです。

では日本は、というと、名人芸的といいますか、 達人が居ることでうまく行っている、といったら 言い過ぎでしょうか。

今後の課題,発展性は?

Q. 今度のエンジンにとり入れられる新技術としては, どんなものが挙げられますか。

A. super critical wing を使ったファン, 圧縮機 単結晶翼を使ったタービン等を-35には採用する ことになると思います。それから小型化された, FADEC(Full Authority Digital Engine Control)も使われるでしょう。 Q. 米, 独, 伊が参加してからの具体的な分担は どうなるのでしょうか。

A. 先ず日英米の3者で話し合って決めて行こう としているところです。細かい具体的なことにつ いては、まだこれからです。

Q. この12トンクラスのエンジンの構成は基本的
 には R J 500 - 01の経験が十分生かされると考えて
 良いでしょうか。

A. その通りです。我々のRJとPW2037の,それ ぞれの良いところを取って,うまくまとめて行き たいと思っています。

Q. 最後に、この事業を将来どう発展させて行くかについてうかがいたいのですが。

A. このエンジンは民間輸送機用としては,恐ら く80年代から90年代にかけて,大げさに言えば今 世紀の最後の開発品となるのではないか,と考え られています。このエンジンが設計思想などの点 で今後20年間の standard engine になると思いま す。

また,この国際共同開発エンジンに参加するこ とが,今後,日本が世界の民間航空エンジンに大 きな貢献をするきっかけになることを望んでやみ ません。そして,今育っている若い方々の大きな 励みとなってほしいと思っています。

インタビュアー一同:本日は長時間にわたって 興味深いお話を聞かせていただき,まことに有難 うございました。

参考文献

- (1) 今井兼一郎,日英共同開発民間航空エンジン,RJ 500の現状,日本ガスタービン学会誌10巻,37号, 1982年6月,p.20~26.
- (2) 浜中全美,航空機用ガスタービンの開発について, 日本機械学会誌84巻756号,1981年11月, p.1199~
 1204.

カワサキS3A-01形ガスタービン

川崎重工株式会社ジェットエンジン事業部 第三技術部 星 野 昭 史

1. はじめに

近年,産業用ガスタービンの需要は年を追って 増加する傾向にあり,従来ディーゼルエンジンの 独壇場であった数百馬力以下の小出力分野におい ても,各種産業機械の動力源として使用される例 が増えてきている。

ガスタービンは周知の如く,簡潔で軽量コンパ クトな構造を持ち,保守,取り扱いの容易さ,柔 軟さは他の熱機関の追随を許さないものがある。 これらの特質が多様化する市場の要求に合致して, ガスタービンの用途を確実に拡大している。

川崎重工では260馬力から4000馬力迄の一連 のシリーズ化した産業用ガスタービンを独自に開 発し,販売しているが,今回これらに加えて新に 120馬力の小出力ガスタービンを開発し,販売を 開始した(図1参照)。

図1 S3A-01形エンジン

本稿ではこの新しく製品系列に加った小形ガス タービンの紹介を行なう。

2. 開発方針

発電機, 圧縮機, ポンプ等の一般産業機械の駆動源として, 広くガスタービンを浸透させる為に,

(昭和57年8月20日 原稿受付)

川崎重工では低価格,高性能を一貫した二大目標 とする一連のガスタービンを開発してきた。本エ ンジンはこれらの製品系列中で最も出力の小さな ものとして,上記二大目標を踏襲すると共に,ガ スタービンの特長を充分に生かして軽量コンパク トな構造となるよう特に留意して設計している。 本エンジンの出力範囲は自動車用を主体に往復動 機関が最も強力な分野で,これらの既成エンジン に伍して市場に参入する為には,際立ったセール スポイントが必要である。この為,特に部品の簡 素化,軽量化に重点を置いて,系列下の他のエン ジンとは若干異なった構造を採っている。

3. 主要諸元

本エンジンの主要諸元を表1に示す。ガスター

項目	諸元
出 力	120PS
燃料消費率	400 gr/PS•Hr
主軸回転数	68,000RPM
出力軸回転数	6,000 R P M
空気流量	0.8 kg/s
圧 力 比	6
全備乾燥重量	80 kg
使用燃料	JP4, JP6, 灯油, 軽油
サイクル形式	単純開放1軸式
圧 縮 機	単段遠心式
燃焼器	逆流環形
タービン	2段軸流式
主减速機	遊星歯車式
燃料制御装置	電 気 式
始動用電動機	4.5 KW/24 V.D.C

表1 カワサキS3A-01形エンジン主要諸元表

ビンの形式は最もシンプルな単純開放1軸式とし, 機器構成も極力簡素なものとした。その結果,エ ンジンの全備乾燥重量は,潤滑油タンクも含めて 80KG と軽量に抑えることができた。燃料はJ P4,JP5,灯油,軽油等の各種類を自由に使用 することができる。

吸気温度に対する出力,燃費性能の変化を図2 に示す。出力は用途として最も多い発電機駆動用

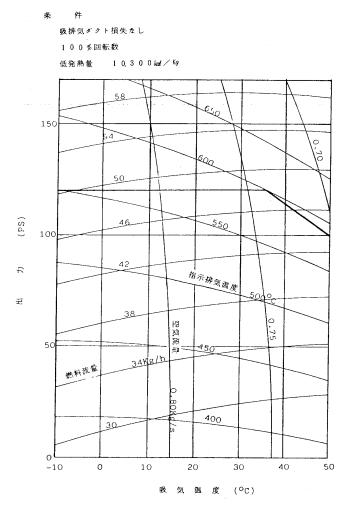


図2 S3A-01性能曲線

に合わせて,吸気温度35℃ 迄一定の120 馬力を 定格としているが 標準大気条件下ならば150馬 力の出力が得られる。

本エンジンの耐久性は 2000 時間, 1000 回起 動の使用に耐え得るもので, これを標準のオーバ ーホール間隔としている。

4. エンジンの特徴

本エンジンの外観図を図3に示す。

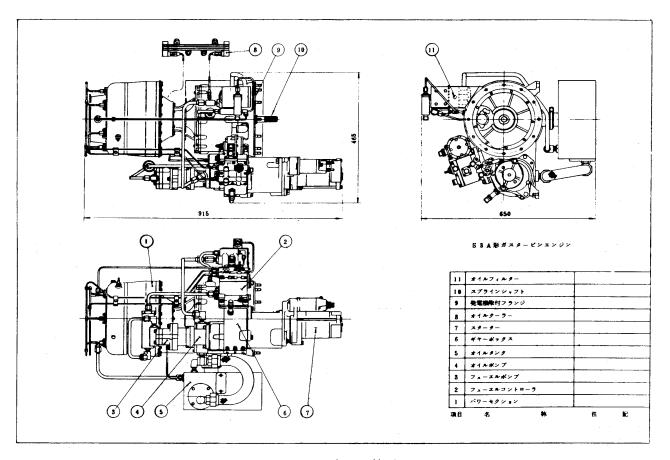
出力発生部分の重量は約30 KGで,減速機の片面に片持支持状態で取付けられている。減速機の反対側の面には,発電機等の被駆動機を取付ける為のフランジ面があり,出力発生部と同軸線上に出力軸が出ている。

減速機の出力軸側面には,出力軸と並行に始動 用電動機が装備されており,その反対側に潤滑油 ポンプが取り付けられている。

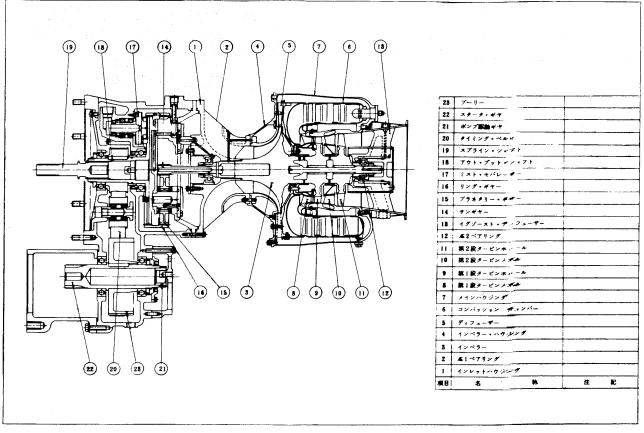
減速機にはこの他,燃料制御装置,各種フィル ター,潤滑油タンク等の運転に必要な全ての補機 類が取り付けられており,装置への取付けが容易 な構造となっている。

本エンジンは前述の如く,低価格,高性能の二 大目標に加えて軽量コンパクト化を主眼として開 発した。以下,これらに関連した主要な点を各構 成要素について記述するものとする(図4参照)。

(1) 出力発生部


圧縮機最も単純な形式である単段遠心式を採用 して,重量を軽減すると同時にコスト低減をはか った。この場合,性能の低下を防ぐ為にインペラ 周速を高く採り,高圧力比,高効率を維持するよ うに努めた。高周速によって厳しくなるインペラ 内部の応力は,ボス部を中実にして低減した。

燃焼器はコンパクトなものとする為,航空用に ならって逆流環形としたが,燃料噴射ノズルは最 低数の6本として簡素化に留意した。少い本数の 場合,周方向の温度分布等に悪影響を及ぼし易い が,本エンジンでは圧縮機出口の旋回を利用して, 燃焼器内の混合を良くする独得の方法でこの問題 を解決している。


小形ガスタービンで,しばしば多用される単缶 形の燃焼器の場合,外殻形状が軸対称とならず, 内圧や熱によって外殻の歪を生じ易く,これを防 止する為外殻の厚みを増して重量増となり易いが, 本エンジンで採用した逆流環形は軸対称な為,薄 肉とすることができ,重量軽減に大きく寄与して いる。

タービン部は主として性能面への配慮から,オ ーソドックスな二段軸流形とした。

回転体の両端を支持する軸受はいずれもころが り軸受で,圧縮機側は内輪分割形の玉軸受を使用 して誰力を受けもたせ,タービン側はコロ軸受を 使用している。

図3 エンジン外観図

図4 エンジン断面図

(2) 减速機

主減速機は遊星歯車形式とし, 68,000 R P M の主軸回転数を6,000 R P M の出力軸回転数迄減 速している。

小形ガスタービンでは特に減速機の重量が相対 的に大きくなり、エンジン全体重量の大半を占め ると云った例が多い。この為、本エンジンではケ ーシング類をアルミ材とする等、部品の軽量化を はかると同時に、補機類の駆動にタイミングベル トを使用して構造を簡素化し、重量を軽減してい る。補機類は出力軸よりタイミングベルトを介し て減速された1本の軸の両端に、始動用電動機及 びタンデム形式の潤滑油ポンプ、燃料ポンプが取 付けられており、結局1本の軸で全ての補機類を 駆動する簡便な方式としている。

減速機内部の潤滑は遊星歯車部分のみ強制油潤 滑とし,他はグリス封入軸受を使用するなどして, ドライな状態で作動するよう設計している。

(3) 補機系統

補機系統では特に燃料制御装置の新方式を採用 して,部品の軽量化とシステムの簡素化をはかっ た。新たに開発した装置は,直動比例電磁弁形の計 量弁を使用し,運転に必要な全ての情報を含んだ 電気信号でこれを直接操作して,燃料流量の制御 をおこなっている。この場合,油圧は使用してお られず,また機械的なリンク機構も完全に廃止し た為,従来の方式に比べ大巾な軽量化,コンパク ト化ば可能になった。

始動用電動機,各ポンプ類,フィルタ類等の他の の補機類については,自動車用等で一般に多く市 販されているものを殆どそのまま流用している。 潤滑油タンクは減速機の遊星歯車部下方に取り付 けられており,従って潤滑系統は冷却用クーラを 除き,全てがエンジンに内蔵される形となって, 装置への取付けを容易にしている。

5. 結 び

以上,新たに販売を開始した120馬力級小形ガ スタービンの概要を紹介した。

このエンジンは川崎重工が開発したガスタービ ンシリーズの内,最も小さな出力のもので,シリ ーズの一貫した目標である低価格,高性能を踏襲 すると同時に,特にガスタービンの特長を生かし た,軽量,コンパクトな構造をセールスポイント としている。

本エンジンの応用として,発電機,圧縮機,ポ ンプ等の一般産業機械装置や航空機始動用電源等 があるが,その1例として,出力60KWの可搬形 400Hz発電装置を図5に示しておく。

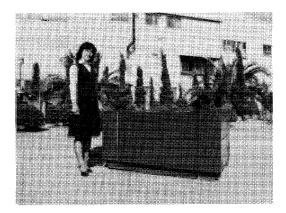


図5 60 KW 可搬形発電装置

(社)日本ガスタービン学会 評議員会・総会報告

去る5月7日(金)本学会の評議員会および通 常総会が東京,機械振興会館において開催された。

まず第6期第2回評議員会は10時30分より開 かれ、評議員の互選により一色尚次氏が議長とな り議事が進められた。第6期会長の井口泉氏によ る開会挨拶に引続き、最初に出席 19名、委任状 提出 46名 で評議員会が成立することが確認され たのち以下の議案につき審議が行われ、いずれも 承認された。すなわち、定款変更(事務所所在地 変更),第6期事業報告,第6期収支決算報告の 諸案を総会にはかることが認められた。同上の決 算案については入江正彦監事より監査報告が述べ られた。引続き 11 時 10 分より第7 期第1 回評議 員会が開催され, 第7 期評議員である一色尚次氏 を議長に選出,議事が進められた。まず出席18 名,委任状提出者 47名 で同評議員会が成立する ことが確認されたのち以下の議案の審議が行われ、 いずれも承認された。すなわち第7期役員候補, 第7期評議員·役員候補者·監事選挙結果報告, 第7期事業計画,第7期予算,名誉会員推薦など の諸案を総会にはかる件が各々承認された。

同日,13時より第7期通常総会が機械振興会 館地下2階ホールで開催された。まず前半は第6 期に関する諸件の審議が行われた。すなわち,第 6期井口泉会長の開会挨拶のあと,同氏を総会議 長に選出し議事が進められた。同総会への出席者 58名,委任状提出者284名(会員数1,219名の 1/5以上)で総会成立が確認されたのち,以下の 議案の審議が行われた。すなわち,定款変更(事 務所所在地変更),第6期事業報告,第6期収支 決算報告につき,田中総務(主担当)理事および 一井総務(財務担当)理事(第6期)より説明が あり承認された。収支決算については入江監事よ り適正であるむね監査報告が行われた。 後半は第7期に関する諸件で審議が行われた。

まず第7期役員選出の件では別掲どおり議決さ れた。なお,第7期評議員・役員候補者・監事選 挙結果もあわせ報告された。以上により第7期会 長に今井兼一郎氏が選出され,就任の挨拶がのべ られた。ここで井口議長に代り今井新会長が議長 となり以下の議事が進められた。総会の成立につ き再確認が行われ,第7期事業計画,第7期予算 に関し田中総務(主担当)理事および樗木総務 (財務)理事より説明があり,別掲通り承認され た。

次いで小泉磐夫氏および永野治氏を名誉会員と することが承認され,当日出席された小泉氏に記 念品の贈呈が行われ欠席の永野氏には,後日お届 けすることとなった。

最後に,須之部副会長より閉会の挨拶が述べら れ,第7期通常総会は無事終了した。(総務理事)

第6期(昭和56年度)事業報告

自昭和 56 年 4 月 1 日 至昭和 57 年 3 月 31 日

- 1. 役員に関する事項
- 1.1 役員·評議員
- 1.2 監事·評議員の選出

第6期評議員・監事の選出は定款第15条,第 16条,細則第19条,第21条,第22条,第23 条,第24条,第25条により選出した。

2. 会務処理に関する各種会合

2.1 理事会

会長•副会長他 18名(内総務担当5名,企画 担当6名,編集担当7名),開催9回

会議事項:第6期総会報告,第6期評議員会報告,

第6期諸事業実施にともなう業務,第 6期事業報告案,同決算案,第7期総

	会議案,	第7	期評	議員	会議	案,同事業
	計画案,	同予	算案	など。	5	
2.2 評	議員会					
評議員	70名,開	催2回	回(P	内訳	: 第	6 期第 1回
評議員会	(出席154	ち。 委	任状	、提出	者 4	8名)
	24),第6					
	:第6期役					
Z HAT'A						同決算案,
						,问伏异来,
0.0 //1	などの件	を香記	我, 7	邦認 。)	
2.3 総						
	全員,開催					
{ 出席 30)名,委任物	犬提出	者 3	43 名	公全	員数 1,156
名の 1/5	以上)}(56. 4	. 24)}		
会議事項	:第6期役	員, 言	平議員]選L	出,爹	第6 期事業
	計画案,	同予算	章案,	第	5期	事業報告,
	同決算な	どの伴	キの 律	審議,	承請	刃心。
2.4 部	門別理事・	委員会	Ž		-	-
	務		-			
	担当理事	Ш	ф	茁	菗	他 11 名
حلب	뜨그뜨귀	14		×	4724	開催8回
0) A						册惟 0 凹
2)企		6	1-4-		.,,	
土	担当理事	島	崎	忠	雄	
						開催6回
3)編	集					
主	担当理事	谷	H	好	通	他 17 名
						開催 8 回

3. 調査研究事業

3.1 ガスタービン統計作成委員会
 委員長 樗 木 康 夫 他 6名 開催1回
 会議事項:わが国のガスタービン生産に関する
 統計用データの蒐集および集計

- 3.2 ガスタービン技術情報センター運営委員会
 委員長 須之部 量 寛 他5名 開催1回
 会議事項:同センター設置に関する準備打合せ
 および文献検索法その他資料蒐集。
- 3.3 組織検討委員会
- 委員長 松木正勝他6名開催7回 会議事項:1)技術情報センター,地方委員会,
 - 調査研究委員会の在り方の検討。

2) 学会賞についての検討。

- 3)事務所移転についての検討。
- 3.4 地方委員会
 - 委員長 表 義 則 他 8名 開催 1回 会議事項:関西地区における見学会,技術懇談 会の企画実施,地方行事に関する打 合せ。
- 3.5 調査研究委員会

委員長 須之部 量 寛 他8名 開催1回 会議事項:ガスタービン用作動流体の物性値に 関する資料の蒐集ならびにメーカー の現状及び意向についての調査。

- 3.6 国際会議準備委員会
 委員長 田 中 英 穂 他31名 開催4回
 会議事項:次期国際会議開催に関する準備。
- 3.7 定期講演会委員会委員長 谷 田 好 通 他 3名 開催 2 回会議事項:定期講演会の計画,準備。
- 4. 集 会 事 業

特別講演会2回,定期講演会1回,技術懇談会 3回,見学会3回,ガスタービンセミナー1回, シンポジウム1回。

回次	名称	講 師	年月日	場所
1	第1回特別講演会	河田 修(富士電機製造) 他4名	56.4.24	機械振興会館
2	第9回定期講演会	発表者28名	56.6.5	同上
3	第1回技術懇談会	平野 正(三菱金属)	56.6.12	三菱金属 桶川製作所
4	第1回見学会		56.6.12	同上
5	第2回特別講演会	Prof. F.BREUGELMANS	56.9.28	機械振興会館
6	第1回シンポジウム	遠藤征紀(航技研)他3名	56.10.9	航技研
7	第2回技術懇談会	伊藤隆儀(小松ハウメット)	56.11.6	小松ハウメット
8	第2回見学会		56.11.6	同上
9	第10回セミナー	水谷 弘(電力中央研) 他8名	5 7.1.1 9,2 0	日比谷三井ビル
10	第3回技術懇談会	浅野正晴(日本国有鉄道)	57.2.19	日本国有鉄道
11	第3回見学会		57.2.19	同上。

5. 出版事業

5.1 会 誌

本期発行した会誌は, Vol.9, Na 33(1981 -6), Vol.9, Na 34 (1981 - 9), Vol.9, Na 35 (1981 - 12), Vol.9, Na 36 (1982 - 3) で本文総ページ 291, うち報告, 行事内容, 会告, 後記など 29ページである。

		技	講	論解	資	随	見	研だ	新よ備	報	=	行会	後
		技術論文					聞	究よ	製び紹 品新 お設介		ユ 	事 	
		文	議	説説	料	筆	記	所り	お設介	告	ス	内告	記
9巻	33号		9	28	4	1	9	3	4	9		1	1
	6		(1)	(3)	(1)	(1)	(2)	(1)	(1)	(1)		(6)	(2)
9.	34	8	11	38		1	5	2	3			2	1
	9	(1)	(1)	(4)		(1)	(1)	(1)	(1)			(7)	(2)
9.	35	8		41		2	2	4	3			5	1
	12	(1)		(4)		(1)	(1)	(1)	(2)			(9)	(2)
9.	36	6	10	44		2	9	3	3			8	1
	3	(1)	(1)	(4)		(1)	(3)	(1)	(1)			(11)	(2)

5.2 Gas Turbine Newsletter

ASME Gas Turbine Division より発行され ている同誌を同部門の了解のもとに4回にわたり 複写配布した。

1981 - 4	PP. 1 - 4
1981 - 8	PP. 1 – 4
1981 - 10	PP. 1 - 4
1982 — 1	PP. 1 - 4

5.3 日本ガスタービン学会講演会論文集

第9回定期講演会の講演会論文集(168ページ) を発行した。

5.4 ガスタービンセミナー資料集

第10回ガスタービンセミナーのセミナー資料集(89ページ),を発行した。

6. 第3回国際ガスタービン会議開催準備

本学会とは別に 1983年国際ガスタービン会議 東京大会組織委員会が発足した(56年10月 30 日)。これに伴い本学会は会議の準備・実施の業 務を同委員会に委託した。

7. 学会設立十周年記念事業開催準備

+周年記念行事委員会(委員長 円城寺 一 他8名)が発足し,57年6月3日開催する十周 年記念行事の準備が行われた。

8. 事務所移転

東京都新宿区新宿3-17-7 紀伊国屋ビルより東京都新宿区西新宿7-5-13 第3工新ビル 402へ移転した。(57年2月22日)

9. 会員数の異動状況

摘要	正会員	学生会員	賛助会員
本期末会員数	1,219	19	81
前期末会員数	1,156	12	68
差引増減	63	7	13

第6期(昭和56年度) 収支決算

1. 収支計算書総括表

自 昭和56年4月 1日

至 昭和57年3月31日

1.1 収入の部

	勘定科目	合 計	一般会計	国際会議特別会計
1	基本財產運用収入	436,029円	436,029円	0円
2	会費収入	8,535,731	8,335,731	200,000
3	入会金収入	66,500	66,500	0
4	事業収入	4,179,600	4,179,600	0
5	雜収入	745,096	739,965	5,131
6	引当金取崩収入	2,200,000	2,200,000	. 0
7	繰入 金 収入	1,200,000	0	1,200,000
8	前期繰越収支差額	2, 2 5 2, 2 2 7	1,755,239	496,988
	収入合計	1 9,6 1 5,1 8 3	17,713,064	1,902,119

1.2 支出の部

	勘	定	科	目		合	計	一般会	計	国際会議特別会計
1	管		理		費	8,21	9,471円	8,219	471円	0
2	出	版	事	莱	費	3,87	8,819	3,878	,819	0
3	集	会	事	莱	費	1,59	5,574	1,595	574	0
4	调	查研	究	事業	費	2	9,200	29	200	0
5	E	際分	識	調査	費		0		0	0
6	賃	付	金考	こ払	額	1,61	3,930		0	1,613,930
7	権		利		金	43	2,000	432	,000	0
8	特	別全	計	繰入	金	1,20	0,000	1,200	000	0
	支	出	合	計		16,96	8,994	1 5, 3 5 5	,064	1,613,930
ĸ	期	東越	収	支差	額	2,64	6,189	2,358	000	288,189

2. 貸借対象表総括表

(昭和57年3月31日現在)

科目	合 計	一般会計	国際会議特別会計
疏 動 資 産 合 計	2,783,078	2,494,889	288,189
有形固定資產合計	1 3 8, 5 3 0	1 3 8, 5 3 0	0
その他の固定資産合計	9,635,196	8,021,266	1,613,930
固定資產合計	9,773,726	8,159,796	1,613,930
資産合計	1 2, 5 5 6, 8 0 4	1 0,6 5 4,6 8 5	1.902.119

2.2 負債の部

2.1 資産の部

科	8		合 計	一般会計	国際会議特別会計
流動;	も 債 合	計	1 3 6, 8 8 9	1 3 6, 8 8 9	0
固定力	1 健合	ŝt	1,500,000	1,500,000	0
負貨	t 合 計		1,636,889	1,636889	0

2.3 正味財産の部

科	B	승 計	一般会計	国際会議特別会計
基	金	6,014,266	6,014,266	0
剩余金台	计计	4,905,649	3,003,530	1,902,119
正味財産	合計	10,919,915	9.017.796	1,902,119
負債及び正味財	生合計	1 2, 5 5 6, 8 0 4	10,654,685	1,902,119

報 告

3. 一般会計の部

3.1 収支計算の部
 1) 収入の部

自 昭和56年4月 1日 至 昭和57年3月31日

	勒 定 科	8	予算数		* *	
大科目	中科目	小科目		決算額	差異	偶考
基本財産運			420,000/9	436,029円	△16,029円	
用収入	基本財產利息収入		420,000	436,029	△16,029	預金利子収入
		基金定期預金利息収入	420,000	436,029	△16,029	
事業 収入			3,150,000	4,179,600	△ 1,029,600	
	集会事業収入		2,550,000	3,263,100	△713,100	
		定期講資会収入	650,000	805,100	△155,100	1回開催
		見学会技術意識会収入	150,000	112,000	38,000	3回開催
		シンポジウム収入	150,000	144,000	6,000	1回開催
		G/Tセミナー収入	1,600,000	2,202,000	△ 602,000	1回開催
	出版事業収入		600,000	916,500	△ 316,500	
		広告収入	600,000	916,500	△ 316,500	
入会金収入			40,000	66,500	△ 26,500	
	正会員入会金収入		30,000	48,500	△18,500	
		正会員入会金収入	30,000	48,500	△18,500	97名分
	学生会員入会金収入		5,000	6,000	△ 1,000	
		学生会員入会金収入	5,000	6,000	△ 1,000	12名分
	劈肋会員入 会金収入		5,000	12,000	△ 7,000	
		聲助会員入会金収入	5,000	12,000	△ 7,000	12社分
会員収 入			8,217,000	8,335,731	△118,731	
	正会員 会 費収入		3,600,000	3,467,431	132,569	
		正会員 会 養収入	3,600,000	3,467,431	132,569	1,172名9
	学生会員会費収入		17,000	19,000	△ 2,000	
		学生会員会費収入	17,000	19,000	△ 2,000	19名分
	赞助会員会赞収入		4,600,000	4,849,300	△249,300	
		赞助会员会赞収入	4,600,000	4,849,300	△249,300	97口分
維収 入			390,000	739,965	△ 349,965	
	受取利息		290,000	578,853	△288,853	預金利子収ノ
		運用財產定期預金利息	250,000	544,393	△ 294,393	
		運用對產普通預金利息	40,000	34,460	5,540	
ĺ	雑 収 入		100,000	161,112	△61,112	
		兼収入	100,000	161,112	△61,112	
引当金取崩			2,200,000	2,200,000	0	
収入	引当金 取 崩収入	-	2,200,000	2,200,000	0	
		事務所移転費引当金 取削収入	2,200,000	2,200,000	0	
前期講題			1,755,239	1,755,239	0	
収支差額	前期講經以支差額		1,755,239	1,755,239	0	
		前期錄越収支差 額	1,755,239	1,755,239	0	
	収入合	ât	16,172,239	17,713,064	△ 1,540,825	

2)支出の部

	胎 定料	8	予算额	決算額	差異	個天
大科目	中科目	小科目			1	
管理费			6,985,000円		△ 1,234,471円	
	給料手当		3,740,000	4,195,210	△ 455,210	
		給 与	3,600,000	4,150,110	△ 550,110	
		諸 手 当	140,000	45,100	94,900	
	過職給与引当金峰入額		200,000	200,000	0	
		退職給与引出金線入額	200,000	200,000	0	
	福利厚生費		150,000	205,951	△ 55,951	
		社会保険費	150,000	205,951	△ 55,951	
	숙 議 🏌		900,000	740,651	159,349	
		理事会費	350,000	309,782	40,218	
		評議員会費	110,000	91,100	18,900	2回開催
		彩 会 費	90,000	43,175	46,825	1回開催
		委員会費	350,000	296,594	53,406	
	选举费		250,000	291,031	△ 41,031	1回実施
		評議員選挙員	250,000	291,031	△ 41,031	
	旅費・交通費		180,000	241,810	△ 61,810	
		族 費	50,000	35,710	14,290	
		交通 費	130,000	206,100	△76,100	
	什器・備品費		10,000	25,500	△15,500	
		什器・備品質	5,000	25,500	△ 20,500	
		2 8 9	5,000	0	5,000	
	消耗品费		150,000	439,415	△289,415	
		消耗品费	150,000	439,415	△ 289,415	
	印刷 黄		180,000	159,785	20,215	
		印刷 對	180,000	159,785	20,215	
	通信運搬費		450,000	471,498	△ 21,498	
		通信運搬費	450,000	471,498	△21,498	
	黄借料		480,000	599,500	△119,500	
		■ 務 所 借 用 費	480,000	599,500	△119,500	
	諸 瀧 金		35,000	29,100	5,900	
		詳 謝 金	35,000	29,100	5,900	
	負担金		110,000	105,000	5,000	
		日本内燃機関連合会 会費	100,000	100,000	0	
		 共催分担金	10,000	5,000	5,000	
	* *		150,000	515,020	△ 365,020	
		被 費	150,000	515,020	△365,020	
出版事業費			3,426,000	3,878,819	△452,819	
	승 🦓 😤		70,000	99,900	△29,900	
		編集委員会費	70,000	99,900	△ 29,900	
	通信運搬費		346,000	302,589	43,411	
		会能発送費	346,000	302,589	43,411	
	印刷製本費		2,600,000	3,051,950	△ 451,950	
		会能製作費	2,600,000	3,051,950	△451,950	4回刊行
	麗 謝 金		410,000	424,380	△14,380	
		会誌原稿料	410,000	424,380	△14,380	

	勘	定	科	8				1
大科目	- +	¥.	B	小科目	予算数	決算額	差異	值为
集会事業費		-			2,192,000円	1,595,574	1 .	1
	☆	摄	*		180,000	50,020	129,980	
			* *	企画委員会費	180,000	50,020	129,980	
	識時	雇	寶金	定期購減会臨時屬實金	21,000 21,000	15,000 15,000	6,000 6,000	
	液發	· Ż	8 B	定用1800 公開時期周亚	48,000	33,060	14,940	
		• •		定期精湛会旅餐交通餐	18,000	18,000	14,940	
				G/Tセミナー推費	30,000	15,060	14,940	
	通信	運	* *	交通費	432,000	173,939	258,061	
				特別講演会通信費	54,000	11,000	43,000	
				見学会技術懇談会通 信誉	162,000	13,450	148,550	
				10頁 シンポジウム通信費	54,000	0	54,000	
				定期期间会通信调制量	7 2,000	22,500	49,500	
				G/Tセミナー通信 運搬費	90,000	126,989	△36,989	
	印刷	34 ×	* 🔮	~~~~	380,000	294,000	86,000	
				定期精演会印刷基本量	200,000	150,000	50,000	
				G/Tセミナー印刷 製本費	180,000	144,000	36,000	
	Я́т.	伥	料		330,000	298,000	32,000	
				特別講資会会場費	30,000	42,000	△12,000	
				シンポジウム会場費	30,000	0	30,000	
				定期請資会会場費	120,000	110,000	10,000	
	縷	B	~	G/Tセナミー会場費	150,000	146,000	4,000	
	éħ	æ	金	特別講 演 会 朗礼	59,000	52,775	6,225	
				特別語 低 会圖礼 技術慧 談 会圖礼	67,000	33,333	33,667	
				シンポジウム離礼	30,000	22.220	7,780	
				G/Tセミナー翻礼	250,000	249,993	7	
	*		Ħ.		395,000	373,234	21,766	
				特別講演会維養	40,000	55,300	15,300	
				見学会技術思議会離費	3 5,0 0 0	31,695	3,305	
				シンポジウム維費	20,000	7,260	12,740	
				定期請演会雑費	200,000	179,061	20,939	
				G/Tセミナー雑費	100,000	99,918	82	
調査研究事					205,000	29,200	175,800	
莱费	会	谦	黄		125,000	24,200	100,800	
				生産統計作成委員会費 技術情報センター委	25,000	4,900	20,100	
				員会費	20,000	700	19,300	
	通信	a 1	60 6 5	调查研究委員会 贅	80,000 20,000	18.600	61,400 15,000	
	381 10	堤1	a x	生産統 計 発送費	1 5,000	5,000	10,000	
				技術情報センター通	5,000	0,000	5,000	
	G	料		信費	5,000	0	5,000	
	~			技術情報センター費	5,000	0	5,000	
	雑		黄	料費	55,000	0	55,000	
				生產統計開係業業	10,000	0	10,000	
				技術情報センター関 係雑費	5,000	0	5,000	
				過査研究関係被費	40,000	0	40,000	
権 利 金					0	432,000	△ 432,000	事務所移転ic
支払額	事務所	倍用槽	1利金		0	432,000	△ 432,000	伴う支出
				事務所借用権利金	0	432,000	△ 432,000	5 0 /s - +
貸付金	mer o 1	a	544 ~		2,200,000	0	2,200,000 2,200,000	58年度末ま
	国際会話	戦守(制)	【付金	国際会議準備委員会	2,200,000	0	2,200,000	で貸付け予定
持入金				への貸付金	2,200,000	1,200,000	2,200,000	上記貸付金支
та Л 🖻	特別会	11 M	አፍ		0	1,200,000	△ 1,200,000	上記員行望文 出中止に伴う
	19 19 33	a 1.454	// ¥	特别会 計 嵘入金	0	1,200,000	△ 1,200,000	田中正に伴う 処置
7 @ \$					100,000	0	100,000	
	Ŧ	佣	*		100,000	0	100,000	
			1	予 偏 贷	100,000	0	100,000	
-	支	出	合	81	15,108,000	15,355,064	△247,064	

3.2 正味財産増減計算の部

1) 増加の部

勘定	科目	决 算 箱	
大科目	中科目	決 算 額	備考
<u>脅</u> 産 増 加 額		457,500円	
	基本財產受入額	0	
	備品増加額	2 5, 5 0 0	
	準備金増加額	0	
	權利金預入額	4 3 2,0 0 0	事務所賃貸契約日 伴う預入額
前期 繰越增 減差額		2,388,030	
	前期繰越增減差額	2,388,030	
增加審	〔合計	2,845,530	

2)減少の部

勘 定	科目	决	算	額	偏考
大科目	中科目	æ	н.	201	備考
資産減少額		2, 2	00,00)0円	
	備品償却額			0	
	引当金取崩額	2, 2	0 0; 0 0	0 0	事務所移転引当金 取崩
基本金增加額				0	
	基本金組入額			0	
揻 少 都	〔合計	2, 2	00,00	0 0	
次期繰越	增减差额	6	4 5, 5 8	30	
剩余金	2合計	3, 0	03,53	3 0	

3.3 貸借対照表 (昭和57年3月31日現在)

(資産の部)	
I 流 動 資 産	
1. 現金預金	2,4 9 4,8 8 9 🖻
流動資産合計	2,494,889
11 固定資産	
1. 有形固定資産	
1. 什器備品	138,530
有形固定費產合計	1 3 8, 5 3 0
 その他の固定資産 	
 電話加入權 	7 5,0 0 0
2. 退職給与積立預金	1,500.000
3. 定期預金(注1)	6,014,266
4. 権 利 金	432,000
その他の固定資産合計	8,021,266
固定資産合計	8,159,796
査 産 合 計	10,654,685
(負) (使)の) 部) 1) 疣 動 負 (金) 1) 前受会費 2) 漏用段級共利 洗動負責合計 1) 図 定 負 (金)	1 1 7,0 0 0 円 <u>1 9,8 8 9</u> 1 3 6,8 8 9
1. 退職給与引当金	1,500,000
固定負債合計	1,500,000
負債合計	1,636,889
(正味財産の部)	
1基 金	6,014,266円
□ 剰 余 金	200 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100
次期繰越収支差額	2,358,000
次期繰越増減差額	645,530
剩余金合計	3,003,530
正味財產合計	9,017,796
負債及び正味財産合計	10,654,685

注1.:基金たる資産

4. 国際会議特別会計の部

4.1 収支計算の部

4I

自 昭和56年4月 1日 至 昭和57年3月31日

大科目	静 定料 中科目	1 1	予算額	決算額	差異	偶考
<u>入 行 日</u> 会費収入	<u> </u>	<u>, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,</u>	0円	200,000HJ	△ 200,000FH	
	会变収入		0	200,000	△ 200,000	
		特别黄助会黄収入	0	200,000	△ 200,000	
借入金収入			2,200,000	0	2,200,000	借入中止
	借入金収入		2,200,000	0	2,200,000	
		借入金収入	2,200,000	0	2,200,000	
繰入金収人			0	1,200,000	△ 1,200,000	借入中止に伴
	藏人金収人		0	1,200,000	△ 1,200,000	う処置
	1	碘人金収入	0.	1,200,000	△ 1,200,000	
催収入			0	5,131	△ 5,131	
	受取利息		0	5,131	∆ 5,131	
		普通预金利息	0	5.131	△ 5,131	
前期繰越			496,988	496,988	0	
収支差額	前期繰越収支差額		496,988	496,988	0	
		前期磷越収支差额	496,988	496,988	0	
	収入合	81	2,696,988	1,902,119	794,869	

2)支出の部

			勘	定	科	8	7 8 8	決算論	<i>х</i> ж	偏考
大	科	8	ф	科	8	小科目	тяв	о с и на	~ ~	1 1 1 1
11	艃	¥					1,440,000円	084	1,440,000円	
			榆	料 手	ň		700,000	0	700,000	賃付金に服務
						始 与	700,000	0	700,000	
			会	識	*		316,400	0	316,400	
						华储委員会 党	236,400	0	236,400	"
						粗糠委员会费	80,000	0	80,000	
			ið.	信選手	6 #		33,600	0	33,600	
			1			準備委員会通信費	13,600	0	13,600	"
			1			组職委員会通信費	20,000	0	20,000	
			Ep	刷	¥		50,000	0	50,000	
						क ल क	50,000	0	50,000	"
			X	倩	# 4		240,000	0	240,000	
						电势所借用费	240,000	0	240,000	"
			*		ġ.		100,000	0	100,000	"
						14 4	100,000	0	100,000	. "
Б	察 会	4					150,000	0	150,000	
38	靔	費	T	ンケー	Εġέ		150,000	0	150,000	貸付金に振着
						アンケート資料製作量	100,000	0	100,000	JA 17 92 FC 128 1
						アンケート資料発送費	50,000	0	50,000	

	散 定 科	8			x	a	455	決算項	ž	st	18	ž
大科目	中科目	小	科	B	, r						141	
質付金田	l						0円	1,613,930 円	1.1			
	給料手 当貸付金						0	743,528	△7	13,528	臨時層	資金分
		給 与	賃	付 🕯			0	743,528	۵7.	13,528		
	会議費貸付金						0	374,937	∆ 31	4,937		
		準備委	員会費	₩ 付す			0	174,005	Δ1	4,005		
		和豪委	黄会黄	₩ 付す	2		0	84,112	Δt	34,112		
		実行委	前会會	貸付金	2		0	116,820	Δ1:	16,820		
	通信運搬費貸付金						0	136,430	Δ1	36,430		
		準備委 付金	黄会通	招費)	ŧ		0	38,430	Δ;	38,430		
		組織委	員会通	信養師	ŧ		0	83,000	۵۵	33,000		
	1		招費	賃付 3			0	15,000		15,000		
	質借料貸付金	1			1		0	240,000	42	10,000	業会1	() 一部(
		事務所	借用費	資付 余	2		0	240,000	۵2	10,000	用費0. 担分) - 803
	维费货付金						C	31,095	Δ;	31,095		
		補費	賃	付₫			0	31,095	Δ:	31,095		
	话期会通期在黄粱付金			_			0	87,940		37,940		
		アンケ 費貸付	- Þ\$	(料光)。	s		0	87,940	<u>م</u>	37,940		
¥ @ #		XAD	¥		50	0,0	00	0	50	00,000		
	÷ a ¢				5(0,0	00	0	50	000,000		
		7	间	1	1 50	0,0	00	0	50	0,000		
-	支出合	81			2,0	90,0	00	1,613,930	71	6,070		
	次期縁越収支	10 M			64	06.9	0 P	288.189	3	8,799		

(在) 1983 年国際ガスタービン会議東京大会組織委員会への貸付金

4.2 正味財産増減計算の部

	勘	定	科	B		换	40		額	钄	劣
大	科	B	ф.	科	ß	æ	算		સગ	140	~
负産	増	加額				1.	61	3, 9	3 OF4		
			儀品	増	加額				0	10000	
			貸	付	金	1.	61	3, 9	30	1983年 - ビン会議 組織委員会	制炭カスタ 東京大会 への貸付金
前期瞬	越増	減差 額							0		
			前期模	越增	減差額				0		
	增	<i>ti</i> o 8	自合	81		1,	61	3, 9	30		

	勘	定	科	8	ļ	決	44	-	倍	考
大	科	a	中 科 目		頖	額	m	-		
偩 産	滅 ,	少額	備品	傾	却額			РЧО 0		
	诚	少餐	L 合	8†				0		
	×	期峰越	增族意	畜額		1,	613,	930		
	剰	余台	; 合	81		1	902	119		

4.3 貸借対照表

(昭和57年3月31日現在)

-
- -
-
-
-
•
-
-
9
9
_

注:国際会議組織委員会への賃付金(1983年迄貸付けの予定)

5. 財産目録

(昭和57年3月31日現在) (費産の部) 1. 銀行預金 三井銀行新宿支店(注1) 第一勧業銀行新宿支店(注2) 6,014,266 P3 1,500,000 定期預金 普遍預金 富士銀行新宿支店(注3) 2,452,889 第一動業銀行新宿支店(注4) 286,188 協和銀行新宿西口支店(注4 1,001 三菱信託銀行新宿西口支店(注4) 1,000 2.振替損金 3.電話加入権 4.什器備品 5.権利金(注5) 東京地方貯金局 42000 電話1基
 留守番電話他下記資料の通り 75,000 4 3 2 0 0 0 6. 貸付金(注6) 1 6 1 3 9 3 0 1 2 5 5 6 8 0 4 ŝt (負債の部) 117000 0 1. 前 受·会 費 屬用保険料 19,889 1,500,000 3. 退職給与引当金 ât 1636889 差引正味財産 10,919,918 (注1) 基金たる資産 (注5) 第3工新ビル4F402号室敷金 (注2) 退職給与引当金たる資産
 (注3) 一般会計運用財産たる資産 (注6) 1983年国際ガスタービン会議 東京大会組織委員会への貸付金 (注4) 特別会計資産 〔資 料〕 什器備品 留守番寓話 75000 14 숲 庫 8,200 8,000 ー キャビネ・ 蛍 光 灯 カードケース 7,990 6600 ターケース 類 箱 3,840 書 3,400 10500

6. 預り金

ミニディ

計

			()	昭和57年3月31日現在)
科	8	金	9 1	預り金の種類
前受	숲 붓		117,000円	5.7年度会 費
雇用街	₹ Bet #A		19,889	56年度雇用保険料預り
合	81		136,889	

138530

監査の結果,とこに報告された決算報告書は,過正に表示していることを認める。

第7期(昭和56年度)役員および評議員 (敬称略,五十音順)

会 長 今井兼一郎

韋

琿

- 副会長 須之部量寛
- 総務田中英穂(主担当),一井博夫,樗木 康夫(財務),山崎慎一,松尾芳郎
- 企 画 松木正勝(主担当).飯島孝,大橋秀雄,谷村輝治,三輪光砂,矢野巍
- 編集 森下輝夫(主担当),表義則,小竹進, 佐藤晃,豊倉富太郎,平山直道,藤江 邦男
- 監 事 大塚新太郎, 岡崎卓郎
- 評議員 青木千明,秋葉雅史,浅沼強,有賀一 郎,安藤常世,井口泉,伊藤英覚,伊 藤源嗣,飯田庸太郎,生井武文,石谷 清幹,一色尚次,井上宗一,浦田星, 円城寺一,小笠原光信,近江敏明,大 槻幸雄,大橋智,岡村健二,筧 陽, 梶山泰男,甲藤好郎,河田修,菅進, 木下啓次郎, 窪田雅男, 神津正男, 近 藤博, 佐藤豪, 佐藤玉太郎, 沢田照夫, 塩入淳平, 白戸健, 鈴木邦男, 妹尾泰 利,田島清灝,高瀬謙次郎,高田浩之, 高原北雄, 竹矢一雄, 谷口博, 谷田好 通, 辻高弘, 辻 茂, 島崎忠雄, 中川 良一, 灘波昌伸, 西尾健二, 西山哲夫, 葉山真治,八田桂三,浜中全美,平田 賢,古浜庄一,堀昭史,三輪国男,水 町長生,宮内諄二,宮地敏雄,村井等, 村尾麟一,村田暹,森康夫,山内正男, 山田正, 吉開勝義, 吉識晴夫。

第7期(昭和57年度)事業計画

自 昭和 57 年 4 月 1 日至 昭和 58 年 3 月 31 日

1. 概 要

昭和 57 年度は,前年度に引き続き,研究発表 会,学術講演会,技術懇談会,見学会,シンポジ ウム,セミナーなどを開催すると共に学会誌の定 期的刊行並びに上記諸事業に関連した資料を刊行 する。

また同年度中のわが国におけるガスタービンの

生産統計作成を行うと共にガスタービンに関する 資料を蒐集,保管し,会員の利用に供することを 計画する。

さらに,調査研究委員会において,ガスタービンに関する特定課題につき調査,研究を行う。

特に本年度は本学会設立十周年に当るので諸記 念事業を実施する。また,1983年10月23日か ら28日まで東京で開催予定の第3回国際ガスタ ービン会議の幹事学会として準備活動に従事する。

- 2. 調査・研究事業
 - (1) 昭和 57 年度におけるわが国のガスタービン生産に関する資料を蒐集,集計し統計を作成する。

同事業には,ガスタービン統計作成委員会 があたる。その結果は学会誌に掲載発表する。

- (2) 調査研究委員会において、ガスタービンに 関する特定課題につき調査・研究を行う。す なわち、前期に終了した「ガスタービン作動 流体の特性に関する研究」の成果を一そう発 展させ資料の系統化を行うためあらたに委員 会を設置する。
- 3. 出版事業
- (1) 定期刊行物
 - 学 会 誌 : 年4回刊行する。(うち1 回は十周年記念特集号とす る)
 - News letter: 米国機械学会ガスタービン 部門発行の News letter を 配布する。
- (2) 不定期刊行物
 講演会論文集 : 定期講演会における講演
 会論文集を刊行する。
 セミナー資料集 : ガスタービンセミナーに
 - おける資料集を刊行する。

(マウロ教)(マウ胆源ケロ)

4. 附 帯 事 業

	(予定回数)	(
(1) 定期講演会の開催	1回	57年6月
(2) 特別講演会の開催	2回	57年5月,9月
(3) 技術懇談会の開催	3回	57年6月,9月,
		11月
(4) 見学 会の開催	3 回	57年6月,9月,
		11月
(5) ガスタービン・シンポ	ジウム 1回	57年10月

- (6) ガスタービンセミナー 1回 58年1月
- 5. 学会設立十周年記念事業

記念式典,学会賞授与,記念講演,パネル討論 会等を57年6月3日に行う。

1983年国際ガスタービン会議東京大会開催
 準備

昭和 58 年 10 月 23 日から 28 日まで,東京で開 催予定の第3回国際ガスタービン会議の幹事学会 として準備活動に従事する。

7. 委員会活動

以下の委員会を設け、各事業の実施にあたる。

- (1) 総務委員会(常置)
- (2) 編集委員会(常置)
- (3) 企画委員会(常置)
- (4) ガスタービン統計作成委員会(常置)
- (5) 定期講演会委員会(常置)
- (6) ガスタービン技術情報センター運営委員会(常置)
- (7) 地方委員会(常置)
- (8) 組織検討委員会(臨時)
- (9) 調查研究委員会(臨時)
- (10) 十周年記念行事委員会(臨時)

第7期(昭和57年度)予算書

自 昭和 57 年 4 月 1 日 至 昭和 58 年 3 月 31 日

1. 予算書総括表

1.1 収入の部			
勘定科目	숨 카	~ 般 会 計	特別会計
基金運用収入	420,000円	420,000円	0円
会費収入	8,774,000	8,774,000	0
入会金収入	40,000	40,000	0
事業収入	8,100,000	8,100,000	0
雑 収 入	350,000	320,000	30,000
借入金収入	500,000	0	500,000
庾入金収入	500,000	500,000	0
特别贊助金収入	1 3,0 0 0,0 0 0	0	1 3,0 0 0,0 0 0
前期機越収支差額	2,646,189	2,358,000	288,189
収入合計	34,330,189	20,512,000	13,818,189

勘定科目	合 計	一般会計	特別会計
育理費	10,859,000円	10,859,000円	0 Щ
出版事業費	4,814,000	4,814,000	0
集会事業費	2,912,000	2,912,000	0
調査研究事業費	205,000	205,000	0
負担金	1 2,0 9 0,0 0 0	0	12,090,000
繊 入 金 支 出	500,000	0	500,000
予備費	100,000	100,000	0
次期繰越収支差額	2,850,189	1,622,000	1,228,189
支出合計	34,330,189	20,512,000	13,818,189

2. 一般会計

(備考欄中の*印は) (土周年記念事業分) 2.1 収入の部 (自 昭和57年4月1日 至 昭和58年3月31日 予算 預 前年度 増 莨 调考 B 科 8 小 420,000F 420,00 OF 0F 用収入 基本財產利息収入 420,000 420,000 0 基金定期指金利用权人 420,000 429,000 0 事業収入 8.100,000 3,150,000 4,950,000 集会事業収入 3,300,000 2,550,000 750,000 定期 開復会 収入 1,200,000 650,000 550,000 見学会技術感動会収入 150,000 150,000 0 シンポジウム収入 150,000 150.000 0 G/Tセミナー収入 1,800,000 1,600,000 200,000 出版事業収入 2,000,000 600,000 1,400,000 広告収入 2,000,000 600,000 1,400,000 因際会議経理事務委 託収入 2,800,000 0 2,800,000 国際会議関係事務委 託収入 1,580,000 0 1,580,000 展示関係事務委託収入 1,220,000 0 1,220,000 40,000 入会金収入 40,000 0 正会員入会 金収入 30.000 30.000 . 0 正会員入会金収入 30,000 30,000 60人物 0 学生会員入会金収入 5,000 5,000 0 学生会員入会金収入 5,000 5,000 10人增 0 贊助会員入会金収入 5.000 5,000 0 餐助会真入会金収入 5,000 5,000 0 5 社増 会費収入 8,774,000 8,217,000 557,000 正会真会餐収入 3,750,000 3,600,000 150,000 正会員会費収入 3,750,000 3,600,000 150.000 1,250人 学生会員会費収入 24,000 17,000 7,000 24,000 学生会員会費収入 17,000 7,000 营助会前会登取入 5,000,000 4,600,000 400,000 贊助会員会 螢収 2 5.000.000 4,600,000 400,000 1000 雑収入 320,000 390,000 △ 70,000 受取利息 270,000 290,000 △ 20,000 運用對於定期的金利度 250,000 250,000 運用財產普通預金利息 20,000 40,000 △ 20,000 収 50,000 100,000 △ 50,000 50,000 100,000 △ 50,000 引当金取崩 0 2,200,000 △ 2,200,000 収入 引当金取崩収2 0 2,200,000 △ 2,200,000 1,000,000 0 △ 1,000,000 事務所移転費引当金 1,200,000 △ 1,200,000 特别会計貸付金 **庾入金** 500,000 0 500,000 特別会計よ 庾入金収汐 500,000 0 500,000 の戻入金 500.000 500.000 特别会計展入金 0 前期藏越 2,358,000 1,755,239 602,761 収支差額 前期繰越収支差額 2,358,000 1,755,239 602,761 前期棘越权支差额 2,358,000 1,755,239 602,761 収入合計 20,512,000 16,172,239 4,339,761

2.2 支出の部

			勘		定		科		8					-	年度		
×	科	8		ŧ	科		8		小	科	8		子算额	前予	年 度 算 額	增減	调考
響	理	黄						T					10,859,000円	6,9	85,000F3	3,874,000円	
			船	\$	ş	手	当						往)5,580,000	3,7	40,000	1,840,000	注) 国際会議
								船				与	5.520,000	3,6	00,000	1,920,000	及び展示 関係給与
								緒		手		≝	60,000	1	\$0,000	△ 80,000	含む。
			週	统 給与	詞目	13)	以癥						200,000	21	00,000	0	
								透	NG-	詞圖	金融入	額	200,000	20	00,000	0	
			福	利	厚	生	ġ						300,000	1	50,000	150,000	
								社	숦	保	検	¥	300,000	15	50,000	150,000	1
			≙		議		ģ						850,000	90	00,000	△ 50,000	
								理	4	K .	슢	R	350,000	3	50,000	0	
								17	潇	員	숦	¢	110,000	1	0,000	0	
								65		会		¢	90,000	9	90,000	0	
			1					委	ß	ί	숦	Ø	300,000	35	50,000	△ 50,000	
			迷		榉		¥	1					300,000	25	60,000	50,000	
								評	揻	員連	5 岸	Ø	300,000	25	50,000	50,000	
			狹	黄	• 3	e ji	黄						240,000	18	80,000	60,000	
								族				g	60,000	5	50,000	10,000	
								2		通		£	180,000	13	80,000	50,000	
			ft	羇	۰í	8 , 81	雙						530,000	. 1	0,000	520,000	
								h.	羇	• 9	1 db	¥	525,000		5,000	520,000	
								Ø		書		¥	5,000		5,000	0	
			满	Ħ	£ .	品	. 黄	ĺ					150,000	15	0,000	0	
								酒	頛	É I	品	X	150,000	15	0,000	0	
			£Ø		81		黄						180,000	18	0,000	0	
								£Ω		R ij		¢	180,000	18	0,000	0	
			通	18	運	瘶	黄						450,000	45	0,000	. 0	
								通	熍	邋	瘶	ġ.	450,000	45	0,000	0.	
			Ħ		借		料	1					1,560,000	48	0,000	1,080,000	
								35	務)	所借	用	×	1,440,000	48	0,000	960,000	
								光	勳	*	杓	2	120,000		0	120,000	
			紼		湖		ŝ					T	35,000	3	5,000	0	
								ŝŧ		謝		ŝ	35,000	3	5,000	0	
		, i	負		袒		술					T	110,000	11	0,000	0	
								Ð	内	递	会	\$	100,000	10	0,000	0	
								共	儠	分	担	≙	10,000	1	0,000	0	

大科目	b	定科	. f	4 目 小	彩	8	子算额	前年夏	增減	領考
管理费	M		5	*			374,000円	150,000	9 224,000P	1
				×		状	100,000	0	100,000	*100,000
				¥		×	274,000	150,000	124,000	*124,000
出版事業費	1						4,814,000	3,426,000	1,388,000	
	÷,	纝	,				345.000	70,000	275.000	
	-			-	委員	会費	345,000	70,000	275,000	*275,000
	通信	運	报 5				350,000	346,000	4,000	
	60 BH	5	* 9	会読	光	送費	350,000	346,000	4,000	
	H- 17	**	本 9	会誌	- #i	作業	3,450,000	2,600,000	850,000	
	諸	謝	Í	+	**	75 8	3,450,000 669,000	2,600,000 410,000	850,000	*400,000
	254	340	×	' 会悲	原	稍料	669,000	410,000	259,000	*160,000
朱会事業費	<u> </u>					18 41	2,912,000	2,192,000	259,000	+100,000
	会	38	9				150,000	180,000	△ 30,000	1
		-		้ายับม	ΞĂ	会費	150,000	180,000	△ 30,000	-
	鼓动	雁	黄金	+			40,000	21,000	1 9,000	
				定期期	化合物时	漏貧金	40,000	21,000	19,000	* 19,000
	族費	・交	通 角	1			50,000	48,000	2,000	10,000
				定期期			20,000	18,000	2,000	1
				G/T 交通費			30,000	30,000	. 0	
	通信	Æ	嵌费	1.207			500,000	432,000	68,000	+
				特别網	資合。	面信貸	54,000	54,000	0	ļ
				見学会 信誉			162,000	162,000	0	
	[16章 シンボ			54,000	54,000	0	í –
				定期的	会通信	避殺黄	100,000	72,000	28,000	
				G/T 通常貸			130,000	90,000	40,000	
	ED 181	N	本質				480,000	380,000	100,000	1
				定期期	(会印8)	料本質	300,000	200,000	100,000	
				G/T 製本費	セミナ・	- 60 B N	180,000	180,000	0	
	Ħ	借	料				392,000	330,000	62,000	
				特別講	資会会	诸黄	30,000	30,000	0	(
				シンボ	ジウムタ	e.楊費	30,000	30,000	0	
				定期期	演会会	:褐黄	182,000	120,000	62,000	*119,000
				G∕T*	ミナータ	会場費	150,000	150,000	0	
	諸	躘	金				505,000	406,000	99,000	
				特別算	橫会	謝礼	59,000	59.000	0	
				技術意	续会	翻礼	67,000	67,000	0	
				シンボ	ジウム	谢礼	30,000	30,000	0	
				GZT	セミナ・	翻礼	250,000	250,000	. 0	
				記念	事 楽	謝礼	99,000	0	99,000	* 99,000
	ж Ж		×.				795,000	395,000	400,000	
				特別創			40,000	40,000	0	
				見学会投			35,000	35,000	0	
				シンポ			20,000	20,000	0	
				定期調			600,000	200,000	400,000	
				G/T-	e i +-	一架費	100,000	100,000	. 0	
查研究事							205,000	205.000	0	
¢	≙	潇	¥		· · ·		125,000	125,000	0	
				生産統計 技術情報			25,000	25,000	0	
				技術情報 員会費			20,000	20,000	0	
-	·			调查研	兒委員	会費	80,000	80,000	0	
	通信	運技	愈 爱	H & ++	ah 2*		20,000	20,000	0	
				生 凝 統 技術情報 信費	at 96 オセンダ	名章 一通	15,000	15,000	0	
•	£.	# 3	黄	信費			5,000	5,000 5,000	0	
			~	技術情報	見センタ	7~资	5,000	5,000	0	
.	*		¢	자옷		;	55,000	55,000	0	
			Ĩ	生産統計	计脚体	**	10,000	10,000	0	
				王/2000、 技術情報 乐雑費	Hセング	- M	5,000	5,000	. 0	
				朱雅寶 網査研			40,000	40,000	ů	
付金							0	2,200,000	△ 2,200,000	
1	国際会議	牵佣5	【付金				0	2,200,000	△ 2,200,000	
				国際会議 貸付金	伸捕了	資金	0	2,200,000	△ 2,200,000	
備史				真け飯		-	100,000	100,000	000,000	
	7	俌	÷				100,000	100,000	0	
		-	Î	Ŧ	(III	÷	100,000	100,000	0	
				L			1,622,000	1,064,239	557,761	
期繰起										
	次期繰越	収支	差癫				1,622,000	1,064,239	557.761	
期 歳 感 支 差 額	次期 議者	収支	荒癫	<u> 次期</u> 續到	朝収支	差額	1,622,000 1,622,000	1,064,239 1,064,239	557,761 557,761	

3. 特別会計

3.1 収入の部

	勘		定		科	Ц.				Ŧ	n	85	前于	年費	UL EXI	增	ая	16	*
大科目	4		科		LI .	4.	F4	E		۴	п.	84	Ť	笄	50	211	ak	98	- 15
会費収入										13,0	0,000	00円			014	13,00	0,000円		
	A	费		ųΧ,	Y				- 1	13.0	000,0	00			0	13,00	0,000		
						特别	町 助分	費収	A	13,0	000,0	00			0	13,00	0,000		
借入金収入									1			0	2,2	200,0	000	△ 2,20	0,000		
	郃	λ	金	ΨX	٨							0	2,2	200,0	000	△ 2,20	0,000		
						倍ノ	ŵ	収	7			0	2,2	20 0,0	000	△ 2,20	0,000		
退済金収入									Ī	Ę	500,0	00			0	50	0,000		
	žš.	篩	金	収	λ					5	500,0	00			0	50	0,000		
						B 8	F. 金	収	7	5	500,0	00			0	50	0,000		
雑 収 入									Ī		30,0	00			0	3	0,000		
	受	取		利	<u>ø</u> .						30,0	00			0	3	0,000		
						普通	頭音	21 利	8		30,0	00			0	3	0,000		
前期睡越										2	88,1	89	4	96,9	88	△ 20	3,799		
収支差額	前即	HR 6	劇収	支;	差額					2	88,1	89	4	96,9	88	△ 20	3,799		
						前期。	■ 越収	支差	竊	2	88,1	89	4	96,9	88	△ 20	3,799		
	12		λ		合	81			1	138	318.1	89	28	96,9	188	11.12	201		

		勸		定		利		a					~			前	年	18						~
×	科目	4		科		B		小	1	科	E	3	Ť	Ħ	額	Ť	Ņ	度顯	増	1	蕉		(A)	考
ri	理 貸														0H)	1,4	40,0	0001	Δ.	.440	000	н		
		給	料		¥	H									0	1	00,0	000		700	000			
							R					与	L		0	1	00,0	000	Δ	700	.000			
		2		\$		ţ,	:								0	3	816,4	100	Δ	316	400			
		ł					a	íR	촔	員	☆	費			0	2	236,4	100		236	400			
							机	楸	촔	Й	会	Ø			0		80,0	000	1	5 80	,000	ĺ.		
		in in	ß	×.	膨	ġ.	: [0		33,6	500	1	33	600			
							47	(2	촟	巍	会	费			0 1		13,6	600	1 2	7 13	,600			
							61	鹸	촔	й	会	贙			0		20,0	000		2 20	000,			
		£D		491		ģ									0		50,0	000	4	2 20	,000			
							60		. 4	é)		費			0		50,0	000	4	50	,000			
		箫		ਿ		19	-								0	. 2	40,0	000	Δ	240	000			
							15	務	所	绺	用	黄			0	2	40,0	000	Δ	240	,000			
		淮				đ									0	1	00,0	000	Δ	100	000			
							25					貸			0	1	00,0	000	Δ	100	000			
到前	会議												1		0	1	50,0	000	Δ	150	,000			
18	费 贷	7	23	γ	-	⊧ ¢i									0	1	50,0	000	Δ	150	000			
							7	ンケ・	- 1	£1,‡	40Vf	幔	i (0	1	00,0	000	Δ	100	000			
							7	ンケ・	1	ît#	Ю	≝∯			0		50,0	000	4	50	000			
7	네 女	Τ													0	5	00,0	00	Δ	500	000			
		7		(A)		ø									0	5	00,0	00	Δ	500	000			
							予		9	6		¥			0	5	00,0	00	Δ	500	000			
£1	挹 金	-					1						12,0)9 Ø,0	00			0	12	090	000			
		負		抯		ŝ							12,0	90.0	100			0	12	,090	000	i		
		l					負		ł	8		金	12,0	90,0	00			0	12	.090	000			
峰入	金支出						T							500,0	00			0		500	000			
		#	λ	숲	支	в								50 O,O	00			0		500	000			
							-	校 ;	h i	† Ø	ŧ.	金	:	50 0,0	00			0		500	000			
欠期	躁越												L,	28,1	89	6	06,9	88		621	201			
汉支	差额	庆期	k	建収	支	差額							1,	28,1	89	6	06,9	88		621	201			
							¢	期日	越	収3	t ž	額	1,5	28,1	89 .	6	06,9	88		621	201			
			 支		9B		6	ŝ					138	318,1	89	2.6	96,9	88	11	121	201			

第7期(昭和57年度)監事·評議員·役員候補者選挙結果

先に行われた標記選挙結果は下記の通りである。

∘監事

(五十音順,敬称略)

番号	氏名	勤務先	番号	氏名	動 務 先	番号	氏	名	勤	務先	
1	大塚新太郎	名古屋大学	31	耆 進	船舶技術研究所	65		直道	東京都		学
2	岡崎 卓郎	日本大学	32	木下啓次郎	日産自動車	66	藤江	邦男	日立		所
			33	窪田 雅男	機械振興協会	67	古浜	Ē —			学
。野	「議員・役員候補者		34	小竹 進	東京大学	68	堀	昭史	電力中		, 听
1	青木 千明	石川島播磨重工業	35	神津 正男	防衛庁技術研究本部	69	松尾	芳 郎	日本		空
2	秋葉 雅史	東京芝浦電気	36	近藤 博	航空宇宙技術研究所	70	松木	王勝	航空宇宙	技術研究所	
3	浅沼 強	東海大学	37	佐藤 豪	慶 応 義 塾 大 学	71	三輪	国男	大分工	業大学	ž
4	有賀 一郎	慶応義塾大学	38	佐藤玉太郎	日本鋼管	72	三輪	光砂	日立	造	Ki I
5	安藤 常世	慶応義塾大学	39	沢田 照夫	大阪府立大学	73	水町	長生	千葉工	業大学	学
6	井口 泉	福井工業大学	40	塩入 淳平	東 京 大 学	74	宮内	拿二	三菱自	動車工業	粜
7	伊藤 英覚	東北大学	41	白戸 健	三井 造船	75	宮地 \$	敢 雄	航空宇宙	技術研究所	沂
8	伊藤 源嗣	石川島播磨重工業	42	須之部 量寛	東京理科大学	76	村井	等	東 北	大学	ž
9	飯島 孝	石川島播磨重工業	43	鈴木 邦男	機械技術研究所	77	村尾	# ··	青山学	院大学	学
10	飯田庸太郎	三菱重工業	44	妹尾 泰利	九州大学	78	村田	暹	大 阪	大学	ž
11	生井 武文	九州大学	45	田島 清瀬	早稲田大学	79	森島	東 夫	東京工	業大労	Ë
12	石谷 清幹	大阪大学	46	田中 英穂	東 京 大 学	80	森下北	軍夫	船舶技	術研究列	F
13	一井 博夫	東京芝浦電気	47	高瀬謙次郎	小松製作所	81	矢 野	巍	三 菱	重工業	É
14	一色 尚次	東京工業大学	48	高田 浩之	東京大学	82	山内 ī	E 男	宇宙開	発事業団	3
15	井上 宗一	日本内燃機関連合会	49	高原 北雄	航空宇宙技術研究所	83	山田	正	ヤンマー	ディーゼル	V
16	今井兼一郎	石川島播磨重工業	50	竹矢一雄	三菱重工業	84	吉開 贈	券 義	高効率ガスター	ビン技術研究組合	5
17	浦田 星	日立製作所	51	谷口 博	北海道大学	85	吉識 明	青夫	東 京	大学	ŧ
18	円城寺 一	東京芝浦電気	52	谷田 好通	東京大学	次点			4.1		
19	小笠原光信	関西大学	53	辻 高弘	高効率ガスタービン技術研究組合	1	荒木	巍	石川島村	■ 磨 重 工 業	ŧ
20	近江 敏明	小松ハウメット	54	辻 茂	東京工業大学	2	鈴木町	一次	荏 原	製作所	ŕ
21	樗木 康夫	<u>日立製作所</u>	55.	豊倉富太郎	横浜国立大学	3	大東 俊	2 -	摂 南	大 学	ŧ.
22	大槻 幸雄	川崎重工業	56	鳥崎 忠雄	航空宇宙技術研究所						
23	大橋智	三井造船	57	中川 良一	日産自動車	投	票 総 数		560 票	-	
24	大橋 秀雄	東京大学	58	灘波 昌伸	九州大学			評議	義員監	事	
25	岡村 健二	三菱重工業	59	西尾 健二	航空宇宙技術研究所		有効数	5 5	54 5	36	
26	表 義則	三井造船	60	西山 哲夫	東北大学		無効数	L	6	14	
27	<u>筧 陽</u>	防衛庁技術研究本部	61	葉山 真治	東京大学		白 票	· ·	0	10	
28	梶山 泰男	原子力工学試験センター	62	八田 桂三	航空事故調査委員会						
29	甲藤 好郎	東京大学	63	浜中 全美	石川島播磨重工業						
30	河田 修	富士電機製造	64	平田 賢	東京大学						

例年6月号は前期の編集委員会が責任を負うこ とになっていますから、本号は実質的に今期編集 の第1号であります。そこで今期の会誌編集方針 を御報告しておきます。

こ、数年の方針になっている(1)多数の手による 会誌すなわち誌面に多くの方が登場することと多 くの人の手によって記事を集めること,(2)特集号 の発行,(3)技術論文の充実ということを踏襲しま す。この方針にもとずき今期とくに心掛けようと していることに,ガスタービンの利用範囲の拡大 とそのためにユーザを重視することがあります。 この具体化としてユーザを中心とした座談会をひ らきそれを中心とした特集を予定しています。こ れ以外にも高温技術特集などを予定しています。

編集理事森 下輝夫

技術論文は当面,投稿後半年以内の掲載を心掛け ます。

ところで、財政上の制約から会誌頁数は平均60 頁におさえなければなりません。少い頁数で充実 した内容の会誌製作を心掛けるつもりですが、会 誌の良し悪しは会員の皆さんの御判断できまりま す。会員の御意見をいただくための具体策として 会誌モニタ制の導入を試みたいと思っております。 会員の皆さんの積極的な御意見をいただきたいと 思います。因みに、今月号の日英共同開発 R J 500 エンジンについての記事は、記念講演を聞か れた会員からの希望にもとずいて、割合打ち明け たお話を編集委員がお聞きし会誌としては初めて のインタビュ形式でまとめたものであります。

事務局だより

残暑だけで終わってしまったような短かい夏も過ぎ,今年もあと4ケ月となりました。 芸術の秋,読書の秋,学問の秋……(食欲の秋)で当学会もいろいろと行事を企画しておりますので, 会告のページはくれぐれもお見逃しなきようお願いいたします。

事務局には、毎日たくさんの郵便物と共に、いろいろな方から電話がかかります。その中でよく「正 会員の名義変更を」という方があるのですが、正会員というのはあくまで個人の資格で、その方自身が 理事会の承認を得てガスタービン学会の会員になられたのです。ですから名義変更ということはあり得 ないわけで、もし職務の都合で他の方になさりたい場合は、その方に新しく入会していただくことにな ってしまいます。どうぞ、その点をご了解いただきたいと思います。名義変更で思い出しましたが、住 所変更など連絡先が変わった時は、すみやかにご連絡下さい。転居先不明などで郵便物が戻って来て処 理に困まっております。

早いもので来年の国際会議まで,ほぼあと一年。下準備のため事務局もなんとなくだんだんそのムードになりはじめました。当学会が幹事学会となっていますので,世界中いろいろな国から,多くの方々に参加していただきGTSJの名を世界にとどろかせたい(?)と思います。論文の集まり工合も予想以上に良いようですし,是非皆様,お誘い合わせの上,ご参加下さい。

(A)

例年6月号は前期の編集委員会が責任を負うこ とになっていますから、本号は実質的に今期編集 の第1号であります。そこで今期の会誌編集方針 を御報告しておきます。

こ、数年の方針になっている(1)多数の手による 会誌すなわち誌面に多くの方が登場することと多 くの人の手によって記事を集めること,(2)特集号 の発行,(3)技術論文の充実ということを踏襲しま す。この方針にもとずき今期とくに心掛けようと していることに,ガスタービンの利用範囲の拡大 とそのためにユーザを重視することがあります。 この具体化としてユーザを中心とした座談会をひ らきそれを中心とした特集を予定しています。こ れ以外にも高温技術特集などを予定しています。

編集理事森 下輝夫

技術論文は当面,投稿後半年以内の掲載を心掛け ます。

ところで、財政上の制約から会誌頁数は平均60 頁におさえなければなりません。少い頁数で充実 した内容の会誌製作を心掛けるつもりですが、会 誌の良し悪しは会員の皆さんの御判断できまりま す。会員の御意見をいただくための具体策として 会誌モニタ制の導入を試みたいと思っております。 会員の皆さんの積極的な御意見をいただきたいと 思います。因みに、今月号の日英共同開発 R J 500 エンジンについての記事は、記念講演を聞か れた会員からの希望にもとずいて、割合打ち明け たお話を編集委員がお聞きし会誌としては初めて のインタビュ形式でまとめたものであります。

事務局だより

残暑だけで終わってしまったような短かい夏も過ぎ,今年もあと4ケ月となりました。 芸術の秋,読書の秋,学問の秋……(食欲の秋)で当学会もいろいろと行事を企画しておりますので, 会告のページはくれぐれもお見逃しなきようお願いいたします。

事務局には、毎日たくさんの郵便物と共に、いろいろな方から電話がかかります。その中でよく「正 会員の名義変更を」という方があるのですが、正会員というのはあくまで個人の資格で、その方自身が 理事会の承認を得てガスタービン学会の会員になられたのです。ですから名義変更ということはあり得 ないわけで、もし職務の都合で他の方になさりたい場合は、その方に新しく入会していただくことにな ってしまいます。どうぞ、その点をご了解いただきたいと思います。名義変更で思い出しましたが、住 所変更など連絡先が変わった時は、すみやかにご連絡下さい。転居先不明などで郵便物が戻って来て処 理に困まっております。

早いもので来年の国際会議まで,ほぼあと一年。下準備のため事務局もなんとなくだんだんそのムードになりはじめました。当学会が幹事学会となっていますので,世界中いろいろな国から,多くの方々に参加していただきGTSJの名を世界にとどろかせたい(?)と思います。論文の集まり工合も予想以上に良いようですし,是非皆様,お誘い合わせの上,ご参加下さい。

(A)

シンポジウムのお知らせ

57年度シンポジウムを下記の通り開催致しますので奮ってご参加下さい。

記

1)	題	目	:	ガスタービンの制御とシミュレーション講演およびデモンス	ŀ	レ	- シ	/ョン		
2)	B	時	:	昭和57年11月19日(金) 13:30~16:50						
3)	会	場	:	航空宇宙技術研究所 原動機部 6号館						
				調布市深大寺町1880 TEL.0422-47-	5	9	1 1			
4)	プ	ログラ-	ム及	び講師						
	委員	長挨掛	罗		1	3	: 3	$0 \sim 1$	3 :	35
	i)	リアル	タイ	ムシミュレーション	1	3	: 3	$5\sim 1$	4 :	15
		講師	帀	杉 山 七 契氏(航技研)						
	ii)	リヒー	トカ	「スタービンの制御	1	4	: 1	$5\sim 1$	4:	55
		講師	币	松本 吉 弘氏 桑田 龍 一氏(東芝電技研)					
		(休]	息)		1	4	: 5	$5 \sim 1$	5:	10
i	iii)	FJR	ファ	ンジェットエンジンへのアプリケーション	1	5	: 1	$0\sim 1$	5 :	50
		講師	帀	岸 本 峯 生氏 (石川島播磨重工業㈱)						
i	V)	デモン	スト	レーションおよび質疑応答	1	5	: 5	$0\sim 1$	6:	50
5)	参	加要領	(r	切 11月12日)						
	i)	聴講会	闄	: 3,000円 当日,受付にてお払い込み下さい。						
				N.1						

ii)申し込み方法 ハガキに所属,氏名,連絡先を明記の上,11月12日迄に事務局宛申し込んで下さい。

§ 第10回ガスタービンセミナー開催案内 §

- 1. 日 時:昭和58年1月20日(木),21日(金)
- 2. 場 所: 日比谷三井ビル8階ホール(千代田区有楽町1-1-2)
- 3. 演題及び講師(予定):

1) 軸流圧縮機技術の現状と将来	高田	1 浩	之 氏	(東大)
2) 冷却タービン技術の現状と将来	高易	〔 北	雄 氏	(航技研)
3) 大型ガスタービン技術の現状と将来	福江		郎氏	(三菱重工)
4) 低カロリーガス燃焼技術の現状と将来	高オ	くま	二 氏	(三井造船)
5) 小型ガスタービン技術の現状と将来	星虹	予 昭	文 氏	(川崎重工)
6) ターボチャージャ技術の最近の動向	大系	き 武	雄 氏	(I H I)
7) 制御技術の現状と将来	安ち	ŧ.	元 氏	(東芝)
8) 最近の航空用材料と加工における問題点	西	良	正 氏	(I H I)
☆ 1月20日 1)~4) 1月21日 5)~8)				

§ 第11回ガスタービン定期講演会開催案内 §

第11回ガスタービン定期講演会を下記のとおり開催いたします。

なお, 講演論文募集要項等詳細は12月号に掲載いたします。多数の会員諸氏の御投稿をお待ちして おります。

開催日:昭和58年6月3日(金)

場 所:機械振興会館(東京•芝)

シンポジウムのお知らせ

57年度シンポジウムを下記の通り開催致しますので奮ってご参加下さい。

記

1)	題	目	:	ガスタービンの制御とシミュレーション講演およびデモンス	ŀ	レ	- シ	/ョン		
2)	B	時	:	昭和57年11月19日(金) 13:30~16:50						
3)	会	場	:	航空宇宙技術研究所 原動機部 6号館						
				調布市深大寺町1880 TEL.0422-47-	5	9	1 1			
4)	プ	ログラ-	ム及	び講師						
	委員	長挨掛	罗		1	3	: 3	$0 \sim 1$	3 :	35
	i)	リアル	タイ	ムシミュレーション	1	3	: 3	$5\sim 1$	4 :	15
		講師	帀	杉 山 七 契氏(航技研)						
	ii)	リヒー	トカ	「スタービンの制御	1	4	: 1	$5\sim 1$	4:	55
		講師	币	松本 吉 弘氏 桑田 龍 一氏(東芝電技研)					
		(休]	息)		1	4	: 5	$5 \sim 1$	5:	10
i	iii)	FJR	ファ	ンジェットエンジンへのアプリケーション	1	5	: 1	$0\sim 1$	5 :	50
		講師	帀	岸 本 峯 生氏 (石川島播磨重工業㈱)						
i	V)	デモン	スト	レーションおよび質疑応答	1	5	: 5	$0\sim 1$	6:	50
5)	参	加要領	(r	切 11月12日)						
	i)	聴講会	闄	: 3,000円 当日,受付にてお払い込み下さい。						
				N.1						

ii)申し込み方法 ハガキに所属,氏名,連絡先を明記の上,11月12日迄に事務局宛申し込んで下さい。

§ 第10回ガスタービンセミナー開催案内 §

- 1. 日 時:昭和58年1月20日(木),21日(金)
- 2. 場 所: 日比谷三井ビル8階ホール(千代田区有楽町1-1-2)
- 3. 演題及び講師(予定):

1) 軸流圧縮機技術の現状と将来	高田	1 浩	之 氏	(東大)
2) 冷却タービン技術の現状と将来	高易	〔 北	雄 氏	(航技研)
3) 大型ガスタービン技術の現状と将来	福江		郎氏	(三菱重工)
4) 低カロリーガス燃焼技術の現状と将来	高オ	くま	二 氏	(三井造船)
5) 小型ガスタービン技術の現状と将来	星虹	予 昭	文 氏	(川崎重工)
6) ターボチャージャ技術の最近の動向	大系	き 武	雄 氏	(I H I)
7) 制御技術の現状と将来	安ち	ŧ.	元 氏	(東芝)
8) 最近の航空用材料と加工における問題点	西	良	正 氏	(I H I)
☆ 1月20日 1)~4) 1月21日 5)~8)				

§ 第11回ガスタービン定期講演会開催案内 §

第11回ガスタービン定期講演会を下記のとおり開催いたします。

なお, 講演論文募集要項等詳細は12月号に掲載いたします。多数の会員諸氏の御投稿をお待ちして おります。

開催日:昭和58年6月3日(金)

場 所:機械振興会館(東京•芝)

シンポジウムのお知らせ

57年度シンポジウムを下記の通り開催致しますので奮ってご参加下さい。

記

1)	題	目	:	ガスタービンの制御とシミュレーション講演およびデモンス	ŀ	レ	- シ	/ョン		
2)	B	時	:	昭和57年11月19日(金) 13:30~16:50						
3)	会	場	:	航空宇宙技術研究所 原動機部 6号館						
				調布市深大寺町1880 TEL.0422-47-	5	9	1 1			
4)	プ	ログラ-	ム及	び講師						
	委員	長挨掛	罗		1	3	: 3	$0 \sim 1$	3 :	35
	i)	リアル	タイ	ムシミュレーション	1	3	: 3	$5\sim 1$	4 :	15
		講師	帀	杉 山 七 契氏(航技研)						
	ii)	リヒー	トカ	「スタービンの制御	1	4	: 1	$5\sim 1$	4:	55
		講師	币	松本 吉 弘氏 桑田 龍 一氏(東芝電技研)					
		(休]	息)		1	4	: 5	$5 \sim 1$	5:	10
i	iii)	FJR	ファ	ンジェットエンジンへのアプリケーション	1	5	: 1	$0\sim 1$	5:	50
		講師	帀	岸 本 峯 生氏 (石川島播磨重工業㈱)						
i	V)	デモン	スト	レーションおよび質疑応答	1	5	: 5	$0\sim 1$	6:	50
5)	参	加要領	(r	切 11月12日)						
	i)	聴講会	闄	: 3,000円 当日,受付にてお払い込み下さい。						
				N.1						

ii)申し込み方法 ハガキに所属,氏名,連絡先を明記の上,11月12日迄に事務局宛申し込んで下さい。

§ 第10回ガスタービンセミナー開催案内 §

- 1. 日 時:昭和58年1月20日(木),21日(金)
- 2. 場 所: 日比谷三井ビル8階ホール(千代田区有楽町1-1-2)
- 3. 演題及び講師(予定):

1) 軸流圧縮機技術の現状と将来	高日	田浩	之 氏	(東大)
2) 冷却タービン技術の現状と将来	高厦	亰 北	雄 氏	(航技研)
3) 大型ガスタービン技術の現状と将来	福ご	т —	郎氏	(三菱重工)
4) 低カロリーガス燃焼技術の現状と将来	高フ	木 圭	二 氏	(三井造船)
5) 小型ガスタービン技術の現状と将来	星	野 昭	文 氏	(川崎重工)
6) ターボチャージャ技術の最近の動向	大	桑 武	雄 氏	(I H I)
7) 制御技術の現状と将来	安美		元 氏	(東芝)
8) 最近の航空用材料と加工における問題点	西	良	正 氏	(I H I)
☆ 1月20日 1)~4) 1月21日 5)~8)				

§ 第11回ガスタービン定期講演会開催案内 §

第11回ガスタービン定期講演会を下記のとおり開催いたします。

なお, 講演論文募集要項等詳細は12月号に掲載いたします。多数の会員諸氏の御投稿をお待ちして おります。

開催日:昭和58年6月3日(金)

場 所:機械振興会館(東京•芝)

1983年国際ガスタービン会議東京大会 1983 Tokyo International Gas Turbine Congress

主催:日本ガスタービン学会(幹事学会), 日本機械学会,ASME,IMechE,VDI

論 文 募 集 の お 知 ら せ

明年秋東京におきまして,標記国際ガスタービン会議を開催することになりました。過去二度にわたり, わが国で開催された国際ガスタービン会議はいずれも多大の成果を収めました。

現在,エネルギ対策上からもガスタービン,ターボ過給機への関心は世界的にますます高まっており, 当該分野の関係者がわが国に集り,最新の研究および技術開発の成果を発表し,対議することは誠に時宜 をえているものと思われます。

現在、同組織委員会では、下記の要領で論文を募集しておりますので会員の皆様にお知らせいたします。

記

開催日: 1983年10月23日(日)~28日(金)

会場:東京池袋,サンシャインシティプリンスホテル

論 文 内 容 : ガスタービン及びターボ過給機に関する基礎から応用までを含めた学術ならびに技術論文, 例えば、

Aerodynamics in Turbomachinery

Fuel, Combustion and Heat Transfer

Strength, Vibration and Dynamics

Materials and Manufacturing Technology

Control and Instrumentation

Components and Auxiliaries

Performance and Reliability

Development and Operational Experience

Environmental Problems

New Applications of Gas Turbines

などに関する論文全般を対象としますが、とくに下記関係の論文を歓迎します。

Utilization of Alternative Fuels

High Temperature Turbine Technology

Combined Cycle Power Generation

Turbochargers for Automotive Use

なお,論文は未発表のものを原則としますが,一部既発表のものを含んでも総合的にまと めたものは差し仕えありません。

募集要旨: (1) 本会(GTSJ)会員が本会を経由して提出,発表された論文は,正規の手続きをへて本会学会誌に和文論文として投稿できます。

なお,日本機械学会(JSME),米国機械学会(ASME),西独工学会(VDI) 経由の論文の発表後の取扱いについては各々の学会の規定に従いますが,詳細は当該学 会にお問合せ下さい。また,その他については末尾の組織委員会にお問合せ下さい。

(2) 採否:論文発表の採否は本大会組織委員会(委員長:水町長生君)にご一任願います。

- (3) 講演時間:一論文につき, 討論を含めて30分の予定です。
- (4) 論文は英文とし、口頭発表および討論の際には日・英両国語の何れをも使用できます (日・英同時通訳を予定)。

- 44 ---

- (5) 本論文に先立ち,論文概要(和文で図表を含め4,000字程度)を提出していただき, この審査により第一段階の採否を行わせていただきます。
- (6) 講演申込者は講演者とし、1人1題目に限ります。

申込方法: 論文発表の申込みは下記のGTSJ, JSME, ASME, VDIの4ルートの何れを通じても行なうことができます。

なお、その他については、組織委員会にお問合せ下さい。

GTSJ, JSME各経由で論文投稿を希望される方は,下記期日までに所定用紙(申出 により組織委員会にて配布)により各々に講演申込みをして下さい。

- GTSJ経由
 - 申 込 先 : 下記組織委員会

申込資格 : とくに制限はありません。

JSME 経由

申 込 先 : 日本機械学会

〒151 東京都渋谷区代々木2-4-9 三信北星ビル内

TEL. (03) 379-6781

申込資格 : JSME会員

なお, ASME, VDI経由についての詳細は各々下記にお問合せ下さい。 ASME:

Mr. Roy Kamo

Executive Director, Advanced Engines & Systems,

- Cummins Engine Company, Inc.,
- Columbus, IN 47201, U.S.A.

VDI:

- Dr.-Ing. F. Morell
- Verein Deutscher Ingenieure

VDI-Gesellschaft Energietechnik

Postfach 1139

D-4000 Dusseldorf 1

Bundesrepublik Deutschland

申込締切日 :昭和57年9月30日(木)^{*}(GTSJ, JSME経由とも)

論 文 投稿: (1) 論文概要*

提出締切日 : 昭和57年11月30日(火)

- 採否通知予定 : 昭和58年1月下旬
- 提出先:下記組織委員会

* 組織委員会で作成した論文概要執筆要領に従い,所定の原稿用紙を用いて下さい。

- (2) 本 論 文** (論文概要審査にて採用内定した後,提出していただきます。)
 - 提出締切日 : 昭和58年3月31日
 - 採否通知予定 : 昭和58年5月下旬
 - ** 所定の原稿用紙を用い、本論文執筆要領に従って作成して下さい。

提出先:1983年国際ガスタービン会議東京大会組織委員会

〒105 東京都港区虎の門4-1-21 葺手第2ビル内

㈱サンセイ・インターナショナル気付

TEL. (03)433-1560

その他、本件に関する不明な点については上記委員会宛お問合せ下さい。

* 学会会誌の発行が遅れましたので、上記締切日に間合わない場合は至急組織委員会にご連絡下さい。

学会誌編集規定

- 原稿は依頼原稿と会員の自由投稿による原稿の2種類とする。依頼原稿とは、 会よりあるテーマについて特定の方に執筆を依頼するもので、自由投稿による原稿とは会員から自由に投稿された原稿である。
- 原稿の内容は、ガスタービンに関連の ある論説、解説、論文、速報(研究速報、 技術速報)、寄書、随筆、ニュース、新 製品の紹介および書評などとする。
- 3. 原稿は都合により修正を依頼する場合 がある。
- 4. 原稿用紙は横書き440字詰のものを 使用する。

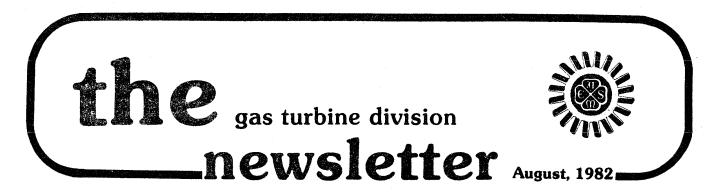
自由投

- 1. 投稿原稿の採否は編集委員会で決定す る。
- 2. 原稿料は支払わない。
- 3. 投稿は随時とする。たゞし学会誌への

技術論文投

- 投稿原稿は次の各項に該当すること。
 1)投稿論文は著者の原著で,ガスター
 - ビン技術に関するものであること。
 - 2) 投稿論文は日本文に限る。
 - 3)投稿論文は本学会以外の刊行物に未 投稿で、かつ本学会主催の講演会(本 学会との共催講演会を含む)以外で未 発表のものに限る。

5. 学会誌は刷上り1頁約1900字であっ て,1編について,それぞれ次の通り頁 数を制限する。


 論説4~5頁,解説および論文6~8頁, 速報および寄書3~4頁,随筆2~3頁,
 ニュース1頁以内,新製品紹介1頁以内,
 書評1頁以内

- 6. 原稿は用済後執筆者に返却する。
- 7. 依頼原稿には規定の原稿料を支払う。
- 8. 原稿は下記の事務局宛送付する。
 - 〒160 東京都新宿区西新宿 7-5-13, 第3工新ビル (Tel. 03-365-0095)
- 稿規定
 - 掲載は投稿後6~9ケ月の予定。
 - 4. 原稿執筆要領については事務局に問合 せること。

て投稿規定

- 2. 投稿原稿の規定頁数は原則として8頁 以内とする。但し1頁につき10,000円 の著者負担で4頁以内の増頁をすること ができる。
- 投稿原稿は正1部,副2部を提出する こと。
- 投稿原稿は原稿執筆要領に従うこと。
 尚,投稿論文の採否は本学会に一任願います。

日本ガスタービン学会誌 第10巻 第38号 昭和57年9月10日 森 下 輝 集者 夫 編 今 井 兼一郎 行者 発 (社)日本ガスタービン学会 **〒160**東京都新宿区西新宿7-5-13 第3工新ビル T E L (03) 365 - 0095 振替 東京179578 印刷所 日青工業株式会社 東京都港区西新橋2の5の10 TEL (03)501-5151

K.A. Teumer: Reflections of the Outgoing Chairman

This past year (Gas Turbine Division Fiscal Year ends June 30) can be termed as another success for the Gas Turbine Division. Technically and financially we showed good strength and considerable growth. According to plan, we

discontinued sponsoring sessions at the ASME Winter Annual Meeting because there was not a sufficient number of sessions available to the Division to attract a good gas turbine audience and to satisfy the Division's requirements. Instead, Gas Turbine Division's participation has been increased for the Joint Power Generation Conference. The Division has been allotted 10 sessions for the next annual J.P.G.C., October 17-21, 1982 in Denver, Colorado. This will be very worthwhile for gas turbine engineers.

The highlight of the year, and the event to which the attention of the Technical Committees, the Executive Committee and the staff of the International Gas Turbine Center in Atlanta is constantly focused, is the annual International Gas Turbine Conference and Exhibit. As previously reported, this event in London last April broke records in all of the categories: technical papers, attendance and exhibit sales income. Your Executive Committee is aware that the biggest single factor in the success of the Conference is the work of the Technical Committees under the guidance of their chairmen and the session organizers. They encourage and implement the technical paper contributions.

The publicity program for the Conference by the Director of Operations from the Atlanta office was most extensive and productive in creating the large attendance of over 5,000 persons this year.

During the past year, the Basic Gas Turbine Home Study Course progressed to near completion. Sponsored and underwritten by the Gas Turbine Division and developed by Arizona State University, it is in final preparation stages and due for initial release this fall from the International Gas Turbine Center in Atlanta.

My gratitude goes to the Executive Committee for their continual good cooperation throughout the year. It made our various business meetings productive and rewarding as we dealt with a heavy load of Division business. I am sure that group will continue in this manner on into the future.

Profile: N.R. Dibelius, Chairman 1982 - 83

Norman R. Dibelius has held a variety of engineering and management positions over the past 29 years in General Electric's Gas Turbine Division and the Corporate Research and Development Center, Schenectady,

N.Y. With the exception of a few years spent in medical engineering research, most of that time was devoted to the design and development of hot gas path parts for gas turbines. His experience includes: the residual fuel burning gas turbine locomotives used on the Union Pacific Railroad; aircraft gas turbine combustion systems; and today's advanced gas turbine concepts for future applications. Dibelius has been awarded over a dozen U.S. patents and is the author of over 25 technical papers. He has also received other honors and awards, one of which was for the development of an artificial lung machine eventually used clinically for open heart surgery.

... continued next page

PLAN NOW TO PARTICIPATE

- 17 Technical Committees planning approximately 80 Technical Sessions. "Worldwide participation, coupled with increased emphasis on the highest level of technical papers and presentations, assures this Conference will continue to be the single leading forum for gas turbine technology." Thomas C. Heard, General Electric Co., Schenectady, N.Y., Program Chairman.
- With seven months to go, available exhibition space is already over 87% reserved. Although movement of exhibitors in and out will continue until the show opens, a complete sellout is anticipated.

4250 Perimeter Park South, #108 Atlanta, Georgia 30341 USA Telephone: (404) 451-1905

28th INTERNATIONAL GAS TURBINE CONFERENCE AND EXHIBIT Civic Plaza Phoenix, Arizona March 27-31, 1983

continued from Page 1 . . .

Dibelius is a past Chairman of the Combustion and Fuels Technical Committee and has served on the ASME Gas Turbine Division's Executive Committee since 1978. He is also a delegate to the American National Standards Institute (ANSI) and a United States delegate to the Congress International des Machines Combustion (CIMAC).

Thru The Years . . .

Tom Sawyer Publisher Emeritus

It is remarkable how many changes are being made today in the automobile piston engine. Over 30 years ago many people thought the gas turbine auto

would be in mass production by today, but now the auto industry does not expect this to happen until after the year 2000.

The current emphasis is on development of ceramic parts for the turbine so that temperature in the turbine can be much higher. This should make turbine efficiency competitive with the diesel engine.

Why not consider another approach also? One eight cylinder Cadillac I was riding in only operated on four cylinders unless the driver pushed the accelerator down to require more horsepower. Possibly we should do the same thing with the gas turbine. Use a twin turbine and run the car on only one turbine when cruising along at light load. When more power is needed the driver just steps harder on the accelerator to get power from both turbines. This system not only gives better efficiency; but, if one turbine should fail to operate, the other turbine can keep the vehicle moving. Practically all airplanes built today have at least two turbines.

Back in 1954 the Army purchased a small 30 ton locomotive. I used the drawings of that 30 ton diesel locomotive and changed them to show how to eliminate the diesel and replace it with two Boeing 150 HP gas turbines. We used mechanical drive for the twin turbines similar to that used by the diesel. I picked two turbines then, so that if one stopped operating, the other could still move the locomotive and bring it in for maintenance.

I feel this country is doing a fine job of concentrating on advanced gas turbines using ceramic parts. However, there are others outside of this country who are also doing a good job - perhaps better. Work on gas turbines continues in Japan at automobile companies, turbine manufacturers and several ceramic companies. Some of the ceramic companies are also supplying test parts for U.S. turbine programs, Also, a company in Sweden announced successful operation of a ceramic turbine on the road in an automobile.

A.L. Steinlen, Program Chairman: 1982 Joint Power Generation Conference

The 1982 Joint Power Generation Conference (JPGC) will be held October 17 - 21, 1982 at the Denver Hilton Hotel, Denver, Colorado. This marks the first year of full participation by the ASME Gas Turbine Division reflecting its shift in emphasis from the ASME Winter Annual Meeting. In the past, only the GTD Electric Utilities Committee participated.

Four of the Gas Turbine Division's Committees are to participate this year in 10 sessions covering the following topics:

- Electric Utility Committee (3 sessions, 13 papers) covering: Turbine Tolerance to Low Grade Fuel in Electric Utility Operation; New System Configurations for Electric Power Plants; and Gas Turbines and Combined Cycles.
- Turbomachinery Committee (joint with Turbines and Related Auxiliary Committee of the ASME Power Division) (1 session, 5 papers) covering: Power Plant Thermal Performance.
- Coal Utilization Committee (3 sessions, 13 papers) covering: Coal Base Fuels Deposition and Corrosion; and Gas Turbine R & D (two sessions).
- Combustion and Fuels Committee (3 sessions) covering: Advanced Cogeneration Technology; Catalytic Combustion; and Control of Engine Emissions.

National Seminar On Closed Cycle Gas Turbines

The United States Department of Energy is sponsoring a one day National Seminar on Closed Cycle Gas Turbines (CCGT) in Los Angeles on October 19, 1982. The purpose of the Seminar is to acquaint interested people and organizations with the CCGT System, its benefits and current technological status. It will provide a forum for informal discussion of the key advantages and potential applications for closed cycle gas turbine systems.

For more information, contact Carey Kinney at the U.S. Department of Energy (301/353-5463) or David E. Wright, Power Conversion Systems, Rocketdyne Division, Rockwell International, 6633 Canoga Avenue, Canoga Park, California 91304 (213/884-2434).

GTD Closed Cycles Committee: LATE CALL FOR PAPERS

The Gas Turbine Division's Closed Cycles Committee is planning a technical session for the ASME International Gas Turbine Conference in Phoenix, Arizona, March 27 - 31, 1983: Closed Cycle Turbomachinery Control and Components.

Papers are solicited in all areas of control and components of closed cycle turbomachinery. Technical problems, performance evaluation, and operation experiences of closed cycle turbomachinery operating under varying loading and ambient conditions are appropriate topics as are control simulation and response behavior of the associated components. Papers on novel developments of turbomachinery components and experiences relevant to closed cycle applications are welcome, in particular experimental investigations.

Please contact as soon as possible: Prof. W. Hilary Lee, Department of Mechanical Engineering, Stevens Institute of Technology, Hoboken, N.J. 07030, (210/420-5582).

Order Information: GTD Lapel Buttons and Records

To order an ASME Gas Turbine Division turbine wheel (¾-inch diameter) lapel button, send name, address and type of ASME membership along with \$25.00 check (no charge to committee chairmen, vice-chairmen and exhibitors) to R. Tom Sawyer, Box 188, Ho-Ho-Kus, NJ, 07423. Copies of the 45 RPM record "Onward and Upward with Gas Turbines" are also available for \$3.00 each.

New Gas Turbine Books

Sawyer's Turbomachinery Maintenance Handbook. Ed. by John W. Sawyer, Fellow ASME, and Kurt Hallberg, 1980, Turbomachinery International, 22 South Smith St., Norwalk, Conn. 06855. 976 pp. in 3 bound vols. Vol. 1, Gas Turbines/Turbocompressors, ISBN 0-937506-01-x, \$42.50, Vol. II, Steam Turbines/Power Recovery Turbines, 0-937506-001-1, \$42.50; Vol. III, Support Services and Equipment, 0-937506-02-8, \$42.50.

This three-volume handbook deals with the maintenance of gas turbines, turbocompressors, steam turbines, power recovery turbines, clutches, and reduction gears. The volumes, written by 49 authors representing companies in seven countries, present practices, techniques, records, case histories, problems, and solutions from both operators and manufacturers.

Editor's Note: Readers are asked to send details of other new gas turbine books to International Gas Turbine Center, Atlanta.

A.A. Mikolajczak Elected To ASME Fellow Grade

A.A. (Alek) Mikolajczak, Vice-Chairman of ASME Gas Turbine Division's Executive Committee, was recently elected to ASME Fellow grade.

Mikolajczak, Director of Technical Planning, United Technologies Corp., Hartford, Conn., has supervised research in the areas of fluid dynamics and aeroelasticity of fans, compressors, and turbines, and in acoustics. He holds patents for seal construction and supersonic fan noise control.

Mikolajczak received his B.S., M.S., and Ph.D. (1964) from Cambridge Univ., England. He briefly taught at MIT, and joined the Pratt & Whitney Aircraft Div. of United Technologies in 1966. His initial assignment was the development of advanced fan and compressor technology. He then became involved in aeroelasticity and acoustics research. Mikolajczak has held senior staff positions in technical planning since 1977.

In the Gas Turbine Division, Mikolajczak has been Chairman of the Turbomachinery Committee. He was also Chairman of Conferences on the Executive Committee, and Technical Program Chairman for the 1978 Conference.

Introducing: Dr. Serge Gratch, President - ASME

Serge Gratch, Director of the Chemical Science Laboratory of the Ford Motor Company, Dearborn, Mich., took office as president of The American Society of Mechanical Engineers on June 16, 1982. He will serve a one-year term.

With Ford Motor Company since 1961 in various capacities, he helped to organize the Company's alternative fuels program. Before joining Ford he was a research scientist for Rohm & Haas Co. and an associate professor of mechanical engineering at Northwestern University.

Gratch received his bachelor's degree in chemical engineering, and his master's and doctorate in mechanical engineering from the University of Pennsylvania in 1943, 1945 and 1950 respectively. A resident of Birmingham, Mich., he is a registered professional engineer in Michigan.

Exhibit Advisory Committee Meets in Atlanta

As part of the ASME Gas Turbine Division's continuing efforts to improve the International Gas Turbine Conference and Exhibit, an Exhibit Advisory Committee consisting of representatives of exhibiting companies was formed several years ago. The Committee serves in an advisory capacity to the Gas Turbine Division's Executive Committee.

Committee representatives recently met in Atlanta to discuss topics of importance to exhibitors and Gas Turbine Division. Members attending included the following: Susan Brauer, Solar Turbines Incorporated; S. J. Cognetti, General Electric Co.; Mark Harnden, Cooper Rolls, Inc.; C.J. Lang, John Brown Engineering Limited; Paul Lenk, Ace Industries, Incorporated; Dale Moyer, The Garrett Corporation; and Candido Veiga, Westinghouse Electric Corporation.

The International Gas Turbine Center in Atlanta Has Moved

Because of expanded services and operations, it has become necessary to enlarge and relocate the offices of the ASME, Gas Turbine Division's International Gas Turbine Center in Atlanta. Effective immediately, here are the new address and telephone number.

International Gas Turbine Center Gas Turbine Division, ASME 4250 Perimeter Park South, #108 Atlanta, Georgia 30341 USA Telephone: (404) 451-1905

Amsterdam Selected as Site for 1984 ASME International Gas Turbine Conference and Exhibit

Although negotiation of the final contract is still in progress, Gas Turbine Division's Executive Committee has selected Amsterdam as the site of the 29th ASME International Gas Turbine Conference and Exhibit. The Conference and Exhibit will be held at the International Exhibition and Congress Centre RAI, June 4 - 7, 1984.

1983 CIMAC International Congress on Combustion Engines

The 1983 CIMAC Congress will be held in Paris at the Palais de Congres, June 13 - 17, 1983.

The inaugural session will take place on the morning of Monday, June 13, and will feature a lecture given by Mr. Balaceanu, General Director of the French Petroleum Institute.

Application forms may be requested from: PMV - CIMAC 83, B.P. 246, 92205 NEUILLY SUR SEINE (FRANCE), Telex: PM 610430F.

FUTURE ASME GAS TURBINE DIVISION CONFERENCES and EXHIBITS1983 MARCH 27-311984 JUNE 3-71985 MARCH 17-21Civic PlazaInternational Exhibition and
Phoenix, ArizonaAlbert Thomas Convention
Congress Centre RAI
Amsterdam, NetherlandsCenter
Houston, Texas

CALL FOR REPORTS 1983 GAS TURBINE TECHNOLOGY REPORT

The INTERNATIONAL GAS TURBINE CENTER will soon be editing the ASME Gas Turbine Division's Annual Gas Turbine Technology Report. Companies and organizations involved in gas turbine technology are invited to submit a report on activities and accomplishments during the past year. The reports are to be of an engineering nature, and significant material in the following areas is encouraged: research and development; operating experience summary; new installations of significance; problems encountered and solutions; test results and new designs. The Annual Technology Report is widely distributed; therefore, any material submitted must be unclassified and non-proprietary. Further, when the material is submitted, the ASME Gas Turbine Divison accepts it with the understanding that it is open for publication with no restrictions.

The format of the report submitted should be as follows:

- (1) List at the top of the first page the company or organization and the author's name and address. The company name should not be used throughout the text but referred to as "the company".
- (2) Length must not exceed 600 words.
- (3) No illustrations, tables or photographs are permitted.

The information must be received in the INTERNATIONAL GAS TURBINE CENTER by no later than November 12, 1982 in order to be included in the Annual Report.

For further information or assistance, please contact the INTERNATIONAL GAS TURBINE CENTER in Atlanta, Georgia.

International Gas Turbine Center 4250 Perimeter Park South, #108 Atlanta, Georgia 30341 USA Telephone: (404) 451-1905

> GAS TURBINE DIVISION The American Society of Mechanical Engineers EXECUTIVE COMMITTEE 1982-83

> > OPERATIONS

CHAIRMAN OF CONFERENCES GEORGE K. SEROVY Mechanical Engineering Iowa State University Amee, IA 50011 515-294-2023/1423

March 27-31, 1983

OPERATIONS Turbine Center

ADMINISTRATIVE ASSISTANT SUE COLLINS 404-451-1905

Atianta, GA 30

STAFF ASSISTANT DONNA HUNERWADEL 404-451-1905

EXHIBIT AND

TREASURER R. TOM SAWYER P.O. Box 186 Ho-Ho-Kue, N.J. 07423 201-444-3719

SISTANT TREASURER utive Blvd. N.Y. 10523 1710

LARE EATOCK

10 Quebec J4K 4X9 -9411

MAN TEUMER Road olorado 80525

OMMITTEE &

NEWSLETTER EDITOR ROBERT A. HARMON 25 Schairen Drive Latham, N.Y. 12110 518-785-8651

the gas turbine division newsletter

Volume 23, Number 3, August, 1982 shed by the INTERNATIONAL GAS TURBINE CENTER, Gas Turbine Division, A.S.M.E., 4250 Perimeter Park South #108, Atlanta, Georgia 30341, USA, (404/451-1905). Donald D. Hill, Director of Operations: David H. Lindsay, Manager. Exhibit and Information Services; Sue Collins, Administrative Assistant; Donna Hunerwadel, Staff Assistant.

Chairman:	Norman R. Didenwe
	General Electric Co.
	Schenectady, New York
Vice Chairman:	A.A. Mikolajczak
	United Technologies Corp
	Hartford, Connecticut
Editor:	Robert A. Harmon
	Consulting Engineer
	Latham, New York
Publisher Emeritus:	R. Tom Sawyer
	Ho-Ho-Kus, New Jersey
Publisher:	Donald D. Hill
	International Gas Turbine
	Center
	Atlanta, Georgia

INTERNATIONAL GAS TURBINE CENTER **Gas** Turbine Division The American Society of Mechanical Engineers 4250 Perimeter Park South, #108 Atlanta, Georgia 30341 USA

Address Correction Requested

ASME GAS TURBINE DIVISION のご好意により複写の許可を得ました。

Download service for the GTSJ member of ID , via 18.191.28.129, 2025/05/17.