特集:中低温熱回収タービン開発の現状

特集号「中低温熱回収タービン開発の現状」によせて

刑部真弘^{*1} OSAKABE Masahiro

卷頭

言

2011年3月11日の東日本大震災により多くの発電所が 被害にあい,深刻な放射性物質の放出や計画停電等が行 われ,改めてエネルギーの安全性や重要性が多くの方々 に認識された。一方,この40年で日本人の肉摂取量は4 倍,家庭の電気使用量は2倍と豊かになり,東京湾の海 水温度は2~3℃上昇した。今年の夏は,この海水温度 上昇の領域が温暖化のためか拡大し,小樽近海でジンベ イザメやマンボウがみられ,釧路の定置網でクロマグロ が捕獲されるようになってきた。しかし,この40年でガ スタービンの入り口温度は900℃も上昇し,これによっ て我が国の火力発電は世界最高効率となるなど,本学会 のエネルギー技術が豊かな文明を支えている。

東日本大震災後,今後のエネルギー政策・戦略を急転 換すべきだとの意見や要望も多いが,エネルギーをふん だんに用いる文明に組み込まれた我々現代人および社会 は、すぐには変われない。その結果,旧式のモデルにも とづいて政策や戦略が実行されることが多く,社会的な 不満となっている。特に原子力政策に関しては、事故を 起こした原発の汚染水問題が毎日のように報道され、国 民的な議論を巻き起こしている。いまだに多くの福島の 人々が帰宅できない現状は忘れてはいけないが、原発事 故のしっかりとした総括を行った上で、国としての戦略 を作成すべきである。

さて、世界の中の日本という視点でみると、日本のエ ネルギー自給率は18%(原子力を除くと4%)であるが、 ドイツを除く主要先進国は50%以上となっている。日本 と同じだと思っていたドイツも、再生可能エネルギー増 加等により自給率40%以上になっているようである。ま た、ドイツはいざとなれば自国の石炭のみで300年間エ ネルギーを自給可能ともいわれている。また、特にヨー ロッパ各国は電力グリッドで相互につながり、電力融通 することが可能であり、島国で孤立した我が国とは大い に異なる。これらのことは世の中に認識されていない。

その他にもエネルギーに関連して、一般の方々が誤解 していることも多い。例えば、講演会等を行うと、特に 主婦層の方々からもっと積極的に風力や太陽光等の導入 をして欲しいとのご意見を受ける。晴耕雨読という言葉 があるが、晴れたらエネルギーをいっぱい使って仕事を し、雨なら本でも読もうという生活には憧れる。しかし、 我々の生活は、すでに風任せ、おてんとうさま任せでは なくなっている。自然エネルギーの導入に賛成する人は

原稿受付 2013年9月24日

多いが,あの不安定な出力をどうするか,導入に当たっ て考えなければならない。電力系統に不安定な発電出力 が入ってくることによって,今まで高効率で発電してい た火力発電所の効率が急速に低下する可能性すらある。

例えば風力発電を積極的に導入しているスペインでは, 全電力に占める風力発電の割合が、2012年4月16日早朝 に60%を記録した。ところが、2011年5月21日には1.3% であった。この変動分は、フランスの原発を含めたヨー ロッパ全体の電力グリッドで吸収している。再生可能エ ネルギーを積極的に導入し、電力買い取り制度等に関し ては日本のお手本となっているドイツでも,変動出力で ある風力や太陽光発電を補てんするために、2013年まで に100万kW級の火力発電を10基,2023年までには20基 建設する計画がある。これらの施設の減価償却は容易で はなく補助金なくしては難しい。なお、日本がお手本に した太陽光全量買い取り制度はすでに破綻し、2012年度 から買い取り価格を順次下げ、最終的には発電容量5200 万kWで買い取りをやめるようである。5200万kWとい うと、大型原発52基分であるが、夜の出力は0になるこ とを忘れてはいけない。

このような不安定な再生可能エネルギーが多い中で, 安定的な出力をもつ未利用分野の発電が注目されてきて いる。バイオマス,ソーラー,工場排熱,海洋温度差, 地熱などの分野で,低沸点媒体等を用いた中低温熱回収 発電システムが開発され市場浸透が進行しつつある。

日本は世界有数の火山国であり地震が多いというデメ リットの反面,資源としての豊富な地熱を保有してお り,地熱発電は有力な国産のエネルギー供給方法として 注目を浴び続けている。しかしながら国立公園や温泉地 等との調整が困難を極めており,期待通りの発電量は得 られないままである。こういった課題を抱えている大規 模の地熱発電ではなく,常時得られる「掛け流し」の温 泉に着目し,70℃以上の高温泉から使用温度レベル(約 50℃)までの温度差でタービン発電を行う検討も始まっ ている。将来,温泉旅館1軒に1台このタービン発電機 が設置されれば,従来捨てていたお湯の熱で発電するこ とが可能となり,再生可能エネルギー活用の底上げに貢 献できると考えている。また,当然ではあるが,この技 術は船舶や工場等の低温廃熱の回収発電にも用いられる ことが期待される。

本特集では、これらの未利用熱を用いた発電に活用さ れることが期待される中低温熱回収タービンの開発及び 導入の現状等を紹介したい。

^{*1} 東京海洋大学大学院 海洋工学系 〒135-8533 江東区越中島2-1-6

論説◆解説

特集:中低温熱回収タービン開発の現状

中低温熱回収用二相タービンの開発

今井 兼久^{*1} IMAI Kanehisa 難波 浩一^{*2} NAMBA Kouichi Lance Hays^{*3}

キーワード:中低温熱回収,二相タービン, Variable Phase Turbine, Variable Phase Cycle

1. まえがき

三井造船は、70℃から250℃程度の中低温熱エネル ギーを利用した発電装置技術(VPC:Variable Phase Cycle)を米国Energent社(Santa Ana市)から導入し た。本報ではまずVPCの概要を述べ、導入した発電 端出力10kW級VPCパイロット設備を通して作動原理と 性能推定法の確認を実施した結果について報告する。次 に、機関出力7,000kW-10,000kWクラスの2ストローク 舶用主機関空気冷却器からの排熱を利用した発電端出力 200kW級VPCプロトタイプを開発し、実機レベルでの 適用性について確認した結果について報告する。

本研究開発は、一般財団法人日本海事協会との共同研 究体制により実施するとともに、日本海事協会の「業界 要望による共同研究スキーム」による支援を受けて実施 した。

2. 二相軸流タービン

図1に、Variable Phase Turbine(VPT)である二相 流軸流タービンの断面図を示す。加圧された液体あるい は液体と気体の混相流がノズルへ導かれる。ノズルで減 圧させると液相はフラッシュして気液二相流となる。ノ ズル内の圧力勾配に応じて気相が加速され、気相から液 相に運動量が伝達される。ノズルを出た気液二相流に よって衝動タービン動翼を回転させ軸動力が得られる。

2.1 二相流軸方向ノズル

VPTにおいて熱エネルギーを変換する二相流ノズル を図2に模式的に示す。流体のエンタルピは、ノズル内 の等エントロピ膨張の過程で二相流の運動エネルギーへ 変換される。ノズルのプロファイル形状は、膨張する気 相が液相を小さな液滴に分解するように最適な形状に設 計される。運動量は気相から液相へ伝達され、液滴が効 率的に加速される。液滴のスリップ損失を低減するため には液滴の微細化が有効である。また、液滴が壁面に衝 突付着することなく加速されるためには、流れが転向し

原稿受付 2013年9月24日

Fig. 2 Schematic of Two-Phase Nozzle Flow

ない軸方向ノズルが適している。

ノズル性能を推定する上でノズル内の液滴径を評価す ることが重要である。気相中を流れる液滴のスリップ速 度Vsは次式で表わされる。

$$V_s = V_v - V_1 \tag{1}$$

ここで、V_vおよびV_iはそれぞれ気相速度および液滴速 度である。ノズル内部で加速される二相流中の液滴が分 裂する条件として、最大液滴径D_{max}は次式のウェーバ数 Weを用いて算出される。

$$We = \rho_v D_{max} V_s^2 / 2 \sigma_1 \tag{2}$$

ここで, ρ_vおよび σ₁はそれぞれ気相密度および液滴の 表面張力である。最大液滴径を与えるWe数の限界値と してWe=6に設定される場合が多い。

液体と気体の二相流中の音速は非常に小さく,一般的 には25~50m/sである⁽¹⁾。したがって,衝撃波による損 失および流れの閉塞を防ぐために,ノズル形状は途中に スロートを有する先細末広な形状に設計する必要がある。

二相混合流を効率的に加速するノズルの設計法は NASAジェット推進研究所において研究された後、フ ラッシュを伴う二相流に対する設計コードをEnergent 社が完成させた。図3に同研究所で試験中の二相流ノズ

^{*1} 三井造船㈱ 機械・システム事業本部 事業開発部

^{*2} 三井造船㈱ 機械・システム事業本部 機械工場 技術開発部

^{* 3} Energent Corporation

ル写真を示す。高速の窒素と水のジェットが平行にノズ ルから適正膨張の状態で放出されている。

二相流ノズルの実験は、水-蒸気、ブライン-蒸気、 冷媒のR134a, R245fa, R227、液体窒素、リチウム-セ シウム, NaK-窒素、CO₂-Selexol、メタン-原油、天 然ガス-液体などのフラッシュを伴う単成分や二成分二 相流など広範囲の作動流体に関して行われた。ノズル入 口において二相流、飽和状態あるいはサブクール状態の 条件で実験が行われ、ノズル効率は計算値とよく一致し た⁽²⁾。

Fig. 3 Two-Phase Nozzle During Tests with Nitrogen Water Mixture

2.2 二相流衝動タービン

二相流ノズルから得られる運動エネルギーを軸動力に 効率よく変換するために,圧力降下がない衝動タービン が用いられる。図4に二相流衝動タービン翼の模式図を 示す。

Fig. 4 Schematic of Two-Phase Impulse Blades

理想的には,液滴はその運動量を気相を介して動翼に 与えながら気相と同じ流線をたどり流出するほうがよい。 液滴径が大きい場合は,慣性力の違いから液滴流線は気 相流線からずれて一部が翼面に衝突付着するため,液滴 の運動エネルギーが消失することになる。一方,液滴径 が十分小さい場合は気相流線からの逸脱が小さくなり良 好な動翼性能が得られる。

翼面への液滴の衝突による運動量損失および翼面に 沿って流れる液膜の摩擦損失を最小にするように設計さ れた翼プロファイルで流れは転向し,二相流の運動エネ ルギーは効率よく軸動力に変換される。気相密度が高い 低粘度の冷媒を用いた試験で80%程度のロータ効率が 得られている。Energent社の設計コードにより,冷媒, 液体窒素,高温蒸気,ブラインなど二相流を用いたター ビン性能を予測可能である。

図5に単独ノズルと衝動タービン翼を組合せた回転試 験の写真を示す。動翼から流出する気相と液滴の流れを 可視化した例である。

Fig. 5 Two-Phase Impulse Turbine Operating with Single Two-Phase Nozzle

3. Variable Phase Cycle (VPC)

従来のオーガニックランキンサイクルやカリーナサイ クルの熱交換では、熱源とサイクル作動流体との温度差 が最小となるピンチポイントが存在する。これがオーガ ニックランキンサイクルの欠点と言える。

VPCを適用すればこのピンチ温度による制約を回避 できる。図6および図7に典型的なVPCのT-H線図お よび地熱発電を例にしたサイクルフロー図を示す。熱源 側の冷却過程と冷媒側の加熱過程(2-3)がほぼ並行で あることが分かる。ランキンサイクルで見られるピンチ ポイントの制限は存在しない。VPCではランキンサイ クルの場合に比べて低温の熱源から多くの出力を得るこ とが可能である。極論すれば、作動冷媒を冷却するため に水や空気を利用するので、これらの温度レベルよりも 高温の熱源であればエネルギー回収が可能である。この ようにVPCは熱源から最も効率よく出力を得られるサ イクルであると言える。

4. 適用例

4.1 10kW級VPCパイロット

作動原理および性能推定法の確認のために発電端出力 10kW VPCパイロットをEnergent社から導入し,フィー ルド試験を実施した。システム構成を図8に,装置概要

Fig. 6 T-H Diagram for the VPC

Fig. 7 Generalized Process Diagram for a VPC

Fig. 8 System Diagram of 10kW VPC

を図9に示す。

本装置は、ノズル、タービン性能、装置制御手法に関 わる種々の試験に利用するもので、熱源との熱交換器は 保有せず、150kWヒータで直接作動媒体を加熱する方 式を取っている。図10に発電端出力値と発電端出力予測 結果との比較を行った結果を示す。両者はよく一致して おり、発電性能予測手法の妥当性を確認できた。

また,舶用VPCへの適用性検討の一環として,東京海 洋大学殿所有の実習船「汐路丸」へのVPC搭載試験を 実施した。本装置は上記10kW VPCパイロットを本船搭 載用に小型改造したもので,舶用主機排熱は利用せず別 途50kWのヒータを搭載して作動媒体を加熱し発電した。 VPT-発電機設置状況を図11に示す。なお,凝縮器の冷 却水は本船の冷却用海水を利用した。波浪静穏時で約 1kWの発電端出力を確認した。結果の一例を陸上試験 結果と合わせて表1に示す。発電端出力予測値と発電端

Fig. 9 General View of 10kW VPC

Fig.10 Generator Power Output of 10kW VPC

Fig.11 General View of 10kW VPT on Board

出力計測値はよく一致していることが確認された。
 なお,発電端出力予測は下記の式より算出した。
 Pe(kW) = m×(Ein-Eout)× η n× η r× η g
 (3)

- 4 -

Table 1 Generator Power Output of 10kW VPC on Board

試験場所	汐路丸試験	陸上試験
発電端出力(kW)	1.20	0.91
性能推定値(kW)	1.27	0.86
実験値との比較	-5.7%	+5.6%

ここで、m:作動媒体(R245fa)流量(kg/s)
 Ein:タービン入口エンタルピー(kJ/kg)
 Eout:タービン出口エンタルピー(断熱膨張後)(kJ/kg)
 ηg:発電機効率=0.92
 ηn,ηr:ノズル効率,ロータ効率(ヒートバランス条件に基づく予測値)

4.2 200kW級VPCプロトタイプ

4.2.1 プロセス条件と配管系統図

VPCの熱源となる掃気冷却器での空気流量及び温度 は,船舶の連続常用定格NSR (Normal Service Rating) 負荷に於ける主機関予想性能データを使用している。こ のプロセス計画条件をもとに決定された配管系統図を図 12に示す。

Fig.12 Piping Diagram of 200kW VPC on the Test Engine

ここで示されている配管系統図は、当社の保有するテ スト機関である低速ディーゼルエンジン4S50ME-Tに実 装されたVPCに対応するものであり、VPC加熱器を従 来の掃気冷却器の上流に配し、過給機コンプレッサ出口 の高温空気を冷却することにより得られた熱エネルギー により媒体(R245fa)液を加熱している。VPC加熱器 を出た媒体は、圧液状態のままで二相流タービン(VPT) へ導かれ、タービンに内蔵された二相流ノズル内で膨張 して二相流ジェットを形成し、タービンを駆動する。

タービンを出た排気媒体は、水冷式凝縮器にて凝縮・ 冷却され媒体タンクを経由してブーストポンプ及び循環 ポンプによりVPC加熱器に送られることで、シンプル な熱サイクルが形成されている。

4.2.2 装置概要

VPCを構成する主要機器は、加熱器、タービン・発 電機、凝縮器および媒体ポンプであるが、出来る限り汎 用の機器・技術の組合せで実現できることを主眼に置い て選定した。

VPCはバラ積み船に於ける掃気冷却器からの廃熱回 収設備として計画されているが陸上での試験は当社玉 野事業所に設置しているテストエンジン(4S50ME-T9, 7120kW×117rpm)の掃気冷却器を熱源として設備を配 置した。熱交換器の仕様を表2にVPT - 発電機の仕様 および設置状況を表3および図13に示す。

Table 2 Specification of Heat Exchanger

機器名	項目	仕様
VPC	型式	プレートフィン熱交換器
加熱器	交換熱量	2,030 kW
	入口/出口	空気: 185/60℃
	温度	媒体: 28/130℃

Table 3 Specification of Turbine and Generator

機器名	項目	仕様
タービ	形式	単段衝動式二相流タービン
ン	出力	最大 200 kW
	回転数	3,600 min-1
	軸封形式	N2 加圧ダブルメカニカルシール
発電機	形式	三相誘導発電機
	出力	250 kW
	回転数	3,600 min-1

4.2.3 試験運転手順

VPCではR245faを媒体として使用するため、水分が 混入すると物性が変化し、計画通りの熱サイクルが得ら れない。従って、機器及び配管の耐圧テスト、洗浄は機 器メーカ及びプレファブ工場で個別に実施することで組 み上げ後の一括水圧テストを避ける計画とした。また、 配管ラインのフラッシングはR245faを張り込んだ後に ブーストポンプによる定格流量以上での循環運転を行い、 ストレーナを清掃することで異物除去を行った。試運転 調整を実施した後、性能試験を以下の手順で実施した。

①凝縮器用冷却海水ポンプ起動
 ②システム起動
 ③テストエンジン起動
 ④タービン起動
 ⑤通常運転
 ⑥タービン停止
 ⑦テストエンジン停止
 ⑧VPC停止
 ⑨冷却海水ポンプ停止

Fig.13 General View of 200kW VPT on The Test Engine

図14に起動時のトレンドチャートを示す。

テストエンジン負荷が100%に達した後は、入熱量 1,814kWに対し154.8kWの発電端出力を確認し、設計値 の2,148kWに対して設計通りの183.3kWの発電端出力が 予想されることを確認した。

Fig.14 Time History Profile of System Start

5. あとがき

70℃から250℃程度の中低温熱エネルギーを利用した VPC技術を導入し,発電端出力10kW級VPCパイロッ トによる作動原理と性能推定法の確認および200kW級 VPCプロトタイプによる実機レベルでの性能および信 頼性確認を実施した。

舶用VPCは商船試験による改良を経由して,陸用 VPCは本プロトタイプをベースに新たな改良が加えら れ温泉熱水発電,工場排熱利用発電等の分野に適用・展 開される予定である。

最後に本研究にご協力ならびに貴重なご助言を頂いた (助日本海事協会,東京海洋大学ならびに関係各位に厚く 感謝の意を表する。

引用文献

- Eddington, R., "Investigation of Supersonic Shock Phenomena in a Two-Phase (Liquid-Gas) Tunnel", Jet Propulsion Laboratory Technical Report, Pasadena, June 1967
- (2) Hays, L., "History and Overview of Two-Phase Flow Turbines", International Conference on Compressors and Their Systems, Institution of Mechanical Engineers, London, September 1999

論説◆解説

特集:中低温熱回収タービン開発の現状

Variable Phase Cycle

Patrick Boyle^{*1}

Lance Hays^{*1}

Key Words : Variable Phase Cycle, Variable Phase Turbine, Geothermal, Waste Heat, Low Temperature

Abstract

Efficient resource utilization is critical in the viability of geothermal projects. Novel thermodynamic energy conversion cycles exist that are superior to the traditional organic Rankine cycle. A new turbine has been developed that enables the economic and efficient implementation of a cycle that maximizes the geothermal resource utilization. The Variable Phase Turbine can increase power production by as much as 30-50% from low temperature resources and enhanced geothermal resources when compared to commercially available organic Rankine cycles.

The Variable Phase Turbine is comprised of discrete nozzles and an axial impulse rotor and can be used for transcritical or flashing liquid flow. The high isentropic efficiency, typically greater than 80%, enables a liquid heat exchanger cycleⁱ to be used, avoiding the pinch point limitations of the evaporator in an organic Rankine cycle. This allows for extraction of more energy from the heat source, i.e., a lower discharge temperature, which increases the power production for a given resource.

Introduction

Low temperature geothermal resources, enhanced geothermal resources and separated brine from flash plants, are huge sources of energy. However, because of their characteristically low temperature, the project and power system costs per kilowatt of power generated are very high.

To produce power from these resources the energy conversion system must maximize the conversion of available energy to power.

The common characteristic of these energy sources is, as heat is transferred to the power conversion system, the temperature decreases nearly linearly (sensible heat). This behavior can be

原稿受付 2013年9月24日

contrasted to evaporating flows, which absorb heat at a nearly constant temperature, accompanied by a phase change (latent heat). This is characteristic of organic Rankine cycles.

Figure 1 shows an example ORC operating with R134a. The geothermal heat source enters the vaporizer at 220°F and exits at 155 °F. Liquid R134a exits the refrigerant pump (1) and is heated to boiling (1a) and then entirely boils in the vaporizer (1b) and the vapor is subsequently superheated (2). The superheated vapor is expanded through a turbine (3) and is then condensed (3a and 3b) and subcooled (4), at which point it is pressurized in the refrigerant pump to close the cycle.

The ORC creates a pinch point between (1a) and the cooling geothermal flow that limits the geothermal water return temperature. The ideal thermodynamic cycle would eliminate this pinch point to recover more heat from the geothermal resource while efficiently converting the recovered heat into electricity. Until now, turbine technology has been a barrier to usage of improved cycles.

^{* 1} Energent Corporation, 2321 Pullman, St., Santa Ana, CA 92705.

Variable Phase Turbine

The Variable Phase Turbine (VPT) is comprised of a set of individual, fixed nozzles and an axial impulse rotor. In the VPT, the two-phase nozzle, illustrated schematically in Figure 2, is the thermodynamic energy conversion element. Enthalpy is converted to two-phase kinetic energy in a near isentropic expansion. Expanding gas breaks up the liquid phase into small droplets. The gas transfers momentum to the droplets by pressure and shear forces. The small diameter of the droplets results in a close coupling of the gas and liquid, producing efficient acceleration of both phases. The inlet to the nozzle can be liquid, two-phase, supercritical, or vapor.

Fig. 2 Schematic of Two-Phase VPT Nozzle

The two-phase kinetic energy is efficiently converted to shaft power by reversing the direction of the tangential component of the flow velocity in an axial impulse turbine. The turbine is designed with a special blade contour to minimize momentum and friction losses of the liquid impinging on the surface and flowing over the surface. A schematic is shown in Figure 3. The turbine is a true impulse turbine with no reaction or pressure drop in the rotor. This design limits the runaway speed to no more than the twophase jet velocity and minimizes axial thrust. The maximum droplet impact velocity for typical expansion conditions is 200-400 feet per second. No erosion results, as the threshold impact velocity for erosion of the titanium alloy wheel is in excess of 1,000 feet per second.

Fig. 3 Schematic of Flow Path in Two-Phase VPT Blades

The arrangement of the VPT (Figure 4) is similar to a conventional axial impulse turbine. The nozzles are inclined at a tangential angle to the rotor. The liquid leaving the rotor separates onto the duct walls. The two-phase impulse wheel is a blisk, i.e., an integrally bladed rotor, having low stress, with

a shroud to control the location of any stray liquid.

The two-phase nozzle efficiency is typically between 90% and 97%, influenced strongly by the surface tension of the working fluid and the vapor density at the condensing pressure. Standard refrigerants that are used in low temperature geothermal are ideal in these aspects because of their low surface tension and high vapor density.

The axial impulse rotor efficiency is typically between 78% and 85%, influenced strongly by the vapor quality at the exit of the nozzle.

Fig. 4 Variable Phase Turbine nozzle and rotor arrangement

Variable Phase Turbine: Experience

Refrigeration

The two-phase impulse turbine of the type described is the only two-phase turbine with extensive commercial experience.

Failed attempts have been made to use radial inflow turbines for refrigeration applicationsⁱⁱ. However, two-phase axial impulse turbines, designed by Energent staff, have been in refrigeration service for many years. Over 75 units have been installed in Carrier commercial chillers. The earliest units have operated for more than 15 years with no required

Fig. 5 Carrier 19 XRT Chiller with Two-Phase Turbine

turbine maintenance. One of these 500 Ton chillers (the 19 XRT model) is shown in Figure 5.

In this application, the two-phase turbine replaced the twophase expansion valve, generating 15 kW from the flashing refrigerant. The result was a 7-8% improvement in the chiller system efficiencyⁱⁱⁱ.

Figure 6 is a photograph of the two-phase impulse wheel and nozzle assembly from a larger refrigeration installation. The nozzles are removable inserts. The turbine wheel, to the right, has blisk construction.

Fig. 6 Two-Phase Refrigeration Nozzle Assembly and Turbine Wheel

Low Temperature Testing

Figure 7 is a photograph of a Variable Phase Turbine system pilot plant. This is the world's first closed cycle twophase power plant. The VPT shown in the figure has a vertical axis and operates with flashing refrigerants. Testing with flashing R227ea and R245fa refrigerants at the 7 kW level verified the design codes utilized for predicting performance. R134a has not yet been tested in the pilot plant. Refrigerant temperatures exiting the heater were tested as high as 250 °F (limited by the heater capacity). In addition to performance testing, the unit was operated for 150 hours to determine whether incipient erosion or cavitation would occur. The wheel showed no signs of either erosion or cavitation.

Fig. 7 Variable Phase Turbine Operating in Pilot Plant

Variable Phase Turbine: Application to the Variable Phase cycle

The Variable Phase cycle (VPC), also known as the triangular or trilateral cycle, is the ideal thermodynamic cycle for low temperature sensible heat recovery^{iv}. The Variable Phase Turbine allows for efficient utilization of the VPC. The liquid working fluid is pressurized and then heated in the heat exchanger with no vaporization. The use of a liquid heat exchanger rather than a boiler enables the recovery of more heat energy by eliminating the "pinch point" restriction discussed above (Figure 8). The VPT is also suitable for supercritical versions of the VPC.

The resulting system is simple and stable, both critical factors in achieving a quick, successful start-up of a geothermal power plant. Because the inlet to the Variable Phase Turbine is a liquid, the jet velocities are quite low, thus a synchronous or induction generator with no gearbox is used in conjunction with a simple impulse rotor that undergoes no erosion. The elimination of the gearbox increases efficiency and reliability, reduces complexity and capital cost, and eliminates the associated lube-oil subsystem present in typical organic Rankine cycle systems. Discrete nozzles allow for variations in resource production without bypassing flow or operating at part-load efficiency.

Fig.8 VPT and ORC Temperature Profile Comparison

In this scenario, the ORC only captures 59% of the heat that is extracted by the VPC from the resource. The analysis assumed an adiabatic pump efficiency of 77%, an adiabatic turbine efficiency of 85% for the ORC, 80% for the VPT, and a gearbox efficiency of 98% for the ORC. The VPC generated 35% more net electricity than the ORC.

Figure 9 is a schematic of the Variable Phase cycle applied to geothermal power generation. Consisting of a pump, liquid

heat exchanger, turbine, and condenser the VPC is a simple system with lower cost elements than most ORC systems.

A significant advantage of this energy conversion system is the heat exchanger. Instead of a heat recovery boiler (which has a large separator drum and extensive operating and maintenance labor) a simple counter-current, compact liquid heat exchanger is used to recover the geothermal energy.

Fig. 9 Variable Phase cycle process flow diagram

The geothermal fluid stream enters the heat exchanger where the available heat energy is transferred into the energy conversion working fluid.

After heating in the heat exchanger the liquid is flashed in two-phase nozzles which are integral parts of the hermetic Variable Phase Turbine assembly. The high momentum, low velocity two-phase stream drives the turbine rotor at 3,600 or 1,800 rpm, enabling direct drive of an induction generator.

The expensive gearbox required for ORC vapor turbine systems is eliminated, also improving reliability.

The use of refrigerant working fluids in the VPC enables lubrication and cooling of the generator by the working fluid. The lube oil system required for ORC systems is eliminated, as are seals. The result is a zero emissions hermetic assembly without the expense and reliability problems of those components for an ORC.

The exhaust from the turbine is condensed in a compact condenser. Standard refrigerant condensers are used, enabling low cost and compact size. The condensate is then pressurized by a hermetic pump and circulated through the liquid heat exchanger to close the cycle. The lack of a phase change in the heat exchanger makes the VPC stable and simple to control.

A commercial geothermal demonstration plant was constructed at an existing facility near Coso Junction, California, United States. The existing facility has multiple flashing steam turbines spread over a geographically large area. A collection system gathers the output of multiple wellheads for the use of one or more flashing steam turbines.

There is liquid and vapor as part of the wellhead flows so it is necessary to separate out the liquid brine prior to the steam turbines. This liquid is reduced in pressure to feed some additional steam to lower-pressure steam turbines but a significant amount of atmospheric-pressure geothermal brine is generated with a temperature of 110C. Previously this brine was simply being sent to re-injection wells. A lowtemperature Variable Phase Cycle was installed to convert some of this wasted heat into electricity prior to re-injection (Figure 10).

Fig.10 Two-Phase Refrigeration Nozzle Assembly and Turbine Wheel

The VPC plant is designed as a 1MW net plant with approximately 1.4MW generated from the turbine and 300-400kW in main pump losses. The total pumping power is partially regained by the pressure energy provided to the nozzles. The working fluid is R134a. A liquid-liquid heat exchanger reduces the heat of the brine from approximately 110 $^{\circ}$ C to approximately 75 $^{\circ}$ C. The brine temperature could be reduced further but the existing facility managers requested that the brine return temperature be restricted to this minimum value to avoid scaling of the re-injection wells. This return temperature is therefore higher than the temperature to which the Variable Phase Cycle is capable of reaching. With this limitation the Carnot efficiency is 9.1%.

In Table 1 representative data from the system is presented.

At the time of the data point the net electrical output is 795kW including electrical losses and deducting pumping losses from the main pump that is on the same shaft as the turbine. Turbine shaft power is calculated at 1387kW for these conditions. The refrigerant main pump is by far the largest parasitic loss but as stated above a large fraction of the pump power is recovered as pressure feeding the nozzles. There are still other parasitic losses to consider such as cooling tower fan and pump losses (unknown), refrigerant boost pump losses (~37kW), generator cooling fan losses (~7.4kW), oil pump losses (~0.5kW), etc. Pressures and temperatures are values reported from sensors and converted from Imperial units.

Flows are converted from volume flow rates to mass flow rates based on the fluid density at those conditions. Enthalpies are evaluated in a variety of ways that are discussed further in the Calculation Methodology section.

Table 1 System conditions from a representative data point for geothermal power plant. Electrical power output at this point is 795kW. Power loss from refrigerant pump is already deducted.

	Datasta	ning in Drive aut		Turbine	Turbine	Cooling	Cooling
	Brine in	Brine out	HX Inlet	inlet	outlet	waterin	water out
Flow kg/s	135.1	-	105.5	-	-	-	-
Temp C	111.9	83.3	29.6	99.8	28.4	19.7	29.2
Press. Barg	12.1	12.1	41.4	39.0	7.1	-	-
Enthalpy kJ/kg	466.7	348.5	241.2	375.8	-	-	-

In Figure 11, actual power output is compared to expected power output. The measured power output is the electrical power output of the generator which is the turbine mechanical shaft power less the pump mechanical shaft power losses as they are on the same shaft and then reduced by the generator efficiency. Significant scatter is present in Figure 11 due to the difficulties in accurately determining flow quality and enthalpy in a two-phase flow. Despite the scatter of the plot the system output is very stable for a stable set of brine and cooling water conditions. The overall plant power output matches the predicted plant power output for the given brine and cooling water conditions even if the exact refrigerant conditions diverge from predicted refrigerant conditions.

Calculations could be made significantly more accurate if the vapor quality of the refrigerant flow were known but at this time no reliable and accurate method for measuring this value has been determined.

A study was conducted to compare the VPC to the ORC. The fluid chosen for the study was R134a, as its low critical temperature (101 °C) and widespread use are conducive to its use in low temperature geothermal. The component efficiencies were selected by an independent party familiar with typical ORC performance (Table 2).

Table 2 Component efficiencies and parameters for VPC/ORC study

In the second seco		
Heat Exchanger Pinch Point	5.6	°C
Heat Input (@ 71 °C return)	29.3	MW
	_>	
OPC	920/	
ORC expander shart efficiency	82%0	
VPT nozzle efficiency	92-97%	Nozzle Code
VPT rotor efficiency	78-85%	Rotor Code
Pump shaft efficiency	77%	
r ump shart efficiency	///0	
	0.50/	
Generator Efficiency	97%	
Gearbox Efficiency (ORC)	98%	
Recuperator (optional) pinch	33 3	°C
receuperator (optionar) pinen	55.5	C
	0.50/	
Pump Motor Efficiency	93%	

The results are shown in Figure 11 for 121 °C geothermal inlet temperature. The net power is shown without taking into account the parasitic cooling load, which will be site dependent and equal for the ORC or VPT at a given return temperature. Clearly, the power increases at the geothermal return temperature is reduced. The VPC is able to produce more power than the ORC under almost all conditions and shows strong benefits as the return temperature is lowered.

Fig.11 Chart of measured vs. predicted generator electrical output. All power values include losses from the main refrigerant

Fig.12 VPC vs. ORC for R134a - 121 °C geothermal inlet temperature

- 11 -

Summary

A new turbines has been developed that enables the economic and efficient implementation of a novel thermodynamic cycle that maximize the geothermal resource utilization. The Variable Phase Turbine and Variable Phase Cycle can increase power production by as much as 30-50% from low temperature resources and enhanced geothermal resources when compared to commercially available organic Rankine cycles. The resulting power advantage leverages the total development cost of the geothermal project. That is, a 40% increase in power production from a given geothermal resource lowers the total capital cost including exploration, drilling, and surface plant by 29%, in terms of \$/kW.

Based on analytical and experimental test results, the power advantages and performance of the Variable Phase cycle have been validated.

The advantageous features of the Variable Phase cycle utilizing the Variable Phase Turbine are:

• Efficient conversion of liquid, two-phase, supercritical, or vapor pressure energy.

- Increased power recovery from a given geothermal resource.
- Reduced cost by the simplification and elimination of components required in an ORC.
- Increased reliability through the elimination of high maintenance items required by an ORC such as the waste heat boiler, gearbox, seals and lube oil system.
- A compact, modular design resulting from the use of compact heat exchangers, enabling factory assembly and checkout and reduced installation costs at the site.
- ⁱ Hays L., 1977, "Biphase Turbines for Diesel Bottoming," 12th IECEC (779077), 473-480.
- ⁱⁱ Dr. Joost Brasz, Carrier Corporation, Personal Communication
- ⁱⁱⁱ Hays L., and J. Brasz, 1996, "Two-Phase turbines for Compressor Energy Recovery", International Compressor Engineering Conference, Purdue University, Purdue.
- ^{iv} DiPippo R., 2007, "Ideal Thermal Efficiency for Geothermal Binary Plants", Geothermics, V. 36, 276-285.

- 12 -

特集:中低温熱回収タービン開発の現状

小型バイナリー発電装置 『ヒートリカバリー』 "HRシリーズ"の概要

高橋 俊雄^{*1} TAKAHASHI Toshio

キーワード:バイナリー発電、低温廃熱利用、ラジアルタービン発電機、規制緩和対象、系統連系規程

1. はじめに

地球温暖化の防止のため, CO₂排出量削減の取り組み が多くの分野で盛んに行われている。このような状況で はあるが,様々な業種の工場等では,100℃未満の温水 が廃熱として発生しており,また個々に分散して排出さ れているため,使い道がほとんどなく,その大半が捨て られている状態となっている。

また高温で噴出している温泉水は, 適温にするため, エネルギーを使い, 冷ましてから利用する場合もある。 このような工場の廃熱や温泉の未利用熱である, 低温の 熱エネルギーを有効に活用することができれば, 新たな 省エネや創エネへの貢献が可能となる。

これら低温の未利用温水で,特に流量が限られる状態 からでも利用価値の高い電気に変換してエネルギー回収 を行うことができる,小型バイナリー発電装置の開発を 行ってきた。

図1は今回新たに開発した,小型バイナリー発電装置 『ヒートリカバリー』"HRシリーズ"の外観写真である。

Fig.1 小型バイナリー発電装置『ヒートリカバリー』 "HRシリーズ"の外観写真

原稿受付 2013年9月20日

 *1 (株) I H I 回転機械セクター 開発部 バイナリー発電システムグループ 〒235-8501 横浜市磯子区新中原町1番地 本書では、本装置の開発経緯やコンセプトおよび特徴等 の概要について説明していく。

2. 開発経緯

当社は、車両用や舶用の過給機(ターボチャージャー)、 さらには産業用のコンプレッサーなどの事業を通じて、 数多くの回転機械を販売してきた実績がある。それらの 経験や開発から高度なターボ機械の設計・開発の技術を 有している。

また、昨今の環境問題などから鑑みると、『ターボ機 械として取り組むことができる新たな製品開発』が求め られてきていた。そこで、当社は『捨てられている低温 の熱エネルギーを有効利用できる電気に変換して回収す る、省エネルギー機器』として、小型バイナリー発電装 置の開発を平成22年度から取り組み始めた。

当時,バイナリー発電の認知度は低い状態であったが, 未利用な低温温水を活用するコンセプトに対して,『多 くの温水が活用されていないこと』,さらに『一か所あ たりの温水は少量で排出されていること』等の情報を得 た。

その情報から、小型バイナリー発電装置のコンセプト を検討し、様々な技術を集約して、プロトタイプ機⁽¹⁾の 試作を行った。その後も性能達成に向けた対応を行い、 当初のコンセプトを満足する製品として仕上げることが でき、本年8月から販売(受注)を開始した。

また今回の開発期間中に再生可能エネルギーに対する 固定価格買取制度がスタートしており,バイナリー発電 装置は高温で噴出している温泉などの熱も電気に変える ことができるため,地熱発電の一つとして,新たな用途 への適用も可能となっている。また同じような再生可能 エネルギーとなるバイオマスボイラにおいても,冷却を 行う過程で,温水が生成される機種があり,バイナリー 発電装置の利用可能性が広がっている。

このように、工場などの低位熱からのエネルギー回収 や有効利用による"省エネ"への適用、または再生可能 エネルギーから発電することによる"創エネ"への適用 が期待されている。

3. 製品コンセプト

前述のような経緯で開発を進めてきた本装置は,市場 要望などを考慮しつつ,製品コンセプトを設定してきた。 主な項目としては,以下の点があげられる。

- ・市場の状況を想定した温水流量の条件にて,最大の 発電が可能であること。
- ・冷却水温度が30℃前後でも最大の発電出力が可能 であること。
- ・設置および運搬等を考慮して,小型・コンパクト を目標とすること。
- ・市場での利便性を考慮して,バイナリー発電の規制 緩和対象に適合すること。
- ・分散電源としての安全性を考慮して,系統連系規程 の低圧連系に準拠した設計とすること。

バイナリー発電は,熱落差のエネルギーを利用して, 電気エネルギーに変換するシステムである。そのため, 温水流量が限られる場合,取り出せる電気エネルギーも 大きくすることはできない。但し,バイナリー発電装置 の市場が明確でないこともあり,数多くの要望から製品 として成立する可能性がある仕様を開発目標とした。

また熱落差は、温水と冷却水との温度差から得ること になる。冷却水は様々な方法から得ることができるが、 工業用途として一般的なものとしては『冷却塔』になる。 冷却塔は、水の蒸発潜熱を利用して温度を下げる装置で あるが、季節条件によっては供給できる温度が30℃近く になることがある。今回は、そのような条件でも最大の 発電電力を得ることができる装置を目標とした。

温水流量に見合った発電出力にした場合,個々の廃熱 発生源の近くへ装置を設置することが考えられる。その ため、本装置としては可能な限り、小型化・コンパクト な設計を基本コンセプトとした。

バイナリー発電は、電気事業法上、汽力を用いた発電 設備との括りになる。そのため、従来までは小型の場合 においても、大規模な火力発電所と同様な届出や各種の 主任技術者の選任などが必要となっていた。この状況に 対して、平成24年4月および7月に省令の改正が行われ、 規定された、いくつかの条項を満たすバイナリー発電に 関しては緩和措置が認められることとなった。本装置は 小流量の温水をターゲットにしているため、より多くの 場面で活用してもらうため、規制緩和に適合した設計を 目標とした。

未利用熱は,状況によって変化することが想定される ため,発電したエネルギーをすべて電源系統に回生する 形式を採用した。よって本装置は,電源系統に接続する 分散電源の一種となる。この点からも,より安全に使用 していただくため,系統連系規程に準拠した設計を標準 にすることとした。

これらの製品コンセプトを元に開発・設計を行った, 本装置の概略仕様を表1にまとめる。

Table 1 概略仕様

項目	内容	
最大発電出力	20kW(送電端)	
発電条件	(最大送電端発電時の一例)	
温水	温度:95℃ 流量:28m ³ /h	
冷却水	温度:30℃ 流量:40m ³ /h	
作動媒体	HFC-245fa	
タービン形式	遠心式ラジアルタービン	
発電機形式	永久磁石発電機	
設計圧力 0.97MPa (G)		
熱源温度 70~95℃		
大きさ 約 2m × 1.4m × 1.6m		
壬旦	約 1900kg	
里里	(作動媒体含む・温/冷却水除く)	
設置条件 屋内設置		
灭纮冲灭	低圧連系に準拠	
术加理术	直流流出防止の変圧器を内蔵	
規制緩和対象	各種要件に準拠	

4. サイクルシステム

本装置のサイクルシステムを図2に示す。低温の温水 から効率的に電気エネルギーを回収し,且つ小型・コン パクトな装置を実現するため,比較的簡素なシステムと なる『オーガニックランキンサイクル方式』を採用した。 以下に,本装置の基本的な動作を示す。

- (1)仕様範囲内の温度,流量で,温水/冷却水を装置内へ 供給してもらう。
- (2)循環ポンプを起動して、作動媒体を蒸発器へ送る。
- (3)蒸発器で、温水の熱エネルギーを受けて、作動媒体が 素発する。
- (4)蒸発した作動媒体がタービン発電機へ流れ、タービン が回転し、直結した発電機にて発電が行われる。
- (5)発電した電気は、各電気機器を介し、電源系統の電圧 や周波数に同期した状態で出力される。
- (6)タービンから出た作動媒体は、凝縮器へ流れ、冷却水 との熱交換が行われて液化する。
- (7)液化した作動媒体は、再び循環ポンプへ流れる。
- (8)上記の(2)から(7)を繰り返すことで、連続的な発電を 行うことができる、循環サイクルとなる。
- (9)上記の動作は、装置内部に搭載された専用の制御装置 でコントロールされ、温水の熱エネルギーから最大限 の発電を行うように運転が行われる。

なお, 上記で示した各構成機器については次章で説明 して行く。

Fig.2 サイクルシステム図

5. 装置の基本構成

5.1 タービン発電機

図3に今回,新たに開発したタービン発電機の外観を 示す。当社における各種ターボ機械の開発経験を活かし, 小型・高性能を実現した,単段ラジアルタービン発電機 となっている。

Fig.3 タービン発電機の外観写真

Fig.4 タービンのCFD解析結果 (一例)

今回の開発では、小出力のラジアルタービンであり、 且つ高い効率を実現することが求められる。そのため、 作動媒体の状態に対して、最適な性能を発揮することが できるタービンを新たに開発することにした。タービン 設計に際しては、他機種のターボ機械における開発経験 を活かし、CFD解析(図4を参照)を行いながら、最 適設計を行うこととした。また、実機による性能確認等 も行いながら、解析結果との整合性も確認しつつ、開発 を行ってきた。その結果、小出力で高効率な特性を有し た、タービンを開発することができた。

また、タービンで回収したエネルギーを最小限の損失 に留め、可能な限り発電に活用することも必要となる。 ラジアルタービンを使用した発電機において、タービン と発電機との接続に減速機を用いる機種もある。但し、 この場合は、減速機による機械損失や軸シール部からの 作動媒体のリークなどが懸念される。今回は、タービン インペラと発電機ロータシャフトを一軸とした、ダイレ クトドライブ構造を採用した。

ダイレクトドライブの設計においては、回転安定性が 最も重要なファクターとなる。数多くの高速回転機械の 開発実績からロータダイナミックスの検証を行い、起動 から最大回転速度まで、安定的に回転できる機械に仕上 げることができた。

さらにインペラの材質やケーシングの強度等,安全性 ついても十分に配慮した設計となっている。

5.2 蒸発器・凝縮器

本装置は小型・コンパクトをコンセプトとして,設 計・開発を行っているため,蒸発器・凝縮器に関しても 重要なファクターとなる。各種形式の熱交換器がある中 で,今回は小型でも高い性能を発揮できる,プレート式 熱交換器を採用した。特に温水,冷却水条件に適合した 性能を満足し,且つ圧力損失を極力少なくすることにも 配慮している。

5.3 循環ポンプ

循環ポンプは作動媒体の漏洩が無く,且つ性能を満足 することができる,キャンドポンプを採用した。本形式 のポンプは回転部全体を作動媒体中に入れることで確実 なシールが行えるように設計されている。

5.4 作動媒体

作動媒体は、バイナリー発電の規制緩和対象において、 規定条項の一つになっている。なお、現在の省令では、 「一般高圧ガス保安規則に規定する不活性ガス(但し

毒性ガスを除く)」に適合する作動媒体が規制緩和対 象の条件となる。

項目	内容
毒性	無し
可燃性	無し
沸点 (大気圧下)	14.9°C
オゾン破壊係数	0
地球温暖化係数	約 1000
バイナリーの規制緩和	対象媒体

Table 2 HFC-245faの諸元

今回選定した作動媒体は、ハイドロフルオロカーボン で、毒性ガスではない『HFC-245fa』を採用した。この 作動媒体は安全性において、たいへん優れたものとなっ ている。表2にHFC-245faの基本的な諸元をまとめる。

5.5 系統連系コンバータ,絶縁トランス他

タービン発電機から出力される電気はタービンの回転 速度に見合った周波数となっており、電源系統の周波数 とは異なる。そのため、電源系統に合致した電圧および 周波数で発電した電力を回生するため、パワーコンディ ショナーと同様の機能である系統連系コンバータを採 用した。本機器は系統連系規程の低圧連系に準拠した機 能を装備しており、電源系統の異常などをキャッチして、 系統異常においては発電を自動で停止する。

また絶縁トランスは系統連系コンバータのパワー素子 が損傷し,万が一にでも直流電圧が電源系統に流出する ことが無いよう,本装置側に標準搭載している。

5.6 制御装置

本装置のすべての動作は、制御装置にてコントロール されている。仕様範囲での様々な温水や冷却水の条件に 対してサイクル内部の状況をセンサで検出し、最も多く の発電が行えるよう、最適制御を行うようになっている。

また電源系統に異常が発生した場合も,系統連系規程 に則って,系統連系コンバータが異常を検出すると装置 として安全に停止するようなシーケンスも組み込まれて いる。その他に各種インターロックも設けており,安全 に配慮した設計となっている。

5.7 パッケージング

前述の5.1から5.6までのすべての機器を本装置内部に 納めており、ワンパッケージとしている。また底部には フォークリフトでの運搬を想定して、4.5ton級の爪まで を挿入できるように設計されている。

6. 装置の性能

6.1 シリーズ構成

今回のシリーズ構成を表3にまとめる。一般的な低圧 電源毎の形式となっている。なお周波数は系統連系コン バータ等が自動判定をするため、どちらも共通となって いる。

Table 3 形式と接続電源

形式	接続電源仕様	周波数
HR20W-20A	3相 AC200V	
HR20W-22A	3相 AC220V	50/60Ua
HR20W-40A	3相 AC400V	30/00HZ
HR20W-44A	3相 AC440V	

6.2 予想発電能力

本装置の予想発電能力について,表4にまとめる。 温水,冷却水の温度,流量の各状態において,最大の 発電が可能となるように制御して運転される。

冷却水		40m ³ /h		20m ³ /h		流量
温水		30°C	20°C	30°C	20°C	温度
20	95℃	20	20	15	19	
28	85℃	13	18	10	14	
m ² /n	75℃	8	12	6	9	
20	95℃	17	20	13	17	
20	85℃	12	16	9	12	
III*/II	75℃	7	10	6	8	
流量	温度		*	計算に	よる参	考値

Table 4 予想発電能力(送電端出力) 単位:kW

7. 適用例

本装置の適用例について、以下に示す。

7.1 工場等での適用構成

本装置は、小出力であること、さらに多様な使用用途 を想定していること等から標準仕様として設計している。 そのため、蒸発器や凝縮器として使用しているプレート 式熱交換器は、一定の水質基準にて使用してもらうこと が前提となっている。

工場等の場合では、廃熱として出る温水を循環系統と して、熱の放出をしているケースが考えられる。また、 冷却水も冷却塔を用いた循環系で構成することが一般的 である。その場合は、薬液注入を行うことで、本装置の 蒸発器/凝縮器の基準に適合した水質に管理することが 可能となるため、温水や冷却水を直接導入して使用する ことができる。

図5(a)は、工場等を想定した、適用例の概念図である。 温水系統および冷却水系統、それぞれポンプを用いて、 本装置に供給を行う。供給された温水から熱エネルギー を回収し、最大の発電を行った後、冷却水との熱交換を 行い、その熱は冷却塔にて放出される。この過程で発電 が行われ、発電した電力は電源系統を通じて回生される。 このような構成が最もシンプルな形となる。

7.2 温泉水等での適用構成

前述のように、蒸発器や凝縮器の熱交換器には、一定 の水質基準であることが必要になる。但し、未利用熱や 廃熱の中では様々な条件の温水やそれ以外(排ガス等) の場合もあり、それらを直接導入することは難しい場合 がある。特に温泉水は地域や源泉などによって多種多様 な泉質を有していると言われている。これらの温泉水を 用いて発電を行う場合、本装置の水質基準を満足させる 方法として、間接熱交換器で用いることが一例としてあ げられる。

図5(b)は温泉水等を想定した,適用例の概念図である。 間接熱交換器は,源泉から湧き出る温泉水と本装置へ導 入される温水を分離し,熱エネルギーのみを伝える役割 を持つ。この方法にすれば,本装置に導入される温水は 循環系となり,薬液注入などによって,一定の水質基準 を満足することが可能となる。また源泉から供給される 温泉水は間接熱交換器を通過後,浴用等への利用も可能 と考えられる。間接熱交換器は,温泉水の成分等を考慮 し,耐食性や耐スケールのため,特殊材質や分解構造を 設けるなど,個々の温泉に適合した間接熱交換器を用い ることで,標準的な本装置の使用可能性が考えられる。

(b)泉水等を用いた場合の使用例

Fig.5 使用時の構成機器

7.3 温水流量が多い場合

また,多量の温水が利用できるケースも想定される。 その場合,本装置の適正な発電が可能な流量に分流して, 複数台を設置することが有効な方法となる。図6に温水 が多い場合の使用例について概念図を示す。

このような方法にすることで、それぞれの装置は個々 に流入した温水の条件で発電を行うことになる。また、 メンテナンスの場合は1台ずつを停止して実施すること ができるため、各装置の停止時間を最小限に抑えること が可能となり、効率の良い運用が可能となる。

Fig.6 温水流量が多い場合の使用例

8. 今後の開発について

本装置に関連した今後の開発機種や方向性について, いくつかの例を紹介する。

8.1 非常用発電への展開

本装置は温泉による発電として,再生可能エネルギー の固定価格買取制度への利用が考えられる。その場合, 電力会社の系統に接続する形の売電用途になる。また, 常に湧き続けている温泉であれば,電力会社の電源系統 が停電した場合に,本装置を非常用発電として利用する ことも求められることが多い。但し系統連系規程に準拠 した本装置は,電源系統の停電時には安全のため発電を 停止してしまう。そのため,平時と非常時の二つの状態 を本装置だけで両立させることは難しい。

そこで今後は、本装置とセットで使用する新たな蓄電 ユニットの開発を検討している。このユニットによって、 平時と非常時の二つの状態を満足させる計画である。

8.2 遠隔監視への対応

小型・小出力の本装置は、熱源近くに設置されて使用 されるケースが多いと想定される。そのため個々に設置 された本装置の発電状態を機側へ赴かずに遠隔から確認 することが求められている。

この要望には,遠隔監視機能の開発を検討している。 本装置に遠隔監視機能を追加して,通信ユニットによる 情報収集とその結果提供を行うことで,遠隔から装置の 状態を確認することが可能となる。

これらの機能を始め,現在までに様々な要望が求めら れてきている。今後は,市場要望などを精査して,鋭意 新製品,新機能の充実を図っていく予定である。

9. おわりに

今回,当社で開発・製品化を行った,小型バイナリー 発電装置『ヒートリカバリー』"HRシリーズ"について, 開発経緯や仕様などの概要を中心に説明した。特に市場 の熱源状況を想定して,小型・小出力の分散電源として 利用していただくことを念頭に置き,『バイナリー発電 の規制緩和対象となること』,『系統連系規程の低圧連系 に準拠した設計にすること』などをコンセプトとして開 発を行ってきた。本装置によって,これからの"省エ ネ"や"創エネ"の動きに拍車がかかり,様々なエネル ギーの有効活用へとつながる一端となれば幸いである。

10. 引用文献

 (1) 磯本馨, "IHIの再生可能エネルギーへの取組み", IHI 技報, Vol. 52, No. 4 (2012), pp. 16-22.

特集:中低温熱回収タービン開発の現状

低温排熱回収250kW級小型バイナリー発電設備 「グリーンバイナリータービン」

溝口和彦^{*1} MIZOGUCHI Kazuhiko

キーワード:バイナリータービン,低温排熱利用,高速タービン発電機,環境適合媒体,地熱利用小規模バイ ナリー発電設備の実証試験,ごみ焼却工場等の排熱高度活用

1. はじめに

当社では、地球環境の未来に貢献する温暖化防止技術 の一つとして、従来未利用となっている分散して存在す る排熱(80℃~120℃)の回収を目的として、低沸点で ある代替フロンを作動媒体に用いた単純ランキンサイク ルの250kW級小型バイナリー発電設備(商品名:「グ リーンバイナリータービン」)を開発した。

本稿で紹介する小型バイナリー発電設備は,当社が 1980年代初頭に開発製作したフロン(CFC-11:現在は 規制により製造されていない)を作動媒体とする2~ 4 MW級バイナリー発電設備の知見に基づいたものであ る。タービン発電機は,最新のパワエレ技術によりター ビンと発電機を一体化し,かつ,高速回転させること でコンパクト化を図っている。さらに発電機ロータとス テータの間に薄肉円筒状のキャンを挿入することで,作 動媒体を完全に密封し,系外への媒体の漏れが無いとい う特長を有するものである。

初号機をデモ機(図1:タービン発電機外観,図2: 発電設備外観)として当社神戸工場内に新たに開設され た自家用発電所である「神戸パワーセンター」に設置し, 2010年5月に試運転を開始し現在まで順調に運転を続け ている。

神戸パワーセンターにはガスエンジンが主発電設備と して設置されており、グリーンバイナリータービン初号 機はその排熱を回収して発電を行っている。ガスエン ジンは「川崎重工製V12気筒60Hz KG-12-V型5,000kWグ リーンガスエンジン」で、単機で世界最高効率の49%を 達成した発電設備であり、「グリーンバイナリータービ ン」を組合せることで発電所総合効率50%超と小規模発 電所としては類を見ない効率を有している。

2. グリーンバイナリータービンの主要目

表1にデモ設備の主要目を示す。

原稿受付 2013年10月10日

*1 川崎重工業(株) ガスタービン機械カンパニー 機械ビジネスセンター タービン部陸用タービン課 〒650-9670 神戸市中央区東川崎町3-1-1

Fig.1 タービン発電機外観

Fig. 2 発電設備外観

Table 1	デモ設備の主要目
---------	----------

要目	仕様
サイクル	ランキンサイクル
作動媒体	代替フロン
発電機端出力	250kW
タービン型式	横型単段ダブルインペラ式
発電機型式	永久磁石3相交流 高周波同期発電機
発電機容量	250kVA(力率 1.0)
回転数	約 9,000rpm (可変速式)
蒸発器	流下液膜式シェル
(熱源) 循環温水入口温度/流量	98℃ / 180t/h(定格条件 ^{*1)})
凝縮器型式	シェル&フィンチューブ式
(冷却源) 循環冷却水温度/流量	20°C/ 480t/h(定格条件 ^{*1}))
備者*1):250kWの発電	に必要な温水・冷却水条件

3. サイクル構成

図3に基本的な熱媒体サイクル構成を示す。

パッケージ範囲を基本構成とし、タービン発電機と媒体系統機器等が含まれ、温水系統、冷却水系統はパッケージ範囲外としている。熱源には様々な形態があり、 パッケージ範囲外については都度設計の対応を想定しているためである。

作動媒体は,液体の状態で予熱器を通り加温された後, 蒸発器において飽和蒸気となる。飽和蒸気はタービン発 電機で250kWの動力を発生させた後,凝縮器で凝縮さ れ液体となる。タービン発電機をはじめとして,構成機 器からの媒体の漏れは無く,完全に密閉なサイクルを実 現している。

凝縮器には水冷式を採用することにより,主媒体蒸気 とタービン排気の有効熱落差が空冷式凝縮器を採用した 場合と比較して大きく取れるため,サイクル効率が大き く出来ている。

排熱を有効利用して発電することで,250kWの発電 機出力が得られ,パッケージ内補機動力を差し引いた発 電量*²⁾で見れば約550t-CO₂/年の削減が可能となる。

備考*2) 温水・冷却水設備は既設を流用し,それらの 補機動力を差し引かず,発電出力からパッケージ内補機 の動力だけを差し引いた場合の発電量

Fig.3 熱媒体サイクル

4. グリーンバイナリータービンの特長

4.1 タービン発電機の特長

図4にタービン発電機の断面図を示す。前述したよう に、タービンと発電機が一体構造であること、さらに キャンを採用し媒体の漏れが無いことが特長である。

発電機ロータの両端にインペラを装着するダブルフ ロー構造とすることで、シングルフローと比較すれば小 径インペラが採用できるため高速回転化が可能となり、 発電機のコンパクト化が図られている。タービンと発電 機を軸直結していることから、この出力範囲でこれまで 一般的に採用される減速装置が不要となっている。

キャンは作動媒体との適合性試験,および圧力・熱サ イクル試験を実施し,問題が無いことを確認した上で採 用している。

Fig.5 CFD解析例

発電機ロータ部の冷却は媒体蒸気で行っている。通常 であれば、軸にファンを設け、ロータとステータを共に 空冷しているが、ロータ部はキャン内部構造となるため、 空冷式ファン冷却ができない。よって、発電機ステータ 部のみを外部に送風ファンを設けた空冷式としている。

インペラの形状および発電機の冷却流路形状は,採 用されている媒体の特性に合った数値流体力学(CFD) 解析により最適化を図っている。CFD解析の例を図5 に示す。

4.2 熱交換器の特長

蒸発器は流下液膜式とすることで,熱交換器の胴側に 管群全体を漬すまで媒体を満たす必要がなく,比較的高 価な媒体の保有量を最少化している。なお,流下液膜式 熱交換器は当社グループ企業の製品である吸収式冷凍機 の技術を適用するとともに,蒸発における熱伝達は伝熱 特性試験により特性を十分に把握したことで,コンパク トな熱交換器とすることができた。

凝縮器は過去の2~4MW級バイナリー発電設備で実 績のある冷却管の配列や構造を踏襲している。

4.3 選定媒体の特長

媒体を選定するにあたり,環境性,安全性,熱物性, 取扱易さ,入手性,規制等から総合的に評価し,環境特 性に優れ(ODPが0,GWPは比較的低い),毒性・腐食 性が無く,不燃性で,潜熱/顕熱比が小さく,大気圧力 下の常温付近で液体であること等を選定項目として挙げ, 多数の媒体を比較検討し選定した。

最終的に媒体として、3M社が製造しているフッ素ケ ミカル製品を選定した。その主な要目を表2に示す。 バイナリー発電で従来採用されている代替フロン(ハ

要目	仕様
製品名称	Novec 7000
成分	ハイドロフルオロエーテル
沸点	34°C
オゾン破壊係数(ODP)	0
地球温暖化係数(GWP)	400
引火点	なし
腐食性	無
許容濃度 *1)	200ppm

*1)1日8時間,1週40時間の正規の労働条件で大 多数の労働者が繰り返し暴露されても健康障害 を起こさないとされる濃度。

イドロフルオロカーボン系)と比較しGWPが小さいこ とが特長である。

4.4 電気・制御系統の特長

発電機の周波数約450Hzを直流電流化し、かつ発電機 回転数を制御する発電機用コンバータ、直流電流を系統 周波数に一致した交流電流とする系統連系用インバータ、 および設備全体の監視・制御・保護機能を有し、自動起 動/停止シーケンスを内蔵した制御装置、さらに運転操 作端を一体構造とした盤としている。図6、図7に系統 の構成と盤外観を示す。

また,遠方監視装置,上位計算機との入出力にも対応 可能としている。補機系統が準備できていれば容易に起 動停止操作を行うことができる。

4.5 部分負荷特性

バイナリー発電設備においては、熱源の温度が低く、 また、冷却は大気温度程度であることから有効利用出来 る温度差が小さい。夏季のような大気温度が高い場合に おいては、温度差が小さく、タービン排気圧力が上昇 するため、大きく設計点からずれることになる。この ような場合、定格回転数(約9,000min⁻¹)での運転では タービン効率がかなり低下することになるが、電力変換 装置を装備していることからタービン発電機回転数は系 統周波数と独立した制御が出来るので、運転回転数を約 7,000min⁻¹まで低下させることで部分負荷効率を高く維 持しながら運転することが可能である。

5. 神戸パワーセンターでの適用について

5.1 ガスエンジンとの組合せ

弊社神戸パワーセンターでのグリーンガスエンジン 「KG-12-V 5000kW」と組合せたバイナリーサイクル構 成を図8に,機器配置を図9に示す。

ガスエンジンのジャケット冷却熱と排ガス熱を用い, 98℃ /180t/hの温水を得て,250kW(発電機端)の発電 を行っている。

蒸発器,予熱器で熱を利用した後の温水出口温度は, ガスエンジンのジャケット冷却水供給温度に合わせた温 度としている。

Fig.6 系統の構成

Fig. 7 制御·電力変換装置盤外観

Fig. 8 ガスエンジンとの組合せによるサイクル構成

Fig. 9 機器配置

6. 九州電力(株)殿との共同研究

低温熱源を利用する発電設備として開発したが,自然 エネルギー利用発電分野である地熱への適用性を確認す るために,九州電力(株)殿と共同で地熱利用小規模バイナ リー発電設備の実証試験に取り組んでいる。本設備は鹿 児島県指宿市にある山川発電所内に設置し、検証項目で ある地熱流体に対する熱回収技術、スケール対策、腐食 対策、設備性能、経済性等についての評価を2014年度末 までに行う計画である。

図10に本実証試験設備のサイクル構成を示す。従来の 発電(通常のフラッシュ式蒸気タービンによる発電)で は、蒸気井から噴出する蒸気と熱水から、蒸気だけを分 離し発電に利用し、利用していない熱水は地中へ還元し ている。この地中へ還元する熱水の一部を抜き取りバイ ナリー発電に利用する実証試験である。

2013年2月より実証運転を開始し,現在(2013年9月 末時点)は,各種の運転データ等を取得しているところ である。

7. ごみ焼却工場等の排熱高度活用プロジェクト

大阪ガス殿,大阪市殿,大阪府殿と当社で行う共同実 証事業である。大阪市環境局殿のごみ焼却工場において, ごみの焼却熱で蒸気を発生させ,発電や場内の給湯・暖 房に有効利用しているが,さらに,未利用排熱の同工場 内および近隣コミュニティ内での利用と,それらの最適 化により総合エネルギー効率の25%の向上を目指してい る。

図11に全体システムの構成を示す。

主要設備として,バイナリー発電設備(当社),工 場エネルギーマネージメントシステム(EMS)(当社), および蓄熱輸送システム(大阪ガス殿)を設置する。

バイナリー発電設備に利用する熱源は,同工場に設置 されている蒸気タービンの排気熱である。従来では温度 が低く発電には利用出来なかったが,低温熱を有効利用 できるバイナリー発電設備により発電することが可能で ある。

蓄熱輸送システムでは、ごみ焼却熱を蓄熱槽に蓄えコ ミュニティの複数の需要家に輸送供給することが出来る。

工場EMSは,近隣コミュニティ内の熱利用状況に応じ,焼却熱を電気に変換(発電)するか,熱のまま利用(熱輸送)するのかの熱配分を最適化するシステムである。

2012年度中に試運転を完了し、2013年4月より実証運 転を開始した。2013年度は、EMS運用データの収集を 目的とした発電設備と蓄熱輸送システムの実証運転を行 い、全体システムの評価を行う計画である。

8. まとめ

本製品は、排ガス、排蒸気や排温水あるいは地熱温水 など、分散して存在する未利用の低温熱源から電力回収 する製品として、開発を行ったものである。初号機を設 置した弊社「神戸パワーセンター」には、多数のお客様 のご見学をいただき、「グリーンバイナリータービン」 が省エネ機器として期待されていることを改めて実感し

Fig. 10 地熱利用実証試験設備のサイクル構成

Fig. 11 排熱高度活用プロジェクトの全体システム構成

ている。

また,再生可能エネルギー利用(地熱利用)の場合に は電力買取制度(FIT)が適用可能となり経済性が改善 すること,また九州電力殿との共同研究を通じ地熱利用 の実績を積むことで,地熱利用分野で本製品の展開に弾 みが付くと考えている。

しかし,従来の発電設備や他の省エネ機器と比較する と低温熱利用であるが故にコストの壁は依然として高い。 また,低温排熱利用・地熱熱源利用が促進されるように 平成24年7月に電気事業法が一部見直され規制緩和され たが,当社が選定している媒体は規制緩和対象とされて おらず,設備を設置するに当たりボイラタービン主任技 術者の専任等の運転コストが依然として必要となる。更 なる規制緩和が成されることを期待したい。

今後は、通常の工場排熱利用でFITが適用できない分 野においても経済性が向上するように更なるコストダウ ンに努めると共に、種々の分散低温排熱源に対して検討 を進め、幅広いお客様のニーズに合った製品に育成して いく所存である。

参考文献

- (1) 溝口和彦,低温廃熱利用小型バイナリー発電設備「グ リーンバイナリータービン」、クリーンエネルギー、 P24-28,20-1 (2011-1)
- (2) 山下誠二,"自然エネルギー利用バイナリータービン 発電システム",日本ガスタービン学会誌 Vol.39 No.5 (2011.9), P20-24

特集:中低温熱回収タービン開発の現状

地熱バイナリ用低温熱回収システム

福田 憲弘^{*1} FUKUDA Norihiro 香月 紀人^{*1} KATSUKI Norito

田之口 利恭^{*2} TANOGUCHI Toshiyasu 齊藤 象二郎^{*2} SAITO Syojiro

キーワード:地熱,フラッシュ,バイナリ,排熱回収,有機ランキンサイクル,熱交換,エクセルギー Geothermal Energy, Flash, Binary, Heat Recovery, ORC (Organic Rankin Cycle), Heat exchange, Excergy

1. 緒言

地熱エネルギーを発電として利用し始めた起源は1904 年、イタリアのラルデレロにおいて自噴する過熱蒸気を 利用して3/4 馬力の発電を行ったこととされており、そ れ以降化石燃料に頼らない自然にやさしいエネルギー源 として世界各地で導入が進み、2010年時点で世界で約 11GWの発電容量を有するにいたっている⁽¹⁾。一方日本 国内では1999年に八丈島地熱発電所が運用開始されて以 降導入が進んでいないのが現状である。理由はさまざま であるが.発電に適した地熱源の多くが国立公園内で あり、大規模地熱発電設備による環境負荷(土地の造 成、地熱蒸気排出による環境・景観変化)が一因とされ ている。昨今この側面にも活発な議論がなされ、2012年 3月には「地熱開発の行為が小規模で風致景観等への影 響が小さいものや既存の温泉水を用いるバイナリ発電」 について,条件付ではあるが国立公園内(第二種,第三 種、普通地域)での開発を認める通知が発表されてい る⁽²⁾。また、2012年より始まった国の「再生可能エネル ギー固定価格買取制度」では、15MW未満の地熱発電か らの買い取り価格は42円と設定されており、今後国内で も小規模バイナリ発電設備に対するニーズは高まってい くものと期待される。以下ではバイナリ発電方式につい て概説するとともに当社の取り組みについて紹介する。

2. 地熱発電の特徴

2.1 地熱熱源

地熱とは文字通り地球の発する熱であり,その源は地 球内部での放射性物質の崩壊熱であるとされる。その膨 大なエネルギーは、地球上のごく一部の場所,例えば 火山の噴火という形でその威力を観察することができ

原稿受付 2013年9月25日

- *1 三菱重工業㈱技術統括本部 長崎研究所
- 〒851-0392 長崎市深堀町5-717-1 *2 三菱重工業㈱エンジニアリング本部電力総括部

〒220-8401 横浜市西区みなとみらい 3-3-1

る。しかしながら,通常我々はそのエネルギーを直接的 に利用することができず,水(地下水)を介して間接的 に利用している。地表から染み込んだ地下水は地下で地 熱により加熱され,比較的浅い部分のものは地表に噴出 し,時には温泉として直接利用される。一方で,より深 部(概ね1,000m以上)にまで到達した地下水はキャッ プロックと呼ばれる固い地層に蓋をされるような形で高 温・高圧となって地下に滞留する場合がある。これが地 熱貯留層と呼ばれるものであって,その大きさ,地表か らのアクセスのしやすさによって,地熱発電の適地が選 定される。このように一般的な地熱発電は,地熱熱源と 水循環サイクルが揃うことにより可能となるものであり, その探索・開発に時間とリスクが伴う。近年では地表よ り水を注入することにより地熱貯留層を人工的に構築す る高温岩体発電についての研究開発も進められている。

2.2 フラッシュ地熱発電設備

掘削により一旦地表まで導き出した地熱水は,蒸気と 熱水の比率により大きく「蒸気卓越型」と「熱水卓越 型」に分類することができる。蒸気卓越型の場合,地表 へ上昇するまでの過程で蒸発完了してしまうため,取り 出した蒸気でほぼそのまま蒸気タービンを駆動するこ とができる。そのため設備が簡単であり,初期の地熱発 電システムはこのタイプのものであった。しかしながら, このような都合の良い地熱源はまれであり,世界で実際 に稼動している地熱発電設備のほとんどは熱水卓越型で ある。

典型的な熱水卓越型地熱利用発電サイクルとして、フ ラッシュ地熱発電設備の概略系統図を図1(a)に示す。熱 水卓越型の生産井を利用した地熱発電技術はニュージー ランドで初めて開発され、1958年にワイラケイ地熱発電 所に実適用された。この成功を受けて、当社は九州電力 ㈱と共同で、熱水卓越型生産井を利用する地熱発電設備 の開発に着手した。地熱流体の化学分析を行い、地熱蒸 気雰囲気下でタービンなどの主要機器の材料試験を実施 して、材料選定の基礎とした。また、セパレータ、直接 接触式復水器、二相流輸送配管、ガス抽出器などの地熱 発電所に必要な主要機器の特性に関する解析、並びに検 証試験を行い、機器設計の基礎データを蓄積した。これ らのデータを基に出力11 MW の九州電力(株大岳発電所 は設計、建設され、1967 年に、日本初の熱水卓越型地 熱発電所として運転を開始した⁽³⁾。その後、性能、経済 性、並びに信頼性を向上させる様々な技術を開発、適用 しながら、日本を含む世界13カ国に計103台、出力にし て3108 MW の地熱発電設備を供給してきた。

2.3 バイナリ地熱発電設備

典型的なサイクル系統図を図1(b)に示す。バイナリ発 電システムは地熱流体を熱交換器に導入,二次サイクル の作動媒体を蒸発させてタービンを駆動する間接発電方 式である。主な特徴は表1に示すとおり。バイナリ発電 システムの利点としては次のようなことがあげられる。

1. 地熱流体の全量還元:地下から出たものを地下へ 還す,という地域内のマスバランスの保持の観点のみな らず,地熱発電所のシンボルともいえる立ち上る白煙 (水蒸気)も発しないため,周辺環境(森林等)への影響,また風致景観上の影響が少ない。

2. 腐食・スケール対策:フラッシュ発電システムの 場合,タービンも含めほぼ全ての系統を地熱流体(蒸気, 熱水,不凝縮ガス)が通過するため地熱流体の性状に応 じた腐食対策,不凝縮ガス対策を講じる必要があるが, バイナリ発電システムの場合地熱水は熱交換器で一旦縁 が切れるため,基本的に熱交換器までの系統においての み地熱流体を考慮した対策を行えばよい。ただし熱交換 器伝熱管におけるスケールは直接性能に影響を与えるた め注意が必要。

Fig. 1 Schematic diagram of typical geothermal power plant

Table 1 Major characteristics of typical geothermal power cycle

項目	フラッシュ サイクル	パイナリ サイクル
特徴	・大出力 ・高効率(ダブルフラッシュ)	•100%還元可能
作動流体	・地熱蒸気 ・可燃性などなし	・フロン、炭化水素等 ・温暖化やオゾン破壊(フ ロン系)、可燃性(炭化水 素)に留意
単機容量	~数百 MW (大容量発電所)	~数十 MW (小容量)
タービン 腐食	・腐食対策要	・対策不要 ・低グレード材料適用可能
スケール (対策)	・タービンー段ノズル (タービン洗浄装置) ・還元ライン (叶 調整等)	・予熱器伝熱面、還元ライ ン (pH 調整等)
冷却方式	・湿式冷却塔 ・白煙あり	・空気冷却復水器 ・白煙なし

<u>3. 体積流量が小さい</u>:二次サイクルとして低沸点媒体を使用する場合,復水圧力は水蒸気より高く設定できるため体積流量は小さく,タービンはコンパクトに設計できる。

以上はバイナリ発電システムの利点に着目して特徴を 述べたが、一方でバイナリ発電システムにも不利な点も ある。

1. エクセルギーロス:熱交換器の特性上,加熱源と 被加熱源の有効温度差が大きいほど熱交換器はコンパクト(伝熱面積が小さい)になるがエクセルギーロスは大 きい。反対にエクセルギーロスを小さくしようとすると 伝熱面積は大きくなりコストはかさむ。

2. 低沸点媒体の取り扱い:一般的な性質として作動 媒体は対環境上のリスクを含むものが多い。よく使われ るものとして代替フロンはオゾン層破壊係数,地球温暖 化係数に対する考慮が,また炭化水素系媒体の場合には 適切な消火設備の配備が必要となる。この場合システム には特別なリーク対策を施す必要がある。

<u>3. 冷却源</u>:一般的に地熱発電所が建設される地域は タービン復水のための冷却水の入手が困難な地域である ことが多い。フラッシュ発電設備の場合,地熱蒸気の凝 縮水を冷却水の補給水として使用することができるが, 一方でバイナリ発電システムの場合はそれが利用でき ない。そのためバイナリ発電システムでは空冷復水器が 用いられるが,伝熱性能が劣るため,水冷に比べて大き な構造物となってしまう。その結果,バイナリ発電設備 の構成機器の中でも最も大きなな構造物となってしまい, 初期導入費用のほか,補機動力(空冷復水器のファン動 力)も大きくなる。

以上のように,バイナリ発電システムは利点,欠点と もあわせ持つため,一概にフラッシュ発電システム,バ イナリ発電システムのどちらが優れているか,というこ とを断定することはできない。重要なのは、それぞれの 地点において、経済性、環境性を考慮し個別にケースス タディーを行ったうえで、最終的に導入システムを決定 することである。

3. バイナリ発電の仕組み

「バイナリ」の語源を紐解くと「2つの」という意味 合いがあり、フラッシュ発電システムのように熱源を直 接利用する方式に対して二次流体を使用したシステムを 指す。二次流体としては一般的に低沸点媒体を使用され ることが多いが、代替フロンも含めて有機化合物がほと んどであるので、この二次サイクルは一般的な呼称とし てORC (Organic Rankin Cycle)と総称される。以下 では、ORCサイクルの仕組みと特徴について概説する。

3.1 ORCサイクル

ORCサイクルの作動媒体としては,作動温度域(熱源温度~大気温度)において常識的に取り扱える範囲の 蒸気圧を持つ物質であれば原理上は何を持ってきても良い。ただし実際にはさまざまな観点からの制約があり, 実質的に使用可能な作動媒体は限られたものとなる。作 動媒体選定にあたっての主なポイントとしては以下のような点がある。

- 1. サイクル特性(発電効率)
- 2. 取り扱いやすさ(安全性,安定性,環境性を含む)
 3. 経済性

以下ではサイクル特性の観点から作動媒体の選定方針 について議論するが、たとえサイクル特性が優れた物質 があるからといっても取り扱いやすさや経済性を無視し たものであると長期運用という観点からは採用が難しい。 最終的にはサイクル特性に加えて上記に述べたようなポ イントをバランスよく考慮したうえで媒体の選定を行う 必要がある。

3.1.1 ORCサイクル特性(熱源側熱交換特性)

サイクル特性を評価するためにはT-h線図で考えるの がわかりやすい。例として,図2に示すような単純化し た熱源側の熱交換モデルを考える。ここでは議論を簡単 化するため,熱源として潜熱を持たず顕熱のみを有する 熱源を想定している。地熱発電の場合,蒸気を含まない 熱水のみの熱源がこれに相当するが,地熱源以外(例え ば工場排熱回収)では,排ガスを熱源とする排熱回収も これに相当する。例としてブタンと水についてT-h線図 を比較した結果を図3に示す。横軸は各流体の比エンタ ルピー(J/kg)に流量(kg/s)をかけた熱量(単位は W)である。ただし流量は交換熱量をあわせるために ヒートバランスから求めるため,各ケースでそれぞれ熱 源の流量は異なる。熱交換過程において,熱源流体は放 熱とともに温度を下げていくが,サイクル流体側の蒸発 開始点が制約(ピンチポイント)となりサイクル出口温

Fig. 2 Conceptual diagram of ORC heat exchanger model

度が決まってしまう。幾何学的考察からもわかるように、 水のように全交換熱量に占める潜熱の割合が大きいと熱 源出口温度は高くなり、熱交換が不十分なまま排出され てしまう。このような潜熱の割合が大きい作動媒体を使 用する場合,圧力(飽和温度)を下げるか、複圧(低圧, 高圧)サイクルにする等工夫が必要であるが、前者はサ イクル効率低下,後者は系統が二重になるためコスト増、 という課題がある。

なお一般的に、「水は潜熱が大きい」というイメージ があるが、必ずしもそうではない。例として蒸発温度を 325℃に設定した場合の水のT-h線図を図4示すが、こ の温度域までくれば水といえども潜熱の比率はかなり落 ちて蒸発温度120℃のブタンの場合の比率に等しくなる。 そのため「熱を受け取る」という観点では水は高温向き の作動媒体といえる。(ただしタービン出口湿り度が大 きくなりすぎるためこのままでは使えない)。以上は水 という臨界温度が高い(374℃)極端な物質を例示した が、これは低い臨界温度をもつ低沸点媒体も含めて一般 的な性質として成り立ち,結果として熱源温度付近に臨 界温度を持つような作動媒体が顕熱熱源に対して相性が 良い(より低温まで熱を回収できる)ということになる。

なお一般的な地熱の場合,図2で仮定したような熱水 のみの熱源のほか,蒸気/熱水の二相流で噴出する熱源 も数多く存在する。この場合熱源側も潜熱と顕熱の二種 類を有することになりサイクル検討上の工夫が必要であ る。ここでは議論しないが,結果的には熱源側の潜熱と 顕熱の比率と合致するような作動媒体が熱源に対して相 性がいい。

3.1.2 熱交換過程でのエクセルギーロス

ここでは熱交換過程で発生するエクセルギーロスにつ いて再び図2の熱交換モデルを用いて考察する。熱源側 が放出する熱量と受熱側が受け取る熱量はエントロピー を用いて次式により表される。(以下便宜的にエントロ ピーは相対値とし,各物質ごとに最も低い温度の状態の エントロピーを0と定義する。)

(放熱側) $Q_1 = \int_0^{s_1} T_1 dS$ (1)

(受熱側)
$$Q_2 = \int_{-\infty}^{\infty} T_2 dS$$
 (2)

ただし, 添字1を熱源側, 添字2をORCサイクル側 とし, Q (kW):熱量, G (kg/s):流量, T (K):温度, S (kJ/s K):エントロピー (ただし比エントロピーと流 量の積で定義) である。

この熱交換過程を模式的に示したものが図5である。 (1)式のQ₁は,幾何学的には区間[0, S₁]において動作温 度曲線と横軸(絶対0度)の間で囲まれた面積と等価 である。放熱ロスがないとするとQ1=Q2でありT1>T2 を考慮するとS1<S2である。両者を重ねて書くと、図5 (b)に示すように斜線部の面積が同じになるようにS2は右 に(高エントロピー側)にはみ出す。これが熱交換過 程におけるエントロピー増加の直感的な捉え方である。 ORCサイクル全体としては、この他、タービンでのエ ントロピー増加分、復水器でのエントロピー増加分等を 加えて、最終的に外系へ放出される。この一連のサイク ルは熱力学的に解釈すると以下のようである。すなわち, 高温熱源の熱を低温熱源(温度をT_L(K)とする)へ移 行する過程において,理想的(可逆過程)に取り出しう る物理的エネルギーのうち、T_L(S₂-S₁)分だけエント ロピー増大分として熱エネルギーへ転換している(捨て ている)ことになる。これがいわゆるエクセルギーロス である。図5の熱交換器モデルに立ち返ると、エクセル ギーロスを減らすためには放熱側と受熱側の温度差を小 さくする必要があるが、一方で、温度差を小さくすると いうことは熱交換器の伝熱面積を大きくする必要があり コスト増大につながる。バイナリサイクル設計にあたっ ては、各機器でのエクセルギーロスとコストとのバラン スをにらみながら適切な温度プロファイルを決定してい

くことが重要となる。

3.1.3 タービン出口湿り度

水と低沸点媒体ではタービン出口の湿りに対する特性 が大きく異なる。いくつかの媒体についてのランキンサ イクル(T-s線図)を図6に記載する。ここでは動作温 度として, 高温 (120℃), 低温 (35℃), また作動媒体 としてa) 水, b) ペンタンを例示した。なおここでは 簡単化のためタービン損失を0としているので、実際 のサイクルでの断熱膨張線は垂直ではなく少し右にはみ 出すような形となる。水のT-s線図は蒸気側の裾野(蒸 気側飽和線の低温側)が大きく右に張り出しており断熱 膨張後は湿り領域に入るため、効率低下や液滴によるエ ロージョン等弊害が発生することはよく知られている。 一方でペンタンに代表されるようなb)の媒体は乾き領 域に入っており好ましいと思えるが、一方でタービン出 口での過熱度が高く復水器へ捨てる熱量も多くなってし まう。この場合,熱源条件次第ではあるが給液加熱器を 付加して過熱分の熱量を回収する場合もある。

3.1.4 バイナリ発電システム設計に際しての留意事項 以上, ORCサイクルについての一般的な特性を述べ たが地熱バイナリ発電システムへ適用する際にはいくつ か留意すべき点がある。

1. 地熱水性状によってシリカ過飽和となっている場合,スケール析出による配管の閉塞に気をつける必要 がある。スケール生成速度は、熱水中シリカ濃度,pH, 温度によって大きく変化する。そのため必要に応じて pH管理(インヒビターの注入等),地中還元時の還元温

480

度管理等,スケール析出防止に対する処置を講じること が重要である。なおこの場合,サイクル出口温度が制約 されることがあるので,ORCサイクル設計時に考慮し ておく必要がある。

2.環境との接点を担う熱交換器,特に熱源側(予熱器,蒸発器)は地熱水と接触する部分であり腐食に関す る慎重な注意が必要である。地熱水性状は場所によって 千差万別でもあるので,それぞれの熱水性状を十分に調 査した上で,コストも考慮して適切な材料を選定してい く必要がある。なお熱交換器以外のORCサイクル構成 機器は地熱水と接触する機会はないが,場所によっては 硫化水素等腐食性ガス雰囲気の場合もあり,その濃度に 応じた腐食対策を施す必要もある。

4. 地熱バイナリ開発への取り組み

当社の地熱発電への取り組みはフラッシュ地熱発電設 備を主体として製品化を推し進めて来たが、バイナリ地 熱発電設備に関しては基礎技術の蓄積とプロトタイプの 開発に留まっていた。諸言で述べたとおり日本国内の市 場ニーズに早急に応える為、イタリアを拠点としている ORC専業メーカーであるTurboden社と共同で製品化に 取り組んでいる。1980年に創業したTurboden社は、こ れまでにバイオマスを中心として250基近いORCシステ ムを納入した実績がある。また近年では欧州内で表2に 示すような地熱バイナリ発電装置(最大5.6MW)を納 入している。このうちオーストリアの1000kWシステム は納入以来10年を越えて安定して稼動を続けており、シ ステムの信頼性の高さを物語っている。地熱バイナリの 構成概念図を図7に示す。熱源の一部は熱供給として地 域供給も可能であり、また復水システムは空冷、水冷か ら選択、組み合わせ設計が可能である。例としてドイツ での既設バイナリ発電設備の概観を図8に示す。本プラ ントは熱水熱源を用いた出力5.6MWの発電設備である。

Fig. 7 Schematic diagram of binary power plant

Table 2 Supply record of Turboden's geothermal power plant

国名	発電容量	備考
オーストリア	1000kW	2001 年運用開始 熱併給
フランス	1500kW	2008 年運用開始 発電専用
ドイツ	200k W	2009 年運用開始 熱併給
イタリア	500kW	2012 年運用開始 超臨界(プロトタイプ)
ドイツ	5600kW	2013 年運用開始(予定) 発電専用
ドイツ	5600kW	2013 年運用開始(予定) 発電専用
ドイツ	5000kW	2013 年運用開始(予定) 熱併給

当社では、従来まで発電に利用されていなかった低温熱 源を有効活用し、地域に密着した地熱発電設備が具現化 されるような製品開発や既存地熱発電所の出力増強など 多くのアプリケーションをTurboden社と共同で準備し 再生エネルギーの有効活用と同時に地域活性化の一助と なるように務める所存である。

5. 引用文献

- Bertani, R., "Geothermal power generation in the world 2005-2010 update report", Geothermics vol 41 (2012) pp.1-29
- (2) 環境省,環自国発第120327001号「国立・国定公園内における地熱開発の取り扱いについて」(平成24年3月27日)
- (3) 坂中貴一ら 三菱重工技報 Vol.47 No.1 (2010) P31 地球 温暖化防止に有効な地熱発電の取り組み

Fig. 8 Photograph of binary plant in Germany

特集:中低温熱回収タービン開発の現状

森 BORI Yutaka 佐藤 真丈* SATO Masatake 大里 和己^{*1} OSATO Kazumi

キーワード:バイナリーサイクル,カリーナサイクル,温泉発電,タービン発電機,同期発電機 Binary Cycle, Kalina Cycle, Hot Spring Power Generation, Turbine generator, Synchronous generator

1. 緒言

我々が入浴する温泉の温度は40℃程度である。従って, 温度が高い温泉では、冷却等により温度を数十℃まで下 げる必要があり、折角の熱エネルギーを有効利用してい ないことが多い。

通常,蒸気をタービンに導入して発電を行うランキン サイクルでは,熱源の温度は150℃程度以上⁽¹⁾必要と言 われている。国内には現在17箇所の地熱発電所が稼働中 である。熱源温度は地熱発電所ほど高くはなくランキン サイクルによる発電には適さないが100℃程度の熱源を 持つ温泉は少なくない。理想的には100℃前程度の温泉 水を数十℃程度まで利用する発電ができれば,浴場とし ての利用だけでなく,地産地消のエネルギー源として有 効な利用が可能となる。

低沸点媒体を作動流体とするバイナリーサイクルは中 低温域の熱源を利用することができる発電サイクルであ る。現在,各種作動流体を使用したバイナリーサイクル 発電が進められているが,その中でもアンモニア-水混合 物を使用したカリーナサイクルを温泉発電に適用した実 証試験設備を建設し運用しているので,ここに紹介する。

2. 温泉発電

2.1 国内の温泉と温泉発電の可能性

日本には約27,500か所の温泉(源泉)があるといわれ ている⁽²⁾。 また全国の既存の温泉だけで72.3万kWの発 電可能な熱量があるとの試算⁽³⁾もされている。図1に示 すように温泉は全国に分布しており,特に中部から東北 にかけてと九州に温泉の潜在量が大きく,これらの温泉 が発電に利用できると,全国的に分散発電としての可能 性が広がると考えられる。

温泉発電では,

- ① 新たに温泉井戸のボーリングを必要としない。
- ② CO2の排出の少ない電気を作ることができる。
- ③日照や天候に左右されずに安定的に発電できる。

原稿受付 2013年9月24日

*1 地熱技術開発株式会社 技術部 〒104-0033 中央区新川1-22-4 新川ニッテイアネックスビル

Fig.1 既存温泉の資源量⁽³⁾

等の優れた特徴を有する。

2.2 地熱バイナリーサイクル発電と温泉発電の現状

国内で最初のバイナリーサイクル発電設備は2004年 に大分県八丁原で発電出力110,000kWの地熱発電所に併 設して建設された。熱源は143℃の地熱水で発電出力は 2,000kW⁽⁴⁾である。その後、しばらく地熱バイナリーサ イクル発電設備の建設はなかったが、2011年3月の東日 本大震災の後、稼働率の高い再生可能エネルギーとして 地熱及び温泉熱が見直され、バイナリーサイクルを使用 した温泉発電がいくつか建設されている。

表1に現在実用規模で行われている温泉発電を示す。

Table 1 国内の温泉発電設備⁽⁵⁾

設置年	設置場所	発電出力	熱源温度	作動流体
2011年12月	新潟県松之山温泉	87kW級	約98°C	アンモニア-水 混合物
2013年2月	大分県別府温泉	60kW級		フロン系 (HFC-245fa)
2013年2月	長崎県小浜温泉	60kW級、3台	約105°C	同上
2013年2月	九州電力山川発電所	250kW級		フロン系(HFE)

バイナリーサイクルは、図2のように熱源と作動流体 の2つのサイクルから構成される。このため「2つの」 を意味するバイナリーとサイクルを組合わせてバイナ リーサイクルと呼ばれている。

バイナリーサイクルは大別して、オルガニックランキ ンサイクル (Organic Rankine Cycle:以下略称ORCと 呼ぶ)とカリーナサイクルに分類される⁽⁶⁾。

Fig.2 地熱・温泉バイナリーサイクルの概念

ORCは、基本原理として従来から気力発電所に使用 されているランキンサイクルを使用するが、沸点の低い 有機物(オルガニック)を作動流体として使用する。一 方、カリーナサイクルでは、アンモニア-水混合物を作 動流体として使用し、混合物の特性を利用するための仕 組みが追加される。

バイナリーサイクルでは熱的性能を決める上で,作動 流体の特性が重要である。表2に各種作動流体の特徴を 示す。ORCの作動流体には、フロン系(エアコン冷媒 に使用されるHFC245fa等)及びペンタンやブタン等の 有機物が多く使用される。カリーナサイクルで使用され るアンモニアは,他の作動流体と比較して,沸点が低い こと,潜熱が水についで大きいことを長所として持つ一 方,使い難い等の短所がある。

熱媒体 名称	代替フロン HFC245fa	代替フロン HFE	ノルマル ペンタン	インペンタン	アンモニア	编考
化学式	C3H3F5	C3F7OCHB	C5H12	C5H12	NH3	
沸点 (大気圧)	15.3°C	34°C	36°C	27.7°C	-33.4°C	水: 100℃
潜熱 (大気圧)	196k.l/kg	142kJ/kg	351kJ/kg	357kJ/kg	1,369kJ/kg	水:2,257kJ/kg
地球温暖化 係数 GWP	950	400	小	小	0	CO2: 1
オゾン層破壊 係数 ODP	0	0	0	0	0	
可燃性	tal.	なし	あり	あり	あり	
発火点	-25°C	なし	-49°C	-51℃	132°C	
使用バイナリー 発電メーカー	神戸製鋼等 ORC	川崎重工 ORC	富士電機 ORC	JFE ORC (オーマット)	水との混合物と してカリーナサ イクルで使用	

Table 2 バイナリー発電の作動流体(7)

3. カリーナサイクル発電設備

3.1 アンモニア-水混合物の特性とカリーナサイクル の基本原理

カリーナサイクルはDr.Kalina により考案された高効 率発電サイクルで、熱源温度や用途に応じてサイクル構 成の異なるものが多種考案されているが、全てに共通の 特徴は以下である。

- (1)作動流体としてアンモニア-水混合物を用いる。この 混合物の気泡点(蒸発が始まる状態)の温度は水の沸 点よりも低いので、より低い温度の熱源が使用可能で ある。
- (2)アンモニア-水混合物を一定圧力で加熱する時,混合物の蒸発温度は気泡点温度から露点(凝縮の始まる状態)の温度まで徐々に上昇していく。同様に,凝縮過程において凝縮温度は徐々に露点温度から気泡点温度まで低下していく。このため,混合媒体と高温熱源または低温冷却媒体との間の温度差が均一化され,ピンチポイントの問題が緩和される。したがって,熱交換による不可逆損失が小さくなることから,顕熱形熱源からの動力回収に適する。

ー例として図3に, 圧力が0.6MPa及び2MPaのアン モニア-水混合物の状態図と, アンモニア濃度70wt%,

Fig.3 アンモニア-水混合物の状態図と蒸発過程

2MPaの混合物の蒸発 過程を示す。

当初Dr.Kalina によ り考案された図4のガ スタービンコンバイン ドサイクル等の高温熱 源を対象とするカリー ナサイクルでは、サイ クル内の混合物濃度を 調整する蒸留凝縮サブ システム(Distillation Condensation Sub System: DCSS)を使 用し、蒸発過程と凝縮 過程の混合物濃度を変 化させると共に凝縮は

Fig.4 ガスタービンコンバインド⁽⁸⁾ サイクル用カリーナサイクル 低圧と高圧の2段で行っている。

高濃度のタービン排気は低圧凝縮器に入る前に希釈溶 液と混合され濃度が低下するので,凝縮終了点付近にお ける露点温度は上昇し,通常の冷却温度における凝縮が 可能となる。また,この過程でタービン背圧が下がり熱 落差が大きくなるため発電量が増える。

しかしながら、DCSSは機器構成が複雑になるので、 温泉発電のように比較的熱源温度が低い場合はDCSSの ないサイクルとなっている。

3.2 温泉発電用カリーナサイクル

温泉用カリーナサイクルは、熱源温度が100℃前後と 低いことを考慮し、図5に示すように循環ポンプ、蒸発 器、再生器、タービン発電機及び復液器で構成されるシ ンプルなサイクルとなっている。作動流体の流れを追っ てみる。循環ポンプにより蒸発器に送られたアンモニア -水混合物は、温泉水により加熱され蒸気となってセパ レータに入り、高濃度の飽和蒸気と低濃度の飽和液に分 離される。飽和蒸気はタービンに送られて仕事をし、飽 和液は再生器で循環ポンプから送られたアンモニア-水 混合物の一部を蒸発させる。タービンの排気側では、再 生器で熱交換し温度の下がった低濃度液と、タービン排 気の高濃度アンモニア蒸気が混合した後、復液器で冷却 水により復液しアンモニア水に戻る。

Fig.5 温泉発電用カリーナサイクル

このサイクルの特徴を以下にまとめる。

- (1)高濃度のアンモニア-水混合液を蒸発器に供給し,熱源の低温部分まで利用して蒸気を発生させる。
- (2)蒸発器内では混合液が非等温蒸発し、熱源に近い温度 まで加熱される。
- (3) ランキンサイクルでは、蒸発器で乾き飽和蒸気まで完 全に作動流体を蒸発させるが、このサイクルでは湿り 状態で蒸発を終了させる。
- (4)湿り蒸気はセパレータで蒸気と液に分離され,液分の 保有する熱は再生器でアンモニア-水混合液の一部の 蒸発に利用される。
- (5)DCSSのあるサイクルと同じく,タービン排気は復液器 に入る前にセパレータで分離された低濃度アンモニア 水で薄められ濃度が低くなった後,復液器で復液する。

例えば、温泉水の温度を95℃と仮定して、ORCの作 動流体として代表的なHFC245faとアンモニア-水混合物 (濃度77wt%)の其々の場合の蒸発器内の温度プロファ イルを図6に示す。

HFC245faの場合でも、圧力を下げれば蒸発器内で熱 源から受ける熱量は増加する傾向にあるが、アンモニア -水混合物の場合は非等温蒸発するので、HFC245faより 一層低い温度まで熱源を使用することができる。

熱源の温度を高い温度から低い温度まで利用できるこ とは、同一熱量を熱源から取得する場合、熱源の流量が 少なくてよいことを意味し、したがって熱源を供給する ポンプの消費電力は小さくて済む。

4. 松之山温泉バイナリー発電実証試験設備

4.1 背景

当社では環境省殿より平成22年度から24年度の委託事 業として「地球温暖化対策技術開発事業(温泉発電シ ステムの開発と実証)」を受託した。この事業の目的は, CO₂削減効果が極めて高い地熱発電の一つである未利用 温泉熱を利用した温泉発電について,温泉や電力系統に 影響を及ぼさない安心・安全な温泉発電システムの実用 機の開発を行うことである。

その目的から,新潟県十日町市松之山温泉の協力により,実際の温泉を利用した現地実証試験を平成23年12月 に開始した。

4.2 実証試験設備の概要

本設備は、新潟県十日町市松之山温泉組合の協力のも と、同温泉の鷹の湯3号井のうち温泉に影響を与えない 量を熱源としている。温泉水の蒸発器入口温度は98℃を 設計温度としている。また、復液器の冷却水には冷却塔 で作った冷水を使用している。

図7に実証試験設備全景,図8に発電所建屋内設備, 図9にフローシート,及び表3に実証試験設備の仕様を 示す。なおブローダウンタンクはカリーナサイクルのよ うにアンモニアを扱う設備に特有のもので内部に水を貯 留したタンクである。万一,系内の安全弁が作動した際 にもアンモニアを大気解放することなく,水を貯留した このタンクにアンモニアを回収することができる。

Fig.7 松之山バイナリー発電実証試験設備全景(工事時)

Fig.8 発電所建屋内設備

Table 3	実訨設備仕様

	項目	仕 様		
設	熱源流量	最大388L/min		
計仕	熱源温度	98°C		
様	冷却水温度	冬期7℃、夏期30℃		
タービン発電機 タービン 発電機 最大発 最高回		タービン:アウターフロー半径流(ラジアル)型 発電観:永久破石式同期発電観、タービン一体型 最大発電出力:87kW 最高回転速度:50,000min ⁴		
	蒸発器	ブレート式熱交換器 高温側:温泉熱水、低温側:アンモニアー水混合液		
機思	再生器	ブレート式熱交換器 高温側、低温側:アンモニアー水混合流体		
留仕様	復液器	ブレート式熱交換器 高温側:アンモニアー水混合蒸気、低温側:冷却水		
	循環ボンブ	横型多段ボンブ		
	熱源槽	2m3		
- 8	熱源ポンプ	縦型多段ボンブ		
3	冷却塔	開放型		
1	冷却水循環ボンブ	縦型多段ボンブ		

4.3 実証試験設備のタービン発電機

カリーナサイクルで使用するアンモニア-水混合物は, 蒸発潜熱がORCで使用する作動流体より大きいことが 特徴の一つにある。これは,同一熱量を熱源から得る場 合,循環流量が他の作動流体よりも小さいことを意味す る。 一方, 沸点が他の作動流体より低いことは, 同じ温度 では他より圧力が高いことになる。したがって発電設備 の機器は, 他の熱媒体を使用した設備より, 高圧かつ低 流量に対応する必要がある。

タービンは低流量かつ比較的高圧の条件に適したアウ ターフロー型半径流(ラジアル)タービンを使用した。

図10のタービン発電機の構造は、タービンと発電機は 一軸で軸端に羽根車を設けている。発電機は永久磁石式 高速同期発電機で、ギアボックスの代わりに電気的に回 転数を系統周波数に変換している。

このタービンの特徴は小型でありながら高効率なこと である。その理由は通常のタービンには設備される入口 のガバナ弁がないことで圧力損失が少ないこと,また前 述のようにギアボックスがないことから機械損失が少な いことによる。

Fig.9 実証試験設備フローシート

Fig.10 タービン発電機

タービン内部はノズル,ブレード及びディフューザ で構成され,蒸気はまず軸方向へ流入し,その後ノズル を経て円周方向へ流れていく。タービン発電機の構造概 要,及びローター参考例を図11,12に示す。

4.4 実証試験設備の運転

4.4.1 経緯

2010年8月に工場で実際にアンモニア-水混合物を使

Fig.11 タービン発電機構造概要⁽⁹⁾

Fig.12 タービンローター参考例⁽⁹⁾

用した実証試験設備の機能・性能試験を実施し,その後, 同設備を現地に建設し,2011年12月に開所式を行った。 その後,しばらく調整運転により機器の特性を把握した 後,使用前安全管理審査に合格し現在に至っている。

4.4.2 タービン発電機の性能

図13に、タービン発電機の工場性能試験結果を示す。 なおシャフト効率72%は目標とした値である。

4.4.3 現地運転結果

本設備の熱源の設計流量は表3に示すように388L/ minである。一方、今までに運転した短期間での最大の 熱源流量は約350L/minであり、連続運転では約130L/ minであった。この理由は、温泉に含まれる非凝縮性ガ スにより、熱源ポンプの性能低下が起こったため最大流 量が得られなかったことと、定常運転で流量を増やした 際の温泉の枯渇の可能性に対する地元の危惧であった。

安全に運転するために現在までのところ,河川に放流 されている温泉(設計条件の約1/3)の熱源流量で運転 している。この結果,入熱が少ないことから,セパレー タ入口圧力及び温度が低くなり,セパレータの気液比が 小さく,タービンへの蒸気流量も設計値に比べ少なく なっている。しかしながら、図14に示すように、発電サ イクルとしては非常に安定した運転を行っている。

実証試験の熱源として利用した松之山温泉鷹の湯3号 では、本設備の運転開始まで熱源の弁を操作することは なく、実証運転が始まってから初めて弁操作を行った。

その際,熱水と共に大量の蒸気が同時に生産されるこ とが判明した。当初設計の熱源タンクを利用した場合, 設計流量である388L/minまで流量を上昇させると熱源 タンクの強度的な安全性が保てない懸念があることから, 熱源タンクを耐圧型のフラッシュタンクに交換した。ま た,非凝縮性ガスの放散を促進する機構を内部に取り付 けた。

Fig.15 鷹の湯3号の蒸気と熱源タンク(実証運転時)

また,松之山温泉は積雪が非常に多い上,実証試験設備の設置場所は特に山深い場所にあるので冬期には工事 ができない。現在,新たに熱源不足の対策として,鷹の 湯3号から気液二相流として取り出して,熱水とともに 蒸気を熱源として利用可能な方式に変更して,若干の非 凝縮性ガス分が流入しても余裕のある伝熱面積を持つ蒸 発器と共に改造中である。これによって,設計条件の熱 量をほぼ確保できる見通しである。

4.4.4 実証試験設備の検討課題

今後,熱源タンク等の改造終了後,長期間の運転を通 じて発電設備の信頼性や連系する電力系統,更に温泉へ の影響に対するシステムの長期的な信頼性や安全性を実 証していく予定である。

これまでの実証運転を通して分かった課題を以下に列 記する。

- (1)熱源条件が設計条件と比べて大幅に低い。今後,熱源 側の熱量の増加,熱交換器の性能向上の両面から,入 熱条件の向上を図っていく必要がある。
- (2)温泉の湧出量や泉温を経年変化も含めて正確に把握していく必要がある。
- (3)松之山温泉の場合,温泉付随ガス量も継時的に変動している様子で,分離しきれない温泉付随ガスの一部が蒸発器側に混入しており,蒸発器の熱交換性能にも影響を及ぼしていることから,その対応が必要である。
- (4)熱源ポンプ、冷却水ポンプ及び冷却塔等補機の所内電 力に占める割合が大きく、送電端出力を低減させる原 因となる。これら機器の消費電力を低減する工夫が必 要である。

4.5 温泉発電の商用化への課題

前項と重複する箇所もあるが、今後の温泉発電の商用 化に対する課題を以下にあげる。

(1)温泉に影響を及ぼさない安心・安全な温泉発電

商用規模として考えられる数十kW以上の発電を行う には、一ヶ所当たり数百l/minの温泉水を確保する必要 がある。現在使用している温泉の余剰分としてではなく、 浴用温度までの熱エネルギーをカスケード利用した温泉 発電の実施が望まれる。

(2)安定した温泉熱源の確保

温泉の選定に当たっては, 湧出量や泉温の経年変化の 把握が必要である。

(3)発電設備技術関連

・小型化:温泉発電設備の設置場所は、源泉の近くになるので山間部のケースが多く十分なスペースの確保が難しい。この点から、できるだけ設置面積の少ない設備が望まれる。また現地への搬入道路も制限を受けることが多いので、機器搬入の配慮も必要である。

・低コスト化:温泉発電は小規模なものが多く発電単価 当たりの設備費が必然的に割高になる。汎用品や量産品 を多用し,また現地工事期間を短縮することで建設コス トを低減することが必要である。更に次項の法制面によ るコスト高の要因も改善が望まれる。

・補機消費電力の低減:前述のように、熱源ポンプ、冷却水ポンプ及び冷却塔などの補機の所内電力に占める割合が大きく、消費電力を低減する工夫が必要である。

・温泉沈殿物(スケール):炭酸カルシウム等の温泉含 有物が蒸発器の伝熱面に付着すると,熱交換器の性能が 低下し所定の熱源熱量の確保が困難になる。付着物の有 無と生成時の対応を検討しておく必要がある。

(4)電気事業法,系統連系関連

・電気事業法:現在,電気事業法の規制緩和により,一

定の要件を満たしたフロン系作動流体を使用する温泉発 電については、主任技術者の駐在、工事計画書の届出、 各種検査等が不要となっている。今後、アンモニア-水 混合物を使用する設備に対しても同様の対応が得られれ ば、設備投資費及び維持管理費の低減につながり、普及 の促進に効果がある。

・系統連系ガイドライン:現在,系統連系点の出力が 50kW以上の発電設備については高圧連系(6,600V)が 必要となっている。今後,この制限が緩和されれば,若 干大きな容量の発電設備に対しても高圧受電設備が不要 になり,初期投資費の低減につながる。

(5)事業性について

事業化においては、施設の老朽化、温泉沈殿物(ス ケール)の発生、温泉成分による発電設備の腐食による 修繕費の増大、温泉側の変化や損壊による温泉供給量の 減少や停止、再生可能エネルギーの固定価格買取制度に おける長期契約(15年)の保証など種々の事業上のリス クの入念な検討が必要である。

5. 結言

本事業はCO₂削減効果が高い地熱発電の一つである温 泉発電の普及を目指し,温泉に影響を与えない安心・安 全な温泉発電システムの実用機の開発を行うことを目的 とした。まだデータの不足している点もあり,今後の実 証運転でこれらを補完していく予定である。

本技術開発等事業にあたっては,環境省地球環境局地 球温暖化対策課のご担当者各位,温泉発電システム実証 試験に係る現地検討委員会の委員の方々,十日町市及び 新潟県の関係各所からご指導頂くとともに,事業の推進 に関しても種々のご配慮を賜った。ここに厚く御礼申し 上げる。

6. 引用文献

- (1) 日本地熱学会IGA専門部会, 2008年
- (2) 環境省 平成23年度温泉利用状況
- (3) 村岡博文,地熱エネルギー開発の最新動向と地熱研究開発の必要性,東京大学エネルギー工学連携研究センター 第14回CEEシンポジウム,2012年5月31日,P47
- (4) 九州電力 ホームページ
- (5) エンジニアリング協会,平成24年度小規模地熱発電及び 地熱水の多段階利用事業の導入課題調査手引書,P18
- (6) エンジニアリング協会, 平成24年度小規模地熱発電及び 地熱水の多段階利用事業の導入課題調査手引書, P22
- (7) 宇部興產MSDS, Wikipedia他
- (8) Tai Furuya, Yutaka Mori, An Application of Kalina Combined Cycle to Refuse Incineration Power Generation (1st Report), Memoirs of the Faculty of Engineering Kyushu University, Vol.61. No. 2, P46
- (9) Phil Welch, Patrick Boyle, Marc Sells, Michelle Giron, Construction and Startup of Low Temperature Geothermal Power Plants, GRC Conference-SanDiego, CA, October 26th, 2011, P13 & P19

特集:中低温熱回収タービン開発の現状

Power from Waste Heat Through an Advanced ORC

EPPINGA, Quirijn^{*1} VAN BUIJTENEN, Jos^{*1}

Key Words : Organic Rankine Cycle, exhaust heat recovery, biogas, landfill gas, digester gas

1. Introduction

In recent years, interest in maximizing the residual heatenergy recovery of various processes has grown significantly. An obvious application for this relative low temperature heat is of course to use it for heating purposes like residential or district heating. However, this means that such a heat sink must be available at the location where the heat is generated.

Moreover, residual heat has often a much higher temperature than the temperature needed in heat applications; hence a considerable amount of exergy is lost. Furthermore the need for heating is usually limited.

Converting this heat into electricity makes it transportable, while the value may be appreciated well as this electricity can replace purchase and/or can often benefit from the fact that it is generated as a (renewable) extra: free from CO_2 or any other harmful emission. For this reason, several initiatives from academia and industries are being pursued, to develop small power plants based on the principle of the Organic Rankine Cycle (ORC).

This paper covers the successful development and deployment of such a system, the Triogen ORC. The development started in the early nineties at the Lappeenranta University of Technology in Finland, and was industrialized and commercialized by Triogen B.V. in The Netherlands since 2002⁽¹⁾. Deployment took place since 2006, resulting in 20 units build so far, and 10 units on order or being commissioned.

2. System Design

Considering the residual heat available in the world, one can distinguish temperature, locally available amount and the carrier of this energy being a gas or liquid, characterized by its composition. Many attempts have been made in the past to design a commercially feasible system, meaning that the investment could be recaptured in an acceptable period. Given the low electricity prices and available technology at that time, many attempts failed, and gave ORC a reputation of a too expensive technology. To overcome this, one should aim for the highest possible efficiency, together with limited investment cost. ORC process temperature proved to be a determining factor: first to reach a high Carnot efficiency, and second to limit the amount of heating surface needed to convey the residual heat to the system working fluid.

The Triogen system was conceived bearing this in mind, initially aiming for heat sources that can be found in the exhaust of internal combustion engines and turbines. Here the temperature is well below the well-known maximum live steam temperature (540 °C) as is necessary to drive a steam cycle, but not too low to lose too much on Carnot efficiency.

In order to exploit this, a chemically stable working fluid had to be found, with a critical point at approximately the minimum source temperature. For this application, Freon 114 was favored for a long time, until it was banned for its ozone depletion characteristics. A good alternative was found in toluene, as being chemically stable up the maximum heat source temperature to be applied, and for having a suitable thermodynamic diagram for designing different ORC cycles.

Based upon these characteristics, the decision was made to aim for a power level, which could suit the residual heat flux in the exhaust of gas engines from 1500 kW shaft power. This size proved to be suitable to serve a vast range of applications in bio-gas, landfill gas and combined heat and power (CHP).

The thermodynamic data then followed from cycle optimization studies, using a conventional ORC cycle with recuperator, and initially optimized for maximum power, hence condenser conditions as low as ambient temperature allows. Figure 1 shows the cycle scheme and the process in the T-s diagram. Liquid is pumped from the storage vessel to the main pump, which is mounted on the same shaft as the turbine and the high-speed generator. There it will get the maximum working pressure at which it will enter the recuperator and subsequently the evaporator. Residual or waste heat is led through the evaporator, where the working

原稿受付 2013年9月30日

^{* 1} Triogen B.V., PO Box 25, 7470 AA Goor, The Netherlands

fluid is heated up to the boiling point, evaporated and a little bit superheated. Although this is not necessary thanks to the positive slope of the co-existence area, there is some superheat needed for control purposes and to compensate for heat losses between the evaporator and turbine. Then expansion takes place in the turbine, which drives the high speed generator and the main pump. After expansion, the sensible heat in the fluid is re-used in the recuperator, to preheat the liquid before it enters the evaporator. Below the recuperator the condenser is situated, where the vapor is condensed by a liquid coolant, before it flows back into the storage vessel. Table 1 contains the main thermodynamic values as typical design values, which of course can vary depending on the heat source data.

Fig. 1 Cycle scheme and T-s diagram

CONDITION	PRESSURE	TEMPERATURE [°C]
#	[BAR]	
Ι	0,2	55
II	3	56
III	32	60
IV	32	150
V	31,8	320
VI	0,4	200
VII	0,3	70

Table 1 Typical thermodynamic data

3. Design of Main Components

3.1 HTG: High-speed Turbo Generator

The most eye-catching part in the cycle scheme above is the combination of turbine, generator and pump on one shaft.

This unique design feature allows for a completely hermetic design. There are no external shaft connections, hence no external shaft seals. Lubrication of the bearings is done by the working fluid in liquid phase; the generator is cooled by working fluid in the liquid and vapor phase.

This unique feature is made possible through the availability of a high speed generator, running at a speed which is equal to the optimal speed of the turbine. This eliminates the need for a gearbox, and leads to high efficiency for the expansion, still using a single stage radial turbine. The same is more or less valid for the main pump, which can be of extremely simple design. Another advantage of having the pump on the same shaft is formed by a unique possibility for power control, to be covered later in this paper.

The use of the working fluid as bearing lubricant and generator coolant allows for having only one fluid circulating in the high speed turbo-generator HTG. This eliminates the necessity of a separate oil cooling system, but also the need for separation of working fluid and lubrication oil, in case there are leaks from one side to the other. All external connections of the HTG casing are fixed flange connections that can be made absolutely tight.

The HTG shaft has a design speed of over 28.000 rpm, but for optimum performance generally runs at 25.000 rpm.

The hydrodynamic bearings are of the tilting pad design, which has proven to be very reliable. The shaft is positioned vertically, with the pump on top and the turbine at the bottom, from where expanded gasses can flow downwards into the recuperator/condenser and finally into the inventory vessel as a liquid.

A simple flanged connection and flexible hoses are used to connect the HTG to the static system components, allowing fast and simple exchange of the HTG as a module in case of servicing.

Figure 2 shows the HTG, and pictures of the main components.

Fig. 2 High-speed Turbo Generator and turbine details.

- 35 -

3.2 Evaporator

The evaporator is of simple smooth pipe design, made up out of horizontal U-shaped piping fixed at one side for free expansion. The small diameter pipes are of stainless steel material, and there is adequate access for cleaning. Allowable temperature is above the heat source temperature, so the evaporator is sufficiently safeguarded against no-flow conditions. The standard design can be sized to the specific conditions of the applications, as heat source temperature and flow.

Flue gasses are guided in a vertical direction from top to bottom through the evaporator. The lowest temperature is reached at the lowest point, where provisions are made to collect possible condensate during start and stop.

The working fluid passes the series of pipes in a vertical direction from bottom to top, in once-through mode. There is no need for a drum, and the outflow conditions are controlled such that no liquid can be present while entering the turbine.

3.3 Recuperator and condenser

The function of the recuperator is to make use of the sensible heat in the working fluid after expansion. This heat is exchanged with the pressurized liquid when it comes from the condenser. The system is designed in such a way, that the temperature of the liquid when entering the evaporator is high enough to prevent condensation of the flue gasses. This is done because in many applications flue gasses will not be completely free of sulphur.

Both recuperator and condenser are very compact plate in shell heat exchangers. They are factory assembled together with the storage vessel as one unit, forming the core of the ORC module assembly. The storage vessel is equipped with level indication, while the fluid condition in the condenser (sub-atmospheric) is continuously checked for ingress of noncondensable gasses.

The condensing heat is taken by a coolant (typically water or water/glycol mixture), which at its turn is fed to table coolers.

In cases where there is a heat sink available, this heat can be usefully applied. For this, a special version of the Triogen ORC is available (WB1-Vario), where condenser heat can be taken at a desired temperature of up to 80°C. Of course this will be at a cost of electrical power, but a control system is available to suit this purpose on a real time basis, for continuous optimization of the output.

3.4 Power electronics and control

In order to connect the high speed generator to the 50 or 60 Hz grid, an inverter is applied that allows for direct connection on a 3-phase 400 V level. The grid is used for

initial start-up of the system, and through this system the speed of the generator is controlled continuously on the basis of the desired temperature of the fluid entering the turbine.

Here the integral design of turbine, generator and pump plays an important role. Variation of heat input in the evaporator will result initially in a change in working fluid temperature.

The controller than orders a different speed of the generator, hence of turbine and pump, such that the working fluid flow is adapted to the actual heat input for reaching the desired temperature at turbine inlet. The result is a very smooth operation, characterized by a high turn-down ratio down to 25 % and almost constant efficiency down to 60 % power.

Power electronics and PLC controller are assembled in a separate module, which at site can be accommodated in connection with other similar equipment.

4. The ORC 160 kWe power plant

After successful testing of the prototype, the first commercial package was designed (called the WB1), consisting of four modules for turn-key delivery⁽⁴⁾:

- The standard process module, consisting of HTG, recuperator, condenser, storage vessel, pre-feed pump, valves, including connecting piping and instrumentation
- The heat supply module: an evaporator tuned at the conditions of the available heat, to be connected directly to the heat source
- The heat rejection module: table coolers for the cooling water which cools the condenser, tuned to the ambient conditions at site
- The standard electrical cabinets, that contain the power preparation module, which connects the high speed generator directly to the grid to supply the power at 400 V, 3 phase, 50 or 60 Hz, the control module to control the unit and the independent safety system.

4.1 Process Module

The process module is a standard factory assembled unit, with external dimensions within transportation standards. The unit is built around the recuperator/condenser/storage vessel assembly, mounted in a steel structure which is covered and sealed by special designed plating and doors. The components are arranged vertically, with the HTG on top, so turbine outlet flow is downwards into the liquid inventory at the bottom. There are four main connections to the other modules:

- · Liquid and vapor to the evaporator
- · Cooling water to the table cooler or heat sink at site
- · Electrical cables to the power inverter
- Connections for measurement and control to the control module
Apart from these main connections, there might be pipes and ducting for package ventilation and discharge of emergency valves. Figure 3 shows pictures of the process module.

Fig. 3 Process Module (lower picture with opened yellow doors)

4.2 Plant integration

Figure 4 shows a typical turn-key supply of an ORC connected to two bio-gas engines of 800 kWe each. Centrally positioned is the process module. The heat supply module (evaporator) is connected to the flue gas outlet of two gas engines through a set of piping and valves, to allow single engine operation and to isolate the ORC from the running engines in the unlikely event of an ORC failure. All units are to be used as a typical 'end-of pipe' solution: the process feeding the ORC is never disturbed by the ORC, and

Fig. 4 Integrated power plant (heat source: exhaust gas from two gas engines)

maintains completely its availability.

5. Applications

Although initially set up for the use of exhaust gas from internal combustion engines, a number of other applications arise, such as biomass combustion and residual heat from industrial processes like incinerators. Here the high temperature capability shows its merit: the heat can be directly transferred to the working fluid, without the use of an intermediate fluid as thermal oil or pressurized water. This eliminates the complexity, investment and power consumption of such a system. At the low temperature side, there is still the possibility to use the heat for possible available heating applications. Doing so the optimum use is made of the exergy present: higher temperatures for power generation, lower temperatures for heat, together with the flexibility to choose real time between the two to a certain extent. Figure 5 shows the typical application envelope, showing the performance data that can be achieved by the Triogen ORC so far.

Applications envisaged are:

- Gas engines running on natural gas, bio-gas, landfill gas, mine gas
- Diesel engines
- · Small gas turbines
- CHP for green houses, district and residential heating
- Combustion of biomass, wood, residuals and waste ^{(2),(3)}
- · Flares for landfill gas or other industrial flares
- Process heat form e.g. (petro)chemical, metallurgical, glass or brick production plants

Fig. 5 Application Envelope Triogen ORC WB1 and WB1-VARIO

6. Reference plants

After having demonstrated more than 4000 hours successful operation of the prototype, Triogen delivered their first commercial ORC in 2007 for a greenhouse cogeneration plant equipped with a 2 MWe Deutz gas engine. After that, 19 plants followed, which gathered up to almost 200.000 running hours. Demonstrated availability amounts to more than 97 %. The fleet leader ran more than 36.000 hours now. An overview of the plants is given below (status March 2013):

AD Digester gas engines:

• 7 plants in operation in The Netherlands, 2 in Czech Republic, 1 in Belgium

Landfill gas engines:

- 2 plants in France (GdF-Suez)
- 2 plants in Portugal (AdP)
- 1 plant in Germany

Mine gas engines:

- 1 plant in Czech Republic
- Landfill gas direct combustion:

• Netherlands (prototype)

- France: supplementary firing next to gas engines Natural gas engine:
- 1 plant for greenhouse co-generation in The Netherlands Bio-diesel engine:
- 1 plant in The Netherlands
- Direct combustion of solid bio-mass:

• 2 plants in Italy

- Order back-log and projects in preparation:
- 10 plants in Czech Republic, Italy, Latvia, Finland, Slowakia

7. Conclusions

A very versatile ORC concept as originally conceived by the Lappeenranta University of Technology in Finland has been developed into a real commercial product by Triogen of The Netherlands, for a vast range of applications.

Production is well under way, and continuous product development already led to several improvements. The first unit was contracted for 145 kWe, now 165 kWe has been demonstrated. In future, power range will be extended stepwise from the current 60 - 170 kWe towards 1 MWe.

Further product development will include wider operating range including CHP possibilities, and improved fluid dynamics for turbine ⁽⁵⁾ and pump.

Based on the very positive experiences up to now, demand is extending towards other applications like industrial waste heat (such as steel mills, base chemical production, glass and brick production, incinerators) and the use of heat from the combustion of biomass and waste.

Reliability, availability, maintenance and safety are on a professional level. Permitting was easily allowed in all applications, including unsupervised operation.

Thanks to standardization and efficient production, the investment proved to allow for very attractive returns.

8. References

- (1) Prof. ir Jos van Buijtenen, prof. J. Larjola et al: DESIGN AND VALIDATION OF A NEW HIGH EXPANSION RATIO RADIAL TURBINE FOR ORC APPLICATION, 5th European Conference on Turbo-machinery, Praha, March 2003
- (2) J. Heinimo, J.P. van Buijtenen, J. Larjola, J. Backman: SMALL ELECTRICITY PRODUCTION WITH HIGH SPEED ORC TECHNOLOGY. International Nordic Bioenergy 2003 conference, Jyvaskyla, 2/5 September 2003
- (3) Heinimö, J., van Buijtenen, J.P., Backman, J., Ojaniemi, A. & Malinen, H.: HIGH-SPEED ORC TECHNOLOGY FOR DISTRIBUTED ELECTRICITY PRODUCTION, 2nd World Conference on Biomass for Energy, Industry and Climate Protection, 10-14 May 2004, Rome, Italy.
- (4) J.P. van Buijtenen: THE TRI-O-GEN ORGANIC RANKINE CYCLE: DEVELOPMENT AND PERSPECTIVES, Power Engineer, Journal of the IDGTE, March 2009, Volume 13 Issue 1.
- (5) John Harinck, David Pasquale, Rene Pecnik, Jos van Buijtenen, Piero Colonna: PERFORMANCE IMPROVEMENT OF A RADIAL ORC TURBINE BY MEANS OF AUTOMATED CFD DESIGN, 10th European Conference on Turbo-machinery, Lappeenranta, April 2013.

航空転用ガスタービン技術のより効率的な使い方

米澤 克夫^{*1} YONEZAWA Yoshio 高村 薫^{*1} TAKAMURA Kaoru

キーワード: ガスタービン, 航空転用, 技術革新, GE, LM6000, Simple Cycle, Combined Cycle

1. はじめに

再生可能エネルギーの導入は電力系統の特性を更に挑 戦的なものに変革し、それと同様に、高経年化により効 率と信頼性の低下した古い発電設備を閉鎖することも新 たな変革の一つである。これらの変革はいずれも、電力 系統の安定化のためには何が火力発電に必要かと問題提 起し、その運用のプロファイルに影響を与えている。技 術革新はこのような課題に適合するための鍵となるもの である。航空転用型ガスタービンは近年、需要に応じた 柔軟な電力を供給するという重要な役割を演じており, 数多くの発電産業ポートフォリオの主要素になってい る。GEのエネルギー技術と航空技術の技術革命は、新 しい材料から新しい設計まで網羅しており、発電出力と 効率を改善し.より広範囲の応用においてより良い位置 を獲得するような、画期的な製品を生み出している。こ の論文では、35~65メガワットの範囲における航空転 用型ガスタービンの新しい技術革新が採り上げられ、そ れがどのようにシステムとプラントの効率を改善でき るかについて紹介している。例えば、LM6000PG⁽¹⁾の最 近の導入では、シンプルサイクルの発電出力を前世代 に比べ25%も向上し、コンバインドサイクルでは65メガ ワットの領域にまで向上している。この出力向上は現 在の50Hz仕様のLM6000と同じ敷地面積で実現できてい る。新しい技術革新を広範囲の応用に活用する例として, LM6000PGを使った2オン1のコンバインドサイクルプ ラントを採り上げ、急速起動、高速応答、高効率を実現 する発電効率52%の135メガワット級発電所を紹介する。 日本ではIHIがGEのLM6000ガスタービンを原動機とし た発電設備を自社で設計製作しており、シンプルサイク ルからコンバインドサイクルまでの幅広い応用で様々な 発電事業への貢献を行っている。なおこの論文はGE社 のエドワード・ウェイセク氏が2010年に発表した論文(2) をベースにしている。

2. 技術的概論

GE社が1971年に航空エンジンCF6-6の産業化を始めた

原稿受付 2013年10月11日 *1 (株IHI エネルギー・プラントセクター 〒135-8710 江東区豊洲 3-1-1 豊洲 IHIビル16F

ときから、20億ドルを超える投資が航空転用型製品に費や され、現在のGEエネルギー航空転用型ビジネスを形成 している。過去40年以上に亘って、GEは艦艇用に使わ れてきたオリジナルの18メガワット級LM2500から,性 質の異なる3つの製品群へと技術革新を続けてきた。3 つの製品群とは、石油ガス掘削設備、大学熱電併給設備、 そして工業団地のコンバインドサイクルプラントである。 これらの3つのプラットフォームは、それぞれのお客様 固有のプロジェクトの大きさや応用に応じて、実績のあ る効率の高い製品の生産に寄与している。それぞれの プラットフォームへの投資は続いており、世界的にも認 められ、広範囲の応用に利用されるようになってきてい る。それらはすべて例外なく最新の技術革新が反映され ている。LM6000PGと称するSAC(標準環状燃焼器)型 やLM6000PHと称するDLE(低公害燃焼器)型のガス タービンは、LM6000という既に確立した航空転用型ガ スタービンのファミリーと90%の部品共通性を持ちなが ら、同じ敷地面積でより高出力・高効率を実現している。 これらの革新は、先端材料、製造プロセス、及びちょっ とした設計上の調整により産み出されたものである。ガ スタービン技術におけるGE社の広範な経験をテコにし て、数多くの改良がGE航空部門及びGEエネルギー火力 部門から導かれてきた。既に確立された技術を利用する ことにより、LM6000への最新の技術革新は、既存の製 品に匹敵する信頼性を維持するものと期待される。

GE航空技術からの革新の一つの例として、 LM6000PGの高圧タービン(HPT)ロータはGE CF6-80E航空エンジン(多くのエアバス330機に搭載)を ベースにしている。一方LM6000PCはそれよりも古い GE CF6-80C2エンジンにベースにしたロータである。こ のHPTロータの設計変更は新しい高温合金の導入と冷 却鋳型の改善であり、この変更で推力を27,200kgから 31,800kgに向上している。その結果、低圧圧縮機はより 高速回転ができるようになり、空気流量を増加し、圧力 比を30から32へと上げることができた。さらに追加的な 設計変更としてHPTロータ間の新しいボルト鋳型があ り、材料のストレスを大幅に削減している。これらの材 料革新と設計改良の結果として、LM6000PGのHPTロー タのサイクル寿命はLM6000PCのサイクル寿命に比べて 40%以上改善している。

また、材料、製造プロセス、及び冷却設計改良の相乗 効果により、LM6000PGはより高温の燃焼温度で動作す ることを可能にしている。例えば、低圧タービン入口温 度は50℃以上、圧縮機出口温度は40℃以上上昇している。 これらの設計変更は、エンジンを流れる空気流量を増 加することに伴い、ガスタービンを3,600rpmではなく 3,930rpmで回転することを可能にしている。この高速 回転数は航空エンジンの実速度に匹敵する。

これらの変更による正味の結果は、同じ敷地面積で、 より大きな出力と同等以上の効率が得られるようになっ たということである。従って、LM6000PG及びPHの最 新の導入では、これらの新しい技術革新が脚光を浴びる ことになるだろうし、また経済的な恩恵も受けることが できるであろう。それぞれの応用例における利点を以下 にまとめる。

1)シンプルサイクルの増強

LM6000はシンプルサイクルの35~65メガワットの 領域では他のどのメーカよりも数多く設置されている⁽³⁾ ので、このような技術革新は、狭小面積でより大きな発 電出力を探しているお客様に対してさらに付加価値を拡 大することになる。シンプルサイクルの17年以上の運転 データに基づくと、より広範囲の大気温度と出力レンジ において効率的に運転するガス燃料発電の成長需要があ る。LM6000の改良は発電事業者に対してより広範囲の 運転プロファイルへの適合を実現する。さらに、多くの 電力系統では、電力分布異常や全停電さえも引き起こし かねない周波数変動を経験している。これには、電源設 備のトリップ、系統周波数の不平衡、或いは系統の特性 を変化させるような変動性の風力発電や水力発電への応 答といったいくつかの原因がある。LM6000ガスタービ ンはこれらの変動する負荷の要求に経済的に応えられる ような発電設備なのである。

2) サイクリックなコンバインドサイクル

今日のコンバインドサイクルプラントの設置理由に は、部分負荷で運転し、電圧変動に耐え、急な発電要求 にも応えるという必要性が増えてきている。こういう市 場の多くではGEの航空転用型ガスタービンを用いるよ うになってきており、効率重視の要求を満たしつつ系統 負荷の要求を満足するという方向に向かいつつある。2 オン1や3オン1という形態が過去15年以上に亘って増 えてきており、200メガワット以下の変動負荷に対応し ている。これらのシステムは、貫流ボイラと組み合わせ るとき、10分以内にシンプルサイクルとして運転できる という柔軟性を与え、その間に蒸気系統が圧力と温度を 準備することになる。さらに、貫流ボイラ方式では、ガ スタービンの制限のないサイクル耐久性を活かすために、 繰り返しのサイクルに耐えられるようにシステムが統合 されている。プラントのモジュール構成とシステム統合 における進歩が今や実現されており,航空転用型プラッ トフォームのコンバインドサイクルを設置することに よってさらなるお客様の利益が提供される。

3) 自然エネルギー発電のサポート

発電ポートフォリオは恒常的に温室効果ガスの削減に 挑戦している。LM6000はよりグリーンなポートフォリ オを目指す発電事業者の努力に報いるために高いシンプ ルサイクル効率の設計を確立している。単なるガス発 生機を超えた天然資源と技術改良により、LM6000ガス タービン発電ユニットは数多くの発電ポートフォリオの 中でコストパフォーマンスの高いグリーン化の解として 位置付けている。

以下の章では,航空技術に基づいた産業向け航空転用 型ガスタービンの強固な財産がいかに信頼性の高いプ ラットフォームを提供しているかということを,いくつ かの応用例と技術的改良点とともに論証し,電力産業の 広がる要求に応えていることを示している。今まで述べ てきた3つの応用例においては,技術革新の採用と同様 に発電ユニットの適用事例を紹介するために,いくつか の具体的な実績が提供されている。

2.1 シンプルサイクルの増強

主電源

電力産業では、非効率でいまや信頼性もなくなった数 多くの老朽化設備を閉鎖することを見据えており、それ は発電ユニットの効率と起動特性の再評価が電力需要に 対応するための鍵であることを示している。表1は起動 特性、効率、及び周波数安定性に関する様々な発電技術 間の比較を示したものである。発電設備の完璧な再構築 を目論んでいる発電事業者はどの技術が最も経済的に整 合する発電技術になるかを評価するであろう。たとえば, 石炭火力発電所でさえそういう変化する電力需要に呼応 してサイクル運転することも可能であるが、そのために は十分に余裕のある事前通知が必要であり、しかも最も 効率の悪い対応方法になる。従って系統運用者はすばや い起動が必要なときには効率のいいコンバインドサイク ル発電所を考えるであろうが、しかしながらそういう発 電設備は部分負荷効率と細かく発停することに限界があ るので需要を期待通り達成できない。最も経済的な方法 はオープンサイクルのガスタービンであり、シンプルサ イクル発電とも呼ばれている。シンプルサイクル発電の 中でも、大型産業用発電機はより柔軟な発電が可能であ るが、効率の点では航空転用型ガスタービンよりも劣っ ている。以上のような各種要因から、変動する電力需要 に迅速に適合することができる効率的な方法として、航 空転用型ガスタービンを強く採用するという結論が導か れることになる。

短納期のシンプルサイクルプロジェクトは地球規模の

Table 1 各種発電設備の運転特性

	石炭火力	コンバインド	オープン	往復運動	
		サイクル	フレーム	航空転用型	エンジン
負荷率(MW/分)	8	11	10	50-100	1
起動時間(分)	300	30	10-15	10	<10
発電効率	33	57	35	43	45
價性	н	н	н	L	L

傾向になり続けている。クウェートへの12基のLM6000 プロジェクトは単納期のシンプルサイクルの最近の事例 である。このプロジェクトでは夏期の需要に間に合わせ るために、12か月で2×200メガワットの発電所が計画 された。これを実現するためには発電ユニットをスキッ ド状に組立て、出荷前に工場で試験するという工場パッ ケージのアプローチをGEが採用することによって実現 可能となった。パッケージの設計はコンパクトであるこ とと、 潤滑油系統の視認性やエンジン搬出入設備のパッ ケージ内搭載といった整備性の考慮が求められる。これ らの特長はより効率的な発電設備の輸送を可能にし、海 上・陸上を問わず、標準的な輸送方法の採用を可能にし ている。さらに、お客様にとっては工場でのパッケージ 組立と試験を事前に立ち会うことができるという利点が あり、工期に間に合うような迅速な現地据え付けと建設 が可能になる。

2) 系統安定性

シンプルサイクル発電の必要性は圧倒的にピーク需要 対応によって牽引されてきた。しかしながら今日では数 多くの発電ユニットは全世界中の多くの地域において系 統の周波数維持という非常に重要な役割も担うように なっている。LM6000発電設備は改良された制御理論を 採り入れており、周波数低下の状況において瞬時に発電 出力を加増することができる。これをパワーブーストと 呼んでおり図1に示す。系統の周波数を回復し、不安定 状態が起きても全停電を防ぐことができる。この先進技 術は既存のタービン回転機械技術を利用したものであり、 ガスタービンの燃料制御に新しいアルゴリズムを採り入 れることにより実現したものである。

Fig.1 制御限界を超えた出力加増(パワーブースト)

この手法は特別な制御スケジュールで作られており, LM6000ガスタービン発電機のシステム内に統合されて いる。より効率的で,低コストで,系統の過渡的な不安 定状態において,安定性を回復するアプローチである。 発電システムは瞬時に発電出力を加減し,系統あるいは 設備管理者が系統周波数の急激な変動や急激な負荷投入 を検知した時に作動する。この系統安定性制御システム には2つの方法がある。1つは小数点以下の秒オーダー で瞬時に発電出力を上げることであり,これにより過大 な負荷が突然投入されるという状況において安定性を回 復し周波数制御を維持する。2つ目は系統につながった まま発電出力を瞬時に下げるという方法であり,工業負 荷のトリップや近隣送電線地絡などの大きな負荷遮断時 の安定性を維持する。

もしこういう方法がないとすれば,発電機は従来のよ うな周波数変動に対する反応性の鈍いガバナドループに 頼らざるを得ない。上記で述べた方法は外部的に設けら れた高速のプラントあるいは系統監視装置からの入力に 直接瞬時に反応するものであるため,より高速に反応し, 系統の安定性回復に対して本質的に大きな貢献をする方 向性である。こういう過負荷状態は15秒を超えない制御 範囲で行われる。これはLM6000にとっては系統の過渡 状態を吸収するのには十分な時間であり,ガスタービン の寿命には何ら影響するものではない。この手法を採用 してもLM6000の標準の整備間隔には影響しない。

2.2 サイクリックなコンバインドサイクル

工場組立したガスタービン発電機設備を現地に据え付 けるという改善ができることを示してきたが、同じアプ ローチがコンバインドサイクルのBOP(バランス・オ ブ・プラント)設備にも適用されようとしている。最新 のコンバインドサイクルプラント設計では、隔離され た発電エリアにモジュール構造の航空転用型コンバイ ンドサイクルプラントを建設するという手法が開発され ている。このシステムの特長は、工場組立の蒸気タービ ン、高速起動が可能な貫流ボイラ、および最大限に工場 組立されたプラント設備を短期間で現地に据え付けられ るということである。ここに紹介する推奨プラントは最 速起動時間、部分負荷効率、及び繰り返し起動停止可能 といった最大限の柔軟性をもった主要なプラント設備に より設計されている。

前述の最新LM6000ガスタービン製品(LM6000PG) では18%の排ガスエネルギーの増強と25%の発電出力増 強を実現している。これは2オン1のコンバインドサイ クルでは135メガワットの正味発電出力と52%の発電効 率を可能にする。DLE技術(LM6000PH)を使えば発 電出力は少し落ちるが効率は56%まで達成することがで きる。追い炊きをすればプラントとしてはエネルギー出 力を付加することができる。

2オン1のLM6000コンバインドサイクルプラント

に対するモジュール構造のアプローチでは、2基の LM6000ガスタービン発電機(GTG),2基の貫流型ボ イラ (OTSG),および1基のスキッド・マウント型蒸 気タービン発電機(STG)を軸に展開される。推奨プラ ントのレイアウトは図2に見ることができる。

Fig.2 2オン1 推奨プラントレイアウト

2オン1のコンバインドサイクルプラントのモジュー ル設計はLM6000GTGから始まる。700基を超える発電 ユニットのパッケージ経験から、LM6000GTGの設計は 2オン1コンバインドサイクルプラントのモジュール設 計に適している。最新のLM6000パッケージを前世代と 比べると、ケーブル接続と配管接続が70%も削減されて いる。敷地面積を小さくする設計改良も進んでおり、コ ンクリートの使用量が25%も削減されている。全体と して、LM6000パッケージの据え付けと試運転の工程は 40%削減されている。

推奨プラントでは貫流ボイラとドライ二次冷却を使 用して水の使用量を最小化し,柔軟性を最大化する。 OTSG設計はモジュール構造も最大利用している。6つ のモジュールで製造され,ドラム式HRSGに比べて,人 工費,材料費及び設備費など75%の削減が出来ている。

LM6000推奨プラントはモジュール構造のいろいろな オプションを有することになるであろう。その中には, 異なるLM6000エンジン機種も含まれるであろうし,チ ラーのようなBOPや,あるいはプラント主要機器のド ライ冷却能力などもオプション化するであろう。これら のオプションは基本となる2オン1のLM6000推奨プラ ントに適合するように設計されるであろう。

既存の経験に基づいて、LM6000コンバインドサイク ルの推奨プラントは24ヶ月の据え付け・試運転期間で設 計されている。もちろん、設計・調達・輸送なども含ん でいる。モジュール構造型の建設設計は、開発期間の短 縮、据え付けコストの削減及びリスクの軽減を含んでい る。

推奨プラントは実際の2オン1のLM6000コンバイン ドサイクルにより立証されたプロジェクトに基づいてい る。これらのプラントにおける実運転経験に基づき,最 大出力までの達成時間は30分以内である。さらに部分負 荷での効率改善も含まれ,整備コストの増加なしでコン バインドサイクルプラントの繰り返しの起動停止ができ るようになっている。

2.3 自然エネルギー発電のサポート

米国では、風力発電のコストも天然ガスや石炭火力と いった発電事業と競争できるようになるほど浸透して きており、2010年以降さらに急速な伸びを見せている。 2012年末では全米発電設備容量全体の5%程度にまで成 長してきており、いつか全米の電力の20%以上を供給す るようになるであろうと言われている。EUでは風力発 電の目標はさらに堅固である。2006年以降の年間新設発 電設備容量に占める風力発電の割合はおよそ30%であり、 2011年までにEU全体の発電設備容量の10%を超える容 量を風力発電が占めている⁽⁴⁾。

1) 風力発電

地球規模で風力発電へ傾倒しているにも関わらず,風 力発電は長期間にわたるベースロード発電にとって代わ ることはできない。お客様の需要が最大限になるような 夏の暑い日には,風力エネルギーの利用は期待できない。 従って,天然ガス燃料の燃焼タービンのような制御可能 なピーク対応電源と協調しているとき,風力発電は最適 に働くことができる。つまり風力発電による負荷の変動 に対応して発電出力を上下することのできる燃焼タービ ンが必要になる⁽⁵⁾。

数多くの発電ポートフォリオの中における風力発電の 普及に伴い,系統の安定化という必要性から,柔軟な 運転特性を有する発電設備の必要性が求められている⁽⁶⁾。 一般に風力発電は低負荷時間帯において主に貢献するも のであり,ピーク需要時間帯ではその貢献度は小さい。 さらに風力発電は変動性である。LM6000の急速起動と 系統安定制御特性は系統の安定化に貢献する。さらに、 急速で,繰り返し起動停止しなければならないという必 要性により,航空転用型の技術は起動停止,起動から部 分負荷,最大負荷から部分負荷と,様々な需要変化に対 応することができる。

急速かつ繰り返し起動停止を実現するために, LM6000は標準の10分起動をたったの5分起動にまで改 善することができる。10分起動は図3に示す。そのシー ケンスにはパージ,暖機,そしてガスタービンの負荷上 昇率も含んでいる。パッケージのパージの要求事項を適 切に維持すること,及び潤滑油の状態を"暖かい"状態 に維持することにより,およそ2分,10分起動シーケン スから削減することができる。また負荷上昇率は毎分12 メガワットから毎分50メガワットまで上げることができ, これによりシンクロアイドルから最大負荷までを4分か らおよそ1分に短縮することができる。これにより,起 動時間はLM6000の可能性を十分に活かして,速やかに 系統と同期し,突然の風の変動による風力発電の欠損を 補償することができる。

Fig.3 LM6000 10分起動シーケンス

ひとたび系統同期すれば、航空転用型技術はその航空 エンジンとしての特性を活かし、風力発電の需要変動を 追跡するようにスロットルを上下することができる。図 4はLM6000の典型的な負荷追従特性である。LM6000 はシンクロアイドルから最大負荷までを1分以下で調節 することができ、負荷変化の要求に秒単位で応答する。 GTGの寿命管理に対する鍵は正確に負荷変動をカウン トすることであり、そのパッケージソフトウエアにサイ クル・カウント・トラッキング・システムがプログラム されている。

Fig.4 LM6000 負荷追従モード

変動する風力に追従する能力はLM6000ガスタービン にとって標準的な特性であり、従って計画された整備ス ケジュールには影響を与えない(運転時間に基づく)し、 整備コストにも大きな影響を与えない。ガスタービンの サイクル制限部品に対するカウントを付加する必要があ るが、現在のLM6000製品の標準のサイクル寿命は6,400 サイクルを超える。さらに、LM6000PG/LM6000PHで は設計変更によりガスタービンのサイクル寿命は40%伸 びている。この発電容量でのガスタービンの中では最高 のサイクル寿命を有し、風力発電の補償用電源としては 長期間に亘り適合する。

2)水

ガスタービンの制御に関するもう一つの進化は水の 使い方にある。LM6000ではNOx低減と出力増強の2つ の目的で水が使用される。ガスタービンの効率の議論は しばしば燃料消費率(熱比率,効率)に基づいているが, 地球規模で数多くの水資源の欠乏の議論があるように, 水を効率的に使うことは運用のプロファイルを考える上 で非常に重要である。燃料コアの制御アルゴリズムの更 新は,NOx,発電出力,および系統周波数といった条 件に対して最大限効率的な水の使用方法を管理するもの である。

単一環状燃焼器(SAC)のLM6000モデルでは、最大 定格運転(冷却用や吸気条件用の水を含まない)におけ る水の使用量は1.688kg/sまでにのほる。これだけの水 の量がNOx低減とSPRINT(SPRay INTercoolerの略で、 圧縮機入口に水噴射して空気の温度を下げ、出力を増強 する技術)と呼ばれる出力増強に用いられる。大雑把に いえば2/3がNOx低減、残りが出力増強である。制御シ ステムでは、水の表計算アルゴリズムが特に水を大量に 使用する部分であるガスタービン過渡状態の水の使用量 を制御する。それは最大負荷への上昇、部分負荷運転、 及びSPRINT動作のオンオフといった状態である。図5 はガスタービンを部分負荷でSPRINT動作している例で ある。

すでに述べてきたように、運用コストに関わるプラ ントの効率解析は燃料消費と同様に水消費についても 始まっている。図5に示す例ではSPRINTに要する水を 35%削減している。もしプラントの運転プロファイルが、 定時の起動・停止で、かつ部分負荷運転であれば、水の 節約量は大変なものである。さらに、部分負荷運転にお ける最適な水消費の改善はガスタービンの熱比率の改善 を通して見られるように燃料効率の改善をもたらす。こ れは発電事業者にとって運用コストの改善につながる。

3. おわりに

GEの航空ビジネス技術を数十年にもわたって産業分 野へ応用し続けてきた結果は、堅牢で、高効率で、しか も信頼性のある航空転用型のガスタービン製品をお客様 に提供してきたことである。技術革命は更なる研究と開 発を伴って続いており、革新的な技術がガスタービン だけではなく、パッケージ設計から製品応用といった パワープラントのいろいろな局面に適用されてきてい る。発電市場は大きな変化を迎えつつあり、運用の柔軟 性というのが適合性を最大限に活かしお客様の満足を獲

Fig.5 可変SPRINT

得するというゴールに向けての鍵となる。航空転用型ガ スタービンを利用することにより,多くの発電事業者は 実証された技術から利益を得る新しい方法を見つけてい る。LM製品は数多くの市場サイクルを経て,今日まで に行われた投資が,これからお客様に対して数多くの利 益をもたらすことになるであろう。

4. 謝辞

GE社のEdward Wacek氏の論文を基に解説するこ とを了解してくれた同氏,並びに同じくGE社のDaniel Loero氏, Steve Demoret氏に感謝します。

5. 参考文献

- PowerGen Europe Launch, http://www.gepower. com/about/press/en/2008_press/060408b.htm
- (2) Edward Wacek, "A more efficient use of gas turbine technology", (2010)
- (3) McCoy Power Reports, (2009)
- (4) http://ge.ecomagination.com/products/wind-turbines.html
- (5) Ramona Vassar, "Wind Power Integrates with Natural Gas Plant at Emporia Energy Center Peaking Facility", RMEL Electric Energy, (2009)
- (6) Nicholas Miller, "Advantages of Flexible Thermal Generation in High Wind Penetration Grids", VGB Konferenz Kraftwerke, (2009)

- 44 -

Ni基鍛造材,鋳造材からなる摩擦圧接材の強度特性

Strength of Friction Welded Joints Consisting of Ni-based Cast and Forged Alloy

関原 傑^{*1} SEKIHARA Masaru **早坂 靖***2 HAYASAKA Yasushi

玉置 英樹*² TAMAKI Hideki **岡崎 正和***³ OKAZAKI Masakazu

ABSTRACT

To develop a compact and highly reliable micro gas turbine rotor, a turbine wheel and rotor-stacking shaft were integrated by friction weld. The characteristic strength of a friction-welded (FW) joint made of Ni-based cast alloy, MM247, and Ni-based forged alloy, IN718, was investigated. The 0.2% proof strength of MM247 was lower than that of IN718. The FW joint showed the same tensile strength as MM247 and the same creep rupture strength as IN718. The low cycle fatigue strength of the joint was lower than that of MM247 under a large strain load or low strain rate, but the joint showed the same fatigue strength as MM247 under other conditions. The creep fatigue strength of the FW joint was lower than that of IN718. Four mechanisms were considered to explain this deterioration: elastic follow up in IN718 due to low creep strength, a high triaxiality factor in IN718, anisotropic behaviors in MM247 due to a large grain size, and secondary stress at the interface due to different resistances to deformation.

Key words : Micro Turbine, Creep Fatigue, Ni-based Alloy, Friction Welded Joint, Elastic Follow Up

1. 緒言

近年,省電力化を目的とし,高効率かつ小,中容量の 発電設備を電力需要の大きい地域を中心に複数拠点に分 散させて配置し,送電損失などを低減する分散電源シス テムが提案されている。本システムに適した高効率な発 電設備としては,マイクロガスタービン (MGT),固体 酸化物型燃料電池 (SOFC)などを用いたコジェネレー ションシステムなどが期待されている。特にMGTは, 急速起動などの運用性に優れ,低NOx化,低騒音化を 図れる等の利点がある⁽¹⁾。

MGTは、図1に示すように圧縮機、タービン、燃焼 器、再生熱交換器から構成されており、高いメンテナン ス性とコンパクトな構造の両立が求められている。また、 高温の作動流体に直接触れる高温部品と低温部品が隣接 しており、両者を効率よく配置する必要がある。特に図 2に示すように、タービンホイールとシャフトからなる

		原稿受付 2013年3月18日
		校閲完了 2013年8月6日
*	1	(株)日立製作所 日立研究所
		〒317-8511 日立市幸町3-1-1
*	2	(株)日立製作所 日立事業所
*	3	長岡技術科学大学

ロータを一体化することで、回転軸の曲げ剛性向上など 多くの構造上の利点が得られる。タービンホイールには 高温の作動流体が直接触れるため、耐熱性が高いNi基鋳 造合金が用いられる。一方、やや低温側であるシャフト には、疲労強度を考慮してNi基鍛造合金が用いられるこ とが多い。

両者を一体化するに当り,図3に示すように一方の軸 を高速で回転させつつ他方の軸に押当てて接合する摩擦 圧接法が簡便かつ信頼性の高い接合手法として期待され ている。摩擦圧接の手法としては,図4に示すように所 定の回転速度へ昇速した後に,所定の寄り代(変位)を 得るまで圧力を負荷する工程の適用が一般的である。し かしながら,難溶接材であるNi基鋳造合金とNi基鍛造 合金の組み合わせからなる接合部材の強度には不明な部 分が多く,その破損形態を明らかとする必要がある。

異材継ぎ手に対する強度評価の研究例として、岡崎ら はフェライト系の低合金鋼とステンレス鋼からなる電子 ビーム溶接材のクリープ疲労強度は、ステンレス鋼での ひずみ集中に大きく影響され、ひずみ範囲分割法による クリープ疲労寿命予測が有効であると提案している⁽²⁾。

またPreussらは、Ni基鍛造材であるIN718材, Alloy 720Li材, RR1000材を用いて、共材からなる摩擦接合 材の強度特性を比較しており, 接合部付近の y'組織の 再析出の有無により強度特性及び溶接残留応力が影響 を受けることを明らかとしている⁽³⁾。さらにHuangら はAlloy720Li材とIN718材の摩擦接合材の特性を組織分 析も実施しつつ, y'組織の再析出有無により硬さ分布 がIN718材の方が柔らかくなると報告している⁽⁴⁾。また Dausらは, RR1000材とIN718材の摩擦接合材の界面で のき裂進展特性を評価し, RR1000材内では粒界を進展 することでき裂進展速度が高い領域があると報告している⁽⁵⁾。

本報で対象とするIN718材とNi基鋳造合金である MM247材からなる摩擦圧接材について、岡崎らは既報 において、負荷波形および負荷速度により接合材の寿命 が大きく影響を受けること、そのメカニズムに接合材と しての弾性追従挙動が影響していること、界面近傍の静 水圧応力の分布が影響していることを報告した⁶⁶。

Fig. 1 Components of Micro Gas Turbine

Fig. 2 Schematic of Turbine Wheel and Shaft

Fig. 3 Schematic of Friction Welding

Fig. 4 Control Parameters

Table 1 Chemical Compositions

Composition	Ni	Cr	Co	Мо	W	Та	Nb	AI	Ti	Fe	Mn	Si	С	В	Zr	Hf
IN718	52.5	19	-	3	-	_	5.1	0.5	0.9	18.5	0.2	0.2	0.04	-	-	-
MM247	60	8.3	10	0.7	10	3	-	5.5	1	-	-	-	0.14	0.015	0.05	1.5

Specimen	Test	Temp. (°C)	Strain Ratio	Strain Rate (%/s)	Tension Hold Time (min)	
	Tensile	RT, 600	_	_	-	
	Creep		_	_		
FW	Low Cycle Fatigue (Fast-Fast)	650		0.05	_	
	Low Cycle Fatigue (Slow-Slow)	050	-1	0.001		
	Creep Fatigue			0.01	10	
MAN40.47	Low Cycle Fatigue (Fast-Fast)	650	_1	0.1	_	
101101247	Creep Fatigue	050	-1	0.01	10	
IN718	Low Cycle Fatigue (Fast-Fast)			0.1	_	
	Low Cycle Fatigue (Slow-Slow)	650	-1	0.0017		
	Creep Fatigue			0.01	10	

Table 2 Test Conditions

(a) Tensile Test

(b) Creep Test

(c) Fatigue and Creep Fatigue Test Fig. 5 Test Specimens

Fig. 6 Tensile Strength⁽⁷⁾

Fig. 7 Specimen after Tensile Test

本研究では、Ni基鋳造合金であるMM247材⁽⁷⁾と、Ni 基鍛造合金であるIN718材⁽⁷⁾からなる摩擦圧接材を用い て、各々の材料の強度特性が異材継ぎ手としての強度特 性に及ぼす影響を実験的に明らかとし、前報で提案した 弾性追従挙動について非弾性解析により定量的な評価を 試みた。

2. 試験方法

両材を摩擦圧接により接合した部材には、定格時に周 方向の遠心応力、タービンホイールの重量による軸方向 の回転曲げ応力、および起動-停止時に伴い熱応力が繰 り返し作用する。本研究では、代表的な強度試験である 引張試験、クリープ破断試験を行うとともに、低サイク ル疲労およびクリープ疲労試験を併せて行った。

表1に各材料の組成を,表2に試験条件を示す。こ こでMM247材には,1080℃/4h(不活性ガス冷却)お よび870℃/20h(不活性ガス冷却)を施工し⁽⁸⁾,IN718 の強度を確保するために圧接後にIN718材の時効処理, 718℃/8h(空冷)+621℃/8h(空冷)⁽⁹⁾を施工した。

試験温度は室温を除いて概ね650℃を選定し,実機よ りも高温(加速)側の条件とした。低サイクル疲労およ びクリープ疲労試験でのひずみ比は-1とし,ひずみ負 荷波形としてはFast-Fast波形,Slow-Slow波形,および 引張側にて10分間の保持を行うクリープ疲労波形の3種 類を選定し,ひずみ速度および保持が破損挙動へ及ぼす 影響の評価を試みることとした。

各試験に用いた試験片形状を図5に示す。なお接合界 面は、いずれの試験片においても評点部の中央とした。

3. 試験結果および考察

3.1 引張試験

図6に引張試験の結果を示す。700℃程度までは IN718材の方がMM247材よりも高強度側であることか ら,圧接材の引張強さは低強度側のMM247材とほぼ同 等であり,0.2%耐力もMM247材に近い値であった。ま た図7に示すように,破断面はMM247材のほぼ中央で あった。これはより0.2%耐力が小さなMM247材に塑性 変形が集中するとともに,破断伸びが小さいことが影響 したものと考えられる。

3.2 クリープ試験

図8にクリープ試験の結果を示す。試験温度である 650℃では、MM247材の方がIN718材よりも高強度側で あり、また圧接材のクリープ強度はIN718材よりもさら にやや低強度側であった。また図9に示すように、破 断部位は界面を基点としてややIN718側に入った位置で あった。接合面近傍においては、MM247側では大きな 変化は見られなかったものの、IN718側では接合時の界 面での過大な塑性流動挙動およびその後の熱履歴により、 微細結晶層とNb欠乏層が形成されている。 クリープ破断面はIN718材のNb欠乏層と細粒層の境界 付近に位置しており、この付近がクリープ強度の低い領 域に該当したためと考えられる。

3.3 低サイクル疲労およびクリープ疲労試験

低サイクル疲労試験およびクリープ疲労試験の結果を 図10に示す。Fast-Fast波形下での疲労寿命はIN718材が 最も長く,次いで1%のひずみ負荷の下ではMM247材, 圧接材の順に長寿命であった。一方で0.7 ~ 0.8%のひず み負荷の下では,MM247材と圧接材の疲労寿命に大き な差は認められなかった。

図11に示すように,圧接材に1%ひずみを負荷した場 合の低サイクル疲労試験の破断位置は界面であり,他の 場合はMM247材の内部であった。ひずみ負荷による強 度の違いは,この破断位置の違いと密接な関係があると 考えられる。

Slow-Slow波形下での疲労寿命もIN718材が最も長寿 命であった。Slow-Slow波形の方がFast-Fast波形よりも 短寿命側の結果を与えており,一般的な知見と一致した。 しかしながらFast-Fast波形下ではIN718材の内部で破断 したのに対して,Slow-Slow波形下での破断位置は界面 であったことから,同負荷下ではIN718材よりも界面の 方が低強度であったと考えられる。

クリープ疲労寿命は、IN718材、MM247材、圧接材の 順に長寿命であった。ここまで引張強度、クリープ強度、 および実機条件に近い低ひずみ負荷下での疲労強度にお いて、圧接材の強度はそれぞれの条件下でIN718材およ びMM247材の低強度側と同等となる傾向であった。し かしながら、圧接材のクリープ疲労寿命は、どちらの材 料に対しても大きく低下している。これはクリープ疲労

Fig. 8 Creep Rupture Strength⁽⁷⁾

Fig. 9 Micro Structure of Creep Ruptured Specimen

Fig. 10 Low Cycle Fatigue and Creep Fatigue Strength

寿命の評価に際して,低強度側の材料の強度データを用 いることは危険側であることを意味しており,強度低下 の要因について検討を行う必要がある。

3.4 クリープ疲労強度低下の要因

図12に、クリープ疲労試験を行った後の圧接材の界 面付近を観察した写真を示す。破断位置は界面よりも、 IN718材側に300μm程度入った位置であり、図11に示す ようにクリープによる破断位置と同等であった。このた めIN718材のクリープ破壊メカニズムとの関連性が考え られるものの、先述のように、IN718材のクリープ疲労 強度から説明しきれない点がある。

そこで有限要素法を用い,摩擦圧接材を模擬した弾性 クリープ解析を行い,IN718材の界面付近での応力,ひ ずみの挙動を調べることとした。BrinkmanらはIN718 材を対象として,特定の温度,応力下でのクリープひず みマスターカーブを提案しており,本研究ではさらに任 意の時間,応力でのクリープひずみを算出するために, 以下の予測式を作成した⁶⁰。

$$\varepsilon_{c} = A \cdot \sigma^{n} \cdot t^{m} \tag{1}$$

ここで、A=3.4×10⁻¹², n=2.6, m=1.8である。(1)式を 用い、650℃でのクリープひずみを予測した結果を図13 に示す。なお、高温強度の高いMM247材は、650℃では クリープ挙動は示さないと仮定し、弾性体としてモデル 化することとした。

荷重条件は表2で示したクリープ疲労負荷条件を模擬 し,図14に示すように0.01%/secで荷重を増減し,最大 負荷で10分間の保持を付与した。ここで,図15に示すよ うに回転中心軸から下半分のみを軸対称要素を用いてモ デル化し,解析を行った。図15には,100回負荷後の軸 方向応力分布を併せて示す。図より100回負荷後には圧 縮残留応力が作用しており,IN718材でのクリープひず みが大きく影響していると判断される。

10回負荷および100回負荷中における各材料でのひず みの推移を図16に示す。IN718材ではクリープひずみの 増加が、MM247材ではひずみの減少が生じており、そ の変化は繰り返し数の増加とともに徐々に飽和する挙動 を示した。これは最大負荷での保持がひずみ一定である ことから、IN718材でのひずみの増加を吸収するために MM247材側でのひずみが減少するためである。

さらに図17には、100回の繰り返し負荷中での応力-ひずみ挙動の変化を示す。IN718材ではクリープひず みの増加に伴う応力緩和が生じており、一方MM247材 ではひずみの減少と応力低下が生じている。したがっ て、IN718材では平均ひずみの増加と平均応力の減少、 MM247材では平均ひずみと平均応力がともに減少する 結果となった。これは異なるクリープ強度を有する材料 からなる、異材接合体に特有の弾性追従メカニズムであ

Fig. 12 Cross Section of FW Specimen (Creep Fatigue, $\Delta \epsilon = 0.8\%$)

Fig.13 Estimated Creep Strain Curve of IN718

Fig. 14 Load Conditions

- 49 -

Fig.15 Axial Stress Distribution after 100th Loading Cycles (MPa)

Fig. 16 Time Dependant Stress and Strain Behavior

Fig. 17 Elastic Follow-up Behavior

Fig. 18 Triaxiality Factor Distribution

ると考えられる。したがって, IN718材では平均応力は MM247材と同等に低下するものの, 平均ひずみが増加 するラチェッティング挙動を示しており, このことから IN718材単体よりも接合材の方が低強度を示したと考え られる。

さらに、次式で求められる試験片中央平行部における3軸度係数(Triaxiality Factor)の分布を図18に示す。 応力多軸度が高いほどTFは大きくなり、クリープ損傷 が大きくなると考えられる^{III}。

$$TF = \frac{\sigma_1 + \sigma_2 + \sigma_3}{\sigma_{mises}} \tag{2}$$

初回負荷後において,TFはIN718材の界面付近から 0.1mmの位置で高くなり,100回負荷後にはさらに高く なり1.2mmに移動していた。TF最大位置は破断位置と 定量的に一致しないものの,負荷に伴い徐々にIN718側 にTFが最大の位置が移動することを示していると考え られる。

以上より,クリープ疲労試験においてIN718材側にて 短寿命で破断する事象の要因としては,弾性追従による IN718材でのクリープひずみの増加,IN718材側でのTF の増加,が考えられる。他の要因としては,IN718材お よびMM247材の結晶粒径の違いもある程度影響してい る可能性が考えられる。

図19に示すように, MM247材には2mm近い粒径の結 晶が界面付近に見られる一方で, IN718材の結晶粒径は 約1/10の0.2mm程度であった。

したがって,界面付近においてMM247材の結晶1個 が及ぼす異方性が影響している可能性も考えられる。ま た結晶組織が大きく異なることからMM247材とIN718 材の変形抵抗も異なることが予想され,図20に示すよう に界面近傍にて両材が拘束しあうことにより2次応力が 発生する可能性も考えられる。

Fig. 19 Observed Image of Friction Welded Specimen

Fig. 20 Secondary Axial Stress from Constraint

4. 結言

MM247材とIN718材を摩擦圧接により接合した試験 片を用いて,母材の強度と比較しつつ接合強度について 検討を行い,以下の結論を得た。

- (1)圧接材の引張強さはMM247材と同等であり,破断部 位もMM247材内部であった。これは同材の方がIN718 材よりも引張強さ,および破断伸びが小さいためと考 えられる。
- (2)クリープ破断強度はIN718材よりやや低強度側であり, 界面を起点として, IN718材のNb欠乏層と細粒層の境 界に沿って破断することが明らかとなった。
- (3)圧接材の低サイクル疲労強度は、高ひずみの条件では MM247材よりも低強度で界面にて破壊し、その他の 条件ではMM247材と同等の強度にて同材の内部で破 壊する傾向にあった。
- (4)クリープ疲労強度はIN718材, MM247材のどちらより も低強度となった。IN718材のクリープ変形を模擬し た有限要素解析を実施し,弾性追従挙動によるIN718 材でのクリープひずみの増加を確認した。
- (5)界面近傍の3軸度係数はIN718材側で繰り返し数の増加とともに高くなることが明らかとなり、IN718材でのクリープ損傷が過大となる傾向を明らかとした。

参考文献

- S. Nakano, Y. Hayasaka, et al., Development of an Advanced Micro Turbine System Using Humid Air Turbine Cycle, ASME, GT2004-54337 (2004).
- (2) M. Okazaki, Y. Mutoh, T. Yada, and M. Yamaguchi, Creep-Fatigue Behavior of Dissimilar Metal Electron Beam Welded Joint, JSMS, Vol. 36, No. 410, pp. 1239 -1245 (1986).
- (3) M. Preuss, P. J. Withers, and G. J. Baxter, A comparison of inertia friction welds in three nickel base superalloys, Materials Science and Engineering A, 437, pp. 38 - 45 (2006).
- (4) Z. W. Huang, H. Y. Li, M. Preuss, M. Karadge, P. Bowen, S. Bray, and G. Baxter, Inertia Friction Welding Dissimilar Nickel-Based Superalloys Alloy 720 Li to IN718, Metallurgical and Materials Transactions A, Vol. 38A, pp. 1608 1620 (2007).
- (5) F. Daus, H. Y. Li, G. Baxter, S. Bray, and P. Bowen, Mechanical and microstructural assessments of RR1000 to IN718 inertia welds - effects of welding parameters, Materials Science and Technology, Vol. 23, No. 12, pp.1424 - 1432 (2007).
- (6) M. Okazaki, M. Sakaguchi, et al., Creep-Fatigue and Thermo-Mechanical Fatigue of Friction-Welded IN718/ MarM247 Dissimilar Joint, Superalloys 718,625 and Various Derivatives 2008 (2008).
- (7) Aerospace Structural Metals Handbook, 1999 Edition, Purdue Research Foundation (1999).
- (8) Hshin-Erh Huang, Chun-Hao Koo, Effect of Solution-Treatment on Microstructure and Mechanical Properties of Cast Fine-Grain CM247LC Superalloy, Materials Transactions, Vol.45, No.4, pp.1360-1366 (2004).
- (9) K. Hayashi and K. Kakei, Effect of Heat Treatment on Mechanical Properties of Inconel 718, J. Japan Inst. Metals, Vol.74, No.8, pp. 501-507 (2010).
- (10) C. R. Brinkman, M. K. Booker, and J. L. Ding, Creep and Creep-Rupture Behavior of Alloy 718, Superalloys 718,625 and Various Derivatives 1991, pp. 519 - 536 (1991).
- R. L. Huddleston, An Improved Multiaxial Creep
 Rupture Strength Criterion J. Pressure Vessel Technology, 107, 421 (1985).
- (12) M. Sakaguchi and M. Okazaki, Thermo-Mechanical and Low Cycle Fatigues of Single Crystal Ni-Base Superalloys; Importance of Microstructure for Life Prediction, JSME International Journal, Series A, Vol.49, No. 3 (2006).
- (13) K. Kuwabara, A. Nitta, and T. Kitamura, Elevated Temperature Low Cycle Fatigue Strength of Forged Ni-base Superalloy IN718, JSMS, Vol. 32, No. 357, pp. 657 - 661 (1983).

┃技術論文 ┣━

矩形流路内での対向噴流による流体混合

Fluid Mixing of Opposed Jet Flows in the rectangular duct

長尾 隆央^{*1} NAGAO Takahisa **松野 伸介**^{*1} MATSUNO Shinsuke 林 光一^{*2} HAYASHI A.Koichi

ABSTRACT

The opposed jet flow is measured and its CFD simulation is performed to study the flow behavior in a rectangular duct. The jets are oppositely collided in a one-side-closed rectangular duct. In order to understand the whole combustor flow field it is necessary to study air jet dilution effects which are typically arranged by opposed jets. Experiments and simulations are performed using air, where the Reynolds number is 2×10^4 , based on jet diameter and jet velocity. Velocity distribution and turbulent intensity are measured by Laser Doppler Velocimetry, and simulated by a large-eddy simulation. LES results are generally in quantitative agreement with the experiment. The details of fluid flow are discussed with the results of CFD. In the results of CFD, jets are impinged almost stably each other. However, the radian jet which is generated on impinging plane is fluctuated. This result suggested that mixing of opposed jets impinged flow are concerned with radial jet fluctuation.

Key words:ジェットエンジン, 燃焼器, 対向衝突噴流, LES Jet Engine, Combustor, Opposed jets, LES

1. 緒言

ガスタービンエンジンの効率を上げるために, 燃焼器 温度は年々上昇している。また, 重量を低減するために 小型化することも重要となっている。しかし, 高温化や 小型化は燃焼によって生成する高温ガスの温度が上がり, 混合する距離が短くなることを意味するため, 燃焼器出 口での温度分布を悪化させる要因となる。もし出口温度 分布に高温のホットスポットが存在する場合, タービン の寿命に大きな影響を与えることが懸念されるため, 温 度分布は十分に一様であることが望ましい。

図1にRQL(Rich-burn Quick-quench Lean-burn,過 濃燃焼-急速混合-希薄燃焼)燃焼器⁽¹⁾の断面図を示す。 実際の形状は、この断面をガスタービン軸で回転させた 環状の形状となっている。過濃燃焼領域では、ノズルか ら噴射された燃料がスワール保炎器で空気と混合して 燃焼する。その直後、希釈空気が流入して急速に混合 し、残りの燃料を燃焼させる。RQL燃焼器の温度分布は、 希釈空気によって調整されるため、その流動を把握して おくことは重要である。

原稿受付 2013年4月24日 校閲完了 2013年9月6日

*2 青山学院大学 理工学部 機械創造工学科 〒252-5258 相模原市中央区淵野辺5-10-1 このような燃焼器における流入空気の噴流による混合 の研究は古くからHolemannとWalker^{(2),(3)}によってなさ れており,矩形断面や円形断面のダクトにおいて,孔形 状,孔径D,孔間隔S,高さH,ジェットと主流の運動 量流束比 (momentum flux ratio) Jを変えた場合の混合 状態が整理されている。運動量流束比Jは以下の式で表 される。

$$J = \frac{\rho_j u_j^2}{\rho_g u_g^2} \tag{1}$$

ここで *ρ* は密度, *u*は流速, 添字jは噴流, 添字gは主流 である。

しかし,上記の燃焼器内流れの研究の多くは時間平均 の流れによって議論され,噴流の非定常的な挙動を詳細 に議論している論文は少ない。

一般的に,対向噴流は衝突面が不安定となることが知られており,牧と小川⁽⁴⁾による対向噴流の衝突面の安定 性に関する研究によると衝突面位置は不安定であり,特 定の位置に固定されることはないことが報告されている。 また,山本と野本⁽⁵⁾による衝突噴流の発振に関する研究 などによると,2次元噴流や矩形断面噴流は必ずしも衝 突面が安定せず,互いにすれ違う発振現象を引き起こす ことがあるが,円形噴流では発振は起こらないという現 象が報告されている。ただし,Kaddah,Fletcherら^{(6),(7)} によると,ガスタービン燃焼器の流入空気は主流に垂直 ではなく,一定の角度を持って流入することが知られて

 ^{*1 (}株 I H I 熱・流体研究部 〒235-8501 横浜市磯子区新中原町1番地

おり,その角度が変動する場合にも円形噴流が安定かど うかは示されていない。また,これらの研究においても, 衝突面における不安定性などが大局的な混合に与える影 響までは考察されていない。

一方,Hussain⁽⁸⁾による乱流せん断層流れの研究, Andreopoulos⁽⁹⁾による主流に垂直に噴出される噴流の研 究などの基礎的な研究では,噴流と主流の混合層の様子 が詳細に考察されている。同様に,対向衝突噴流におい て,衝突面の非定常な挙動を考慮した混合現象を調査す ることは,燃焼器内部の流体現象を明らかにするうえで 重要と考えられる。

そこで本研究では、矩形断面ダクトに対向衝突噴流を 導入した流れ場を構築し、燃焼器における対向衝突噴流 による混合挙動を明らかにすることを目的とする。今回 の報告では、計測によってCFDの精度を把握するとと もに、内部流動と混合の詳細な考察を行う。流れ場は単 純化のため流入孔1対のみを取り出し、スワール保炎器 による旋回流(主流)を省略し、環状形状を矩形管へと 変更した。また、燃焼は考慮しない。多くの実験は常温 常圧の空気で行われており、実際の燃焼器の主流と流入 空気の密度差とは異なる。しかし、噴流と主流の運動量 比を考慮すれば流れ場は再現可能であるとされている⁽²⁾。

Fig. 1 Schematics of gas turbine combustor

2. 実験装置と実験形状

図2,図3,図4に対象とする形状を示す。前述のと おり,矩形ダクトに対向衝突噴流が流入する流れ場となっ ている。ダクトの左端は閉じられており主流の流入はな い,右端は大気開放となっている。噴流はオリフィスプ

Fig. 2 Outline of flow passage configuration (D/H=0.2, L/H=5.9, W/H=1)

Fig. 3 The Experimental Equipment

Fig. 4 Detailed configuration

レートを通過することで生成される。上流には整流のた めの多孔板があり、上流のダクト急拡大による影響を低 減している。オリフィスプレートの厚さは0.5Dである。

通常, 燃焼器の希釈空気は, 燃焼器壁面に開けられた 円形の穴(希釈孔)から噴流として流入する。希釈孔の 配置としては, 噴流同士が互いに衝突するもの(対向配 置)と, 衝突しないもの(交互配置)の2種類があるが, 今回は一般的な対向配置を用いる。

3. 計測手法

2成分LDV(TSI製 FSA-3500)によって流速を計測 した。図5に計測点位置の例を示す。トレーサー粒子に はオイルミスト(平均粒径0.3µm, ツクバリカセイキ F-235)を用いた。3成分を測定するため、まずXY平 面に垂直な成分を測定し、同一の点のYZ平面に垂直な 成分を測定した。

4. 数值解析手法

数値解析にはアドバンスソフト株式会社のFrontFlow Red 4.1を使用した。形状モデルは実験と同じものを用 いている。流入は図4の多孔板直後を考え,流速変動を Smirnov^{too}によるSpectral synthesizerで再現した。乱流 強度は平均流速基準で250%,時間平均流量は一様とし

507

Table 1 Numerical methods and mesh conditions

CFD code	Advanced/Frontflow/Red 4.1
Equation	Incompressible Navier-Stokes
Fluid	Incompressible perfect gas
Turbulent	Dynamic Smagorinsky LES
Turbulent inlet	Spectral synthesizer
Wall	Spalding law
Cell	Unstructured
Discretization	Blended 2nd order central with 1st order upwind (8 : 2)
Parallelization	Region splitting, 64 CPUs
Number of cell	3 Million
Min. Δx	0.2mm
Ave. Δx	2mm

た。支配方程式には非圧縮性Navier-Stokesを用い、乱 流モデルにはLES Dynamic Smagorinskyを用いた。最 小格子幅は0.2mm, ダクト内の平均格子幅は2mmであ る。格子点数は約300万点となった。

5. 結果と考察

5.1 CFDと実験の比較

流体には空気を用い,オリフィスをベースにしたレイ ノルズ数は2.0×10⁴である。L/H=5.9, W/H=1, D/H=0.2 の場合について実験と解析を行った。

X方向の流速分布と流速変動RMS (z=0) を図 6 (a),Y 方向を図 6 (b), Z方向を図 6 (c)に示す。解析と計測結果

5.2 対向噴流による流れ場と混合

対向噴流による混合現象を考察するため,全体的な流 れ場,よどみ点位置の変動,濃度変動スペクトルに着目 した。その結果,噴流衝突面付近の流れが混合に最も寄 与していることが確認できた。以下に詳細を述べる。 (1)全体的な流れ場

図7に時間平均した速度から求めた流線を示す。図8 に平均流速絶対値,図9に流速変動RMS,図10に下側 噴流の平均モル分率,図11に下側噴流濃度変動RMSを 示す。

流路内の流動は,対向噴流によって衝突面に円盤状の ジェットが発生し,その流れが壁面に衝突することで循 環渦を形成しており,この渦は下流まで存続している。

流速変動RMS(図9)と濃度変動RMS(図11)は澱 み点と円盤ジェットの部分で最も高く,噴流外縁部でも 大きい。噴流外縁部や円盤ジェット部分では噴流の速度 剪断層が存在するためと考えられる。

流速変動が大きいということは、乱流エネルギーが高 いことになるため、その部分での混合が多くなされると 考えられる。下側噴流の平均モル分率(図10)によると、 噴流付近と衝突面部分以外では、上下噴流はほぼ均一に なっている。主に混合が起きている部分は噴流と衝突面 周辺であると考えられる。

濃度変動RMS(図11)などを見る限りでは、循環渦

(a) XY-plane (center of nozzle)

(b) XZ-plane (impingement plane)

(c) yz-plane (left: center of nozzle, center: X/H=0.5, right: X/H=1 downstream)

Fig. 7 Stream line of averaged velocity (LES)

Fig. 8 Averaged velocity magnitude / Uj

Fig. 9 Velocity fluctuation RMS / Uj

Fig.10 Averaged mole fraction of lower side jet

Fig.11 Mole fraction fluctuation RMS of lower side jet (XY-plane, Z = 0)

は混合に直接寄与していないように見える,しかし噴流 衝突面付近などの混合が強い部分と壁付近などの弱い部 分を循環させることで全体の濃度分布に影響を与えてい ると考えられる。

(2)よどみ点位置の変動

図12に,連続500時間ステップのXY方向のよどみ点の 位置を表示した。よどみ点位置の決定は衝突面付近の圧 力最大点を検出することで行った。よどみ点の位置変動 をフーリエ変換した結果を図13に示す。

よどみ点の位置はXZ方向にジェットの直径(D/ H=0.2)を超えて広がることはなく、安定した衝突と なっていると判断できる。スペクトルでは際立ったピー クは存在せず、発振現象は起こっていないことがわかる。

Y方向の振動はXZ方向より大きい。これは牧と小川⁽⁴⁾ による実験に代表されるように,一般的に対向衝突噴流 において衝突面が上下に大きく移動する結果と矛盾しな

Fig.12 Displacement of stagnation points (500 timesteps)

Fig.13 fluctuation spectrum of stagnation point displacement

い。よどみ点の変位は、衝突面位置の変動と密接に関連 しており、衝突面付近の流速変動に影響を及ぼしている ものと推測できる。

(3)濃度変動スペクトル

図14には、ダクト中心位置で濃度変動をフーリエ変換 した結果を示す。図14にみられるように、変動は下流に 行くに従い徐々に減衰する。ここで特徴的なのは、X/ H=0とX/H=0.3の位置におけるスペクトルにおいてX/ H=0.3のほうの高周波成分が大きいことである。これは、 衝突面で円盤状ジェットが生成されたことにより、速い

Fig.14 spectrum of mole fraction fluctuation

流速と流速変動が生成されたことによるものと考えられる。さらに下流のスペクトルの特性はX/H=0.3に類似していることから、衝突面付近の流れに流れ場全体の混合挙動が強く影響される可能性を示唆している。

(4)衝突面付近の混合現象

衝突面付近の現象を詳細にみるため、図15に時系列的 な濃度分布を示した。噴流部を拡大して表示しており、 (a)はYZ断面、(b)はXY断面である。(a)と(b)では濃度レン ジが異なる。流入した上下の噴流は外縁の分布に変動が みられる。これは噴流自体の不安定性と矩形流路内部の 循環流が干渉した結果と考えられる。

噴流の衝突によって生成された円盤状ジェットの縁は 上下に大きく変動しており、この変動幅はよどみ点の位 置の上下変動よりも大きい。これは、図15(b)に示される ように、衝突面が様々な方向へ傾くことで円盤状ジェッ トの放出方向が変動することが原因と考えられる。

円盤状ジェットの変動部分で上下の噴流が混合されて

(a)YZ-plane (X = 0)

(b)XY-plane (Z = 0) Fig.15 Mole fraction of lower jet

いる様子は図15(b)から容易に見て取れる。また,円盤状 ジェットの外縁部においては,未混合領域が流れによっ て引き伸ばされてちぎれていくことがわかる。このよう な流れ場が,衝突噴流において混合が促進される要因で ある。

6. 結論

ジェットエンジン燃焼器を簡略化した矩形ダクト内対 向衝突噴流において,主流のない場合の実験と数値解析 を行った。実験と数値解析の結果は定性的だけでなく定 量的に一致することが確認できた。

流路内の流動は,対向噴流によって衝突面に円盤状の ジェットが発生し,そのジェットが壁面に衝突すること で循環渦を形成している。ただし,実際の燃焼器はア ニュラ型形状のため,壁面による影響は無くなり,隣接 した対向噴流により生成した円盤状ジェット同士の干渉 により循環渦が発生すると考えられる。非定常的な円盤 ジェット同士の衝突となるため,壁面衝突よりもさらに 複雑な流れとなる可能性がある。

流速変動とモル分率の変動は澱み点と円盤ジェットの 部分で最も高く,噴流外縁部でも大きいため,この部分 での混合が多くなされると考えられる。

対向噴流特有の衝突面の変動が確認できるものの,よ どみ点の位置変動は噴流の直径を超えて広がることはな く,安定した衝突となっていると判断できる。

濃度変動スペクトルの結果より,流れ場全体の混合挙 動は衝突面付近の流れに強く影響される可能性がある。

噴流の衝突面が様々な方向に傾くことで、衝突面から 生成される円盤状ジェットの放出方向が変動している。 円盤状ジェットの変動部分では上下の噴流が強く混合さ れ、衝突後の外縁部においては未混合領域が伸長しかつ 分散されて混合が促進する。

実際の燃焼器では保炎器からの主流成分が存在するため、本研究のように安定的に対向噴流が衝突する場合だけではない。また、本研究では単純化のために矩形ダク

ト形状を考えたが,実機ではアニュラ型となり,隣接し た希釈孔による影響が存在する。主流や旋回流が存在す る流れ場や,隣接する噴流がある場合の対向衝突噴流の 挙動,燃焼の影響についてはさらなる研究が必要である。

参考文献

- Lefebvre, A. H. and Ballal, D.R., "Gas Turbine Combustion", Third Edition (2010), CRC Press
- (2) Holdeman, J. D., and Walker, R. R., and Kors, D. L., "Mixing of Multiple Dilution Jets with a Hot Primary Airstream for Gas Turbine Combustors", AIAA Paper 73-1249 (1973).
- (3) Holdeman, J. D., and Walker, R. R., and Kors, D. L., "Mixing of a Row of Jets with a Confined Crossflow", AIAA Journal, Vol. 15, No. 2 (1977), pp.243-9.
- (4) 牧 博司,小川 信夫,"対向乱流噴流の研究(衝突面の位置に影響を与える因子)",日本機械学会論文集(B編), 53巻485号(1987), pp. 82-87.
- (5) 山本 圭治郎, 野本 明, "同軸対向衝突噴流の発振現象", 油圧と空気圧, 6巻2号 (1975), pp.68-77
- (6) Kaddah, K. S., "Discharge Coefficients and Jet Deflection Angles for Combustor Liner Air Entry Holes", College of Aeronautics MSc thesis, Cranfied, UK, 1964.
- (7) Fletcher, R. S., and Bastress, E. K., "The Design and Performance of Gas Turbine Combustion Chambers", Northern Research and Engineering Corporation, NREC Report 1082, 1964.
- (8) Hussain, A. K. M. F., "Coherent structures and turbulence", Journal of Fluid Mechanics, 173 (1986), pp 303-356.
- (9) Andreopoulos, J., "On the structure of jets in a crossflow", Journal of Fluid Mechanics, vol. 157 (1985), pp. 163-197.
- (10) Smirnov, R., Shi, S. and Celik, I., "Random Flow Generation Technique for Large Eddy Simulations and Particle-Dynamics Modeling", Journal of Fluids Engineering, Vol.123, No. 2 (2001), pp.359-371

┫技術論文 ┣━

ガスタービン翼後縁部ディンプル付きカットバック面上 フィルム冷却流の2次元3成分PTV計測

Two-Dimensional Three- Components PTV Measurement of Film Cooling Flow over Dimpled Cutback Surface at Airfoil Trailing Edge

齋藤 博史 ^{*1}	<mark>渡邉 要^{*1}</mark>
SAITO Hiroshi	WATANEBE Kaname
村田 章^{*1}	岩本 薫^{*1}
MURATA Akira	IWAMOTO Kaoru

ABSTRACT

Cooling at trailing edge of gas turbine airfoil is one of the most difficult problems because of its thin shape: high thermal load from both surfaces, hard-to-cool geometry of narrow passages, and at the same time demand for structural strength. In this study, the turbulent flow over the dimpled cutback surface is experimentally examined aiming at heat transfer enhancement without disturbing the cooling film. Three types of dimples (spherical, teardrop, and 45deg angled teardrop) were examined by using two-dimensional three-component particle tracking velocimetry (2D3C-PTV). Reynolds number of the main flow was 18,000, and blowing ratio was varied from 0.5 to 2.0. In the spherical dimple case, flow separation and reattachment occurred at the leading and trailing edges of the dimple, respectively. On the contrary, flow separation was suppressed in the teardrop dimple case. In the 45deg angled teardrop dimple case, secondary flow in the dimple was observed in addition to the flow separation and flow reattachment at the leading and trailing edges. The effects of blowing ratio on the turbulent statistics were also discussed.

Key words : Film Cooling, Dimple, Flow Visualization, Particle Tracking Velocimetry, Turbulent Flow

1. 諸言

ガスタービンエンジンは高温の燃焼ガスを用いるので タービン翼は非常に過酷な温度環境下におかれる。ター ビン翼の耐熱性の向上には材料と冷却両方の技術が重要 となり、タービン翼冷却は材料強度を維持する上で必須 である。一般にタービン翼の冷却には、図1に示すよう に翼表面の孔から冷却空気を放出するフィルム冷却や翼 内部の冷却流路を用いた強制対流内部冷却が行われ、冷 却流路内部には熱的負荷の大きい翼面側に乱流促進突 起(リブ)が設けられている。しかし、翼後縁部は厚み が薄く内部冷却が行えない上に、翼背腹部の両面に高温 燃焼ガスからの熱流入があるため、翼冷却において最も 厳しい条件となる。そこで翼後縁部スロットからカット

原稿受付 2013年5月13日 校閲完了 2013年9月6日 *1 東京農工大学工学部 〒184-8588 小金井市中町2-24-16

(a) Cooling technique of the turbine blade

(b) Schematic of film cooling at airfoil trailing edge Fig. 1 Schematic of turbine blade cooling.

512

- 58 -

バック面上に冷却空気を膜状に吹き出して、カットバッ ク面への主流からの熱遮蔽と同時にカットバック壁の対 流熱伝達による冷却を行い背面からの熱流入を処理して いる。フィルム冷却カットバック面での伝熱促進では, 乱流促進・二次流れ効果が冷却空気膜を崩してしまうと フィルム冷却効率を大きく低下させるので、高フィルム 冷却効率維持という従来とは異なる制約条件下での新た な伝熱促進問題として捉える必要がある。後縁部フィル ム冷却についてはこれまでに平滑カットバック面での ブロー比や密度比の影響を調べた伝熱実験^{(1),(2)}, LES解 析⁽³⁾の例がある。最近著者らはカットバック面への凹み 形状(ディンプル)の敷設が高フィルム冷却効率と高熱 伝達率の両立に有効であることを伝熱実験⁽⁴⁾⁻⁽⁶⁾とLES解 析⁽⁷⁾を行い、ディンプル部での流れの剥離と再付着域に より熱伝達率が上昇する結果を示した。さらに2次元2 成分画像処理流速計を用いリブおよびディンプルを敷設 した際のカットバック面上方の乱流速度場計測を行い, 混合層とカットバック面上流れの評価を行った⁽⁸⁾。しか し、2次元2成分計測では凹み形状であるディンプル内 部の流れや幅方向速度成分は計測できない。そこで本研 究では, ディンプル付きカットバック面上の流れを 2次 元3成分計測が可能な粒子追跡流速計(2-Dimensional 3-Components Particle Tracking Velocimetry, 以下 2D3C-PTV)を用いてディンプル内部を含めて乱流速度 場計測を行い、ディンプル敷設が熱遮蔽性に与える影響 を流れ場計測から明らかにすることを目的とする。

2. 実験装置及び方法

図2(a)に実験装置を示す。循環型流路で作動流体には 水を用いる。水はポンプにより駆動され,主流,冷却流 それぞれ流量計および流量調整バルブを経て主流,冷却 流路へ供給される。主流および冷却流各流路の上流部に は整流部があり助走区間を経てテストセクションに流入 する。主流流路には乱流遷移を促進させるためトリッピ ングワイヤを設置している。なお冷却流路はディンプル による乱流遷移促進が行われるためトリッピングワイヤ は設置していない。主流と冷却流各流路高さは、4Hと H(=5 mm)であり,助走区間長さは主流側が64×4H, 冷却流側が56.4Hである。図2(b)にテストコア概略を示 す。主流および冷却流は10°の角度で合流し,カット バック面上部のガラス製可視化窓(TEMPAX Float, 屈 折率1.474)を通して流れを観察する。

図3にテストコア詳細を示す。主流と冷却流各流路は 流路幅16Hの扁平矩形断面流路で,リップ厚さはHであ る。座標はリップ端直下のカットバック面流路幅方向 中央位置を原点とし,冷却流流路軸方向をx軸,カット バック面垂直方向をy軸,流路幅方向をz軸とする。計測 領域はx/H=0~11.3の冷却流吹き出し直後からカット バック面終端位置までである。冷却流路下面(リップ端 から上流側に14Hの領域)およびカットバック面上には

Curvature radius : R = 1.2H

Fig. 4 Details of dimple geometry.

- 59 -

Fig.5 2D3C-PTV system configuration.

ディンプルが敷設され,ディンプル配置は流れ方向・ 幅方向ピッチがそれぞれ1.2D, 1.15Dの千鳥配列である。 ここでD(=2H)は球状ディンプルの投影直径とする。 図中の破線および点線はティアドロップディンプルおよ び傾斜ティアドロップディンプルの形状を示す。

図4に各ディンプルの幾何学形状を示す。図4(a)は球 状ディンプル,図4(b)はティアドロップディンプル,図 4(c)は(b)と同一形状のディンプルを流路軸に対してディ ンプル長軸を45°傾けた傾斜ティアドロップディンプル である。ディンプル断面形状は3形状とも深さおよび球 面曲率半径は同一であり、ティアドロップは角度18.4° の傾斜部を有する。

図5に2D3C-PTVシステムを示す。流路幅方向中央 z=0のx-v平面に厚さ約1mmのレーザーライトシート (Photonics Industries, Model DM-527-20, 波長527nm, 最大出力20mJ, パルス幅150ns)を照射し, 2台の高 速度カメラ (Photron, Model SA3, 記録解像度576× 1,024pixel², 撮影速度3,200fps) を用いてレーザーライト シートを挟み込む配置で撮影した。レーザーおよびカメ ラには、パルスジェネレータ(Quantum COMPOSERS, Model 9614+) からの同期信号および撮影開始のトリ ガー信号を入力し、同期撮影が行われる。なお、3形状 のディンプル内部のみの計測には、前述のものとは異な る機材(高速度カメラ: Photron MC2.1, 512×512pixel², 撮影速度1000fps, CW アルゴンレーザー: Spectra-Physics, Model2017, 使用出力2.5W)を用いた。流れの 可視化手法には、粒子懸濁法を用い、トレーサー粒子に は平均粒子直径50μmのイオン交換樹脂(三菱化学,ダ イヤイオンHP-20SS, 比重1.01)を用いた。本研究では, 村井ら⁽⁹⁾のカメラモデルを用いてレーザーライトシート 内のトレーサー粒子の3次元位置計測を行った。本計測 系では空気 – アクリル – 水各界面での屈折を考慮する必 要があるため、流路外(空気中)でのカメラ較正で屈折 の影響がない場合のカメラ標定要素を予め求め、各カメ ラと可視化窓(屈折面)の相対的位置関係の情報を基に 投影線の式を算出する方法¹⁰⁰を用いた。瞬時ベクトルの 算出には連続4時刻での粒子追跡によって誤対応率を減 少させる4時刻追跡法¹¹¹を用いた。計測結果は40,000時 刻での瞬時ベクトルデータを用いて時間平均速度3成 分*ū*, *v*, *w*, 乱れ強度*u*_{rms}, *v*_{rms}, *w*_{rms}およびレイノルズ応力 -*u*'*v*'を算出し, 主流平均流速*U*_mを用い規格化した。

実験パラメータは主流と冷却流のレイノルズ数*Re_m*, *Re_c*と主流と冷却流の質量流束比であるブロー比*M*であ り、以下のように定義した。

$$Re_m = \frac{d_e, {}_m U_m}{v} \tag{1}$$

$$Re_c = \frac{d_{e,c}U_c}{v} \tag{2}$$

$$M = \frac{\rho_c U_c}{\rho_m U_m} \tag{3}$$

ここで、 d_e [m] (=4A/C) は等価直径、A [m²] は 流路断面積、C [m] は濡れぶち長さで、主流と冷却 流各流路の等価直径は d_{em} =6.4H, $d_{e,c}$ =1.88Hである。U[m/s] はバルク流速、v [m²/s] は流体の動粘性係数、 ρ [kg/m³] は流体の密度を表す。添え字のm、cはそ れぞれ主流および冷却流を表す。実験条件は主流レイ ノルズ数 Re_m =18,000と固定し、ブロー比M=0.5, 1.0, 1.5, 2.0とした。冷却流レイノルズ数 Re_c はブロー比Mによっ て変化し、M=0.5, 1.0, 1.5, 2.0のときそれぞれ Re_c =2,650, 5,300、7,950、10,600となる。なお、3形状のディンプ ル部のみの計測は、用いた高速度カメラの最大撮影速 度とレーザーシート光の照明強度の不足のため流速を

Fig. 6 Time-averaged velocity vectors and spanwise velocity component distribution, \overline{w}/U_m (z/H=0, M=1.0, $Re_m=14,000$, $Re_c=4,000$).

- 60 -

下げ*Re_m*=14,000, *M*=1.0で行った。ブロー比*M*の計測の 不確かさ¹²³は約±15%(95%包括度)である。本研究の 2D3C-PTVシステムは空間解像度が30μm,時間分解能 1/3200sのとき,主流流速*U_m*=0.5m/sに対する計測の不 確かさは約±2%(95%包括度)で,主流域で各方向乱 れ強度の計測の不確かさは約±15~19%(95%包括度) である。

3. 実験結果及び考察

図6に球状,ティアドロップ,45°傾斜ティアドロッ プ各ディンプル内部の時間平均速度ベクトルと面外(*z* 方向)速度成分分布を示す。図6(a)の球状ディンプルの 流れは,ディンプル前縁で流れが剥離しディンプル内前 縁側に再循環領域が形成され,後縁部で流れが再付着す る。球状ディンプルは計測面に対し面対称な形状なので 面外速度成分は非常に小さい。この前縁側の剥離領域で はヌセルト数が低下し、後縁部の再付着域でヌセルト数 が向上することが伝熱実験^{(5),(6)}およびLES解析⁽⁷⁾で示さ れている。図6(b)のティアドロップディンプルでは前縁 部での流れの剥離は抑制され、後縁部ではy正方向への 強い流れが生じている。面外速度成分は球状ディンプル 同様に非常に小さい。この前縁部での剥離の抑制により ヌセルト数の低下も抑制され、後縁部でのヌセルト数の 向上が伝熱実験^{(5),(6)}で示されている。図6(c)の45°傾斜 ティアドロップディンプルでは、球状ディンプル同様に 前縁部で流れが剥離し再循環領域が形成され、後縁部に 流れが再付着する。幅方向に対称な形状ではないので軸 方向に二次流れが誘起され、前述の2形状よりも面外速

Fig. 7 Time-averaged velocity vectors and xyz velocity components (45° angled teardrop dimple, M=1.0, z/H=0, $Re_m=18,000$, $Re_c=5,300$).

Fig. 8 Turbulence intensity and Reynolds stress (45° angled teardrop dimple, M=1.0, z/H=0, $Re_m=18,000$, $Re_c=5,300$).

度成分は非常に高い値を示す((c)だけコンターのスケー ルが異なることに注意)。この流れの剥離・再付着と二 次流れによって球状ティアドロップよりも高いヌセルト 数が得られることがフィルム冷却^{(5),(6)}および内部流にお ける伝熱実験⁽¹³⁾でも示されている。以降,3次元性の強 い流れが生じている,45°傾斜ティアドロップについて 結果を示していく。

図7に45°傾斜ティアドロップディンプルのM=1.0に おける時間平均速度ベクトル分布 (図7(a)), xyz方向 速度成分分布(図7(b),図7(c),図7(d)),を示す。図 中, $1.5 \le x/H \le 2.5 \ge 6.2 \le x/H \le 7.0 \\ \mathcal{O}00 \le y/H \le 0.3 \\ \mathcal{O}$ 領 域と、9.0≤x/H≤10.0のディンプル内部前縁側の領域に データの欠損がある (図中のハッチ領域)。これらの位 置では他の領域に比べ壁面での光の反射が強く、粒子像 が不鮮明で速度ベクトルが算出できなかったためである。 図7(a)の時間平均速度ベクトルでは、リップ端で主流お よび冷却流は剥離しリップ端から下流領域(0≤x/H≤ 1.5) に剥離泡が形成され再循環領域となる。この流れ は2D2C-PTV計測⁽⁸⁾でも示されている。また流れ方向位 置の異なる各ディンプル内の流れに大きな違いは見られ ず、ディンプル前縁で流れが剥離し前縁側で再循環領域 が形成され、後縁部で流れが再付着する。これらディン プルでの流れの剥離、再付着と再循環領域の形成は、ブ ロー比の変化によらず同様に発生する(図省略)。図7 (b)-(d)のxvz方向速度成分から、流れ方向(x方向)速度 成分はディンプル内部で遅く,カットバック面垂直(v

方向)方向成分はディンプル前縁側でディンプル内に向 かう流れが生じ,後縁部で上方に向かう流れが生じて いる。面外(z方向)方向速度成分は,球状や傾斜なし ティアドロップディンプルでも弱い二次流れ(図6(a), 図6(b))は生じるが,図6(c)に示したように縦長ディン プルが主流方向に対して傾斜しているために,幅方向へ の平均速度成分が生じ,二次流れを強くし,ディンプル 内部とディンプル周辺部(-0.54≤y/H≤0.2)の絶対値 が大きく,上流側のディンプルから順に下流に進むにつ れ二次流れによる面外速度成分が大きくなる。

図8にxyz方向乱れ強度分布(図8(a),図8(b),図8 (c)) およびレイノルズ応力分布(図8(d))を示す。図8 (a)-(c)の乱れ強度 u_{rms}/U_m , v_{rms}/U_m , w_{rms}/U_m では, リッ プ端から生じる剥離泡の下流側1.0≤y/H≤2.0, 0≤x/H ≤3.0の領域で高く、これはリップ端からの主流と冷却 流の剥離による自由剪断層と、リップ後流に発生する大 規模な非定常放出渦峰によるものである。ディンプル内 部に着目すると、ディンプル前縁で剥離した流れと前縁 側に生じる剥離泡との間の自由剪断層により、v/H=0 付近でディンプル前縁から後縁側再付着点にかけて筋状 に高い値となる。最下流部(9.0≤*x*/*H*≤11.0)のディン プル内部の乱れ強度が高いのは、主流と冷却流の混合層 が発達しディンプル面に達したため、また、上流側の傾 斜ディンプルによる二次流れが流れ方向に重畳されて強 化されたためと考えられる。伝熱実験(5),(6)における下流 域でのフィルム冷却効率(熱遮蔽性能)の低下はこのよ

-u'v'/U_m2

Fig. 9 Effect of blowing ratio on the Reynolds stress (45° angled teardrop dimple, z/H=0, $Re_m=18,000$).

うな流れ場のためと推測される。図8(d)のレイノルズ応 力分布は主流および冷却流の自由剪断層とリップ後流の 大規模非定常放出渦が発生する領域でレイノルズ応力の 絶対値が高く乱流輸送が強く,下流に進むにつれ混合層 が発達し大規模非定常放出渦は崩壊する。球状ディンプ ルのカットバック面への敷設はリップ後流の大規模放出 渦に影響を与えないことが2D2C-PTV計測⁽⁸⁾で示されて おり,今回の傾斜ティアドロップディンプルでも同様で あった(図省略)。

図9にブロー比Mの変化によるレイノルズ応力の変化 を示す。ブロー比が増加すると冷却流側の負の値の絶対 値が大きくなり、その絶対値の大きい領域がブロー比の 増加に伴い下流域に広がる。ブロー比が増加するとカッ トバック面近傍のレイノルズ応力が上昇するが、これは 規格化に主流流速U_mを用いたためであり、規格化に冷 却流流速U_cを用いた場合にはカットバック面近傍のレ イノルズ応力の絶対値の大きな変化は見られない(図省 略)。カットバック面近傍のレイノルズ応力におけるブ ロー比の変化は冷却流流速でよく規格化される。

4. 結言

ガスタービン翼後縁部ディンプル付きカットバック 面フィルム冷却を模した流路内において2次元3成分 PTV乱流計測を行い,以下の結論を得た。

- ・球状ディンプルでは前縁で流れは剥離,後縁部に再付 着し,ディンプル前縁側には再循環領域が形成される。
- ・ティアドロップディンプルは球状ディンプルと比較して前縁部での流れの剥離は抑制されるが、球状ディンプルと同様に後縁部で流れの再付着が生じる。
- ・45°傾斜ティアドロップディンプルでは前縁側で再循環領域が形成され、後縁部で流れは再付着する。ディンプル長軸が主流に対し角度を持つため、流路幅方向への強い二次流れが誘起される。主流および冷却流の自由剪断層とリップ後流の大規模非定常放出渦が発生する領域でレイノルズ応力の絶対値が高く乱流輸送が強く、下流に進むにつれ混合層が発達し大規模非定常放出渦は崩壊する。

参考文献

- Martini, P., Schulz, A., and Bauer, H.-J., "Film Cooling Effectiveness and Heat Transfer on the Trailing Edge Cutback of Gas Turbine Airfoils with Various Internal Cooling Designs", Trans. ASME, J. of Turbomachinery, Vol.128 (2006-1), pp.196-205.
- (2) Taslim, M. E., Spring, S. D., and Mehlman, B. P., "An Experimental Investigation of Film Cooling Effectiveness for Slots of Various Exit Geometries",

AIAA J. of Thermophysics and Heat Transfer, Vol.6, No.2 (1992), pp.302-307.

- (3) Schneider, H., Von Terzi, D., and Bauer, H. J., " Large-Eddy Simulations of trailing-edge cutback film cooling at low blowing ratio", International J. of Heat and Fluid Flow, Vol.31, No.5 (2010), pp.767-775.
- (4) Murata, A., Nishida, S., Saito, H., Iwamoto, K., Okita, Y., and Nakamata, C., "Effects of Surface Geometry on Film Cooling Performance at Airfoil Trailing Edge", Trans. ASME, J. of Turbomachinery, Vol. 134, No.5 (2012), 051033.
- (5) Nishida, S., Murata, A., Ito, K., Saito, H., Iwamoto, K., Okita, Y., and Nakamata, C., "Film Cooling Performance over Dimpled Cutback Surface at Airfoil Trailing Edge", Proc. of Int. Gas Turbine Congress 2011 (IGTC), Osaka, Japan, 13-18 November, 2011, IGTC2011-0195, pp.1-7.
- (6) 小西孟,村田章,齋藤博史,岩本薫,大北洋治,"3次元 熱伝導を考慮した過渡応答法によるディンプル付きカッ トバック面のフィルム冷却性能評価(球状ディンプルと 傾斜有無ティアドロップディンプルの比較)",日本ガス タービン学会誌,(印刷中)
- (7) 伊藤宏典,村田章,岩本薫,"ガスタービン翼後縁部ディンプル付きカットバック面におけるフィルム冷却性能の LES解析",第26 回数値流体力学シンポジウム講演論文 集,東京,2012/12/18-20, C11-1.
- (8) 渡邉要,村田章,齋藤博史,岩本薫,"ガスタービン翼後 縁部ディンプル付きカットバック面上フィルム冷却流の 2次元3成分PTV計測",第48回日本伝熱シンポジウム 講演論文集,岡山,2011/6/1-3,A233.
- (9) 村井俊治,奥田勉,中村秀至,"非測定用カメラを用いた 解析的写真測量に関する研究",東京大学生産技術研究 所報告, Vol. 29 (1981), pp.1-15.
- (10) 二宮尚,秋山光庸,杉山均,"三次元画像処理流速計に よる複雑形状流路内流れの測定",可視化情報学会誌, Vol.15 (1995), pp.47-52.
- (11) Hassan, Y. A. and Canaan, R. E., "Full-Field Bubbly Flow Velocity. Measurements Using a Multiframe Particle Tracking Technique", Experiments in Fluids, Vol. 12 (1991), pp.49-60.
- (12) ANSI/ASME PTC 19.1, Measurement Uncertainty, (1985), ASME.
- (13) 小西孟,村田章,齋藤博史,岩本薫,"3次元熱伝導を 考慮した過渡応答法によるディンプル面の熱伝達特性の 計測(60度傾斜ティアドロップディンプルの伝熱性能評価)",日本ガスタービン学会誌,Vol.41 No.3 (2013), pp.254-259.
- (14) Schneider, H., Von Terzi, D., and Bauer, H.-J., "Turbulent Heat Transfer and Large Coherent Structures in Trailing-edge Cutback Film Cooling", Flow Turbulence Combust, Vol.88 (2012), pp.101-120.

┫技術論文 ┣━

遠心圧縮機用羽根付ディフューザの性能に関する研究 (第3報:超音速型ディフューザ)

Investigations of the Performance on Vaned Diffusers for Centrifugal Compressors (3rd Report: Supersonic Diffusers)

川西月波*1熊丸博滋*2杉本隆雄*2KAWANISHI TsukinamiKUMAMARU HiroshigeSUGIMOTO Takao

ABSTRACT

In this report, the performance of supersonic diffuser was investigated, as part of the study about the performance on vaned diffusers for centrifugal compressors. In the supersonic diffuser, not only non-uniform distribution of the flow at impeller exit, but also shock loss generated by a shock wave deteriorates the performance of the diffuser. This report shows the results of experiment and unsteady fluid analysis carried out with a high speed single stage centrifugal compressor having a supersonic flow condition at impeller exit. The experiment was carried out to confirm the performance properties of supersonic diffuser. And the unsteady fluid analysis was carried out by using a Non Linear Harmonic method in order to understand the flow condition in the diffuser, focusing attention on a generation of shock wave particularly.

Key words : Gas Turbine, Centrifugal Compressor, Impeller, Diffuser, Supersonic , Impeller-Diffuser Interaction, Unsteady Flow, CFD

1. まえがき

遠心圧縮機用羽根付ディフューザの性能に関する研究 の一環として,既報^{(1),(2)}で低比速度型ディフューザにつ いて研究した。これに引き続き,本報で超音速型ディ フューザについて取り上げた。遠心圧縮機のディフュー ザ性能を悪化させる要因として,既報で述べた通りイン ペラ出口での流れの不均一な分布の問題がある。超音速 型ディフューザの場合,これに衝撃波発生による損失が 付加されて,さらに複雑となる⁽³⁾。

ここで、インペラ出口状態が超音速の圧力比8レベル の単段高圧力比型遠心圧縮機で得られた性能試験結果に ついて紹介する。そして、インペラとディフューザ間の 流れの挙動、衝撃波の発生等に着目したインペラとディ フューザを組み合わせた非定常流体解析の結果と合わせ て、流れの現象を分析して考察した。

2. 記号および計算式

- D 外径
- *R* 半径

原稿受付 2013年7月2日
校閲完了 2013年9月24日
*1 川崎重工業㈱ガスタービンビジネスセンター
産業ガスタービン技術部
〒673-8666 明石市川崎町1-1

*2 兵庫県立大学大学院工学研究科機械系工学専攻

- 通路幅(高さ) h ブロッケージファクタ RL(=1-流体力学面積/幾何面積) インペラ翼枚数 Z_B β_{2B} インペラバックワード角(半径方向から計測) Z_v ディフューザベーン枚数 ベーン入口角度(周方向から計測) α 3V ディフューザスロート面積 A_{th} ARディフューザ出口のスロートに対する面積比 ディフューザのスロートからの流路の中心線 L に沿った距離 P全圧 静圧 Þ T全温 密度 0 修正空気流量 G N修正回転数
 - ω 回転角速度
 - *κ* 比熱比
 - cv 定容比熱
 - π 段の圧力比 (total-static), $\pi = p_4 / P_1$
 - η 段の断熱効率 (total-static)
 - η_i インペラ効率 (total-total)
 - C_p 静圧回復率 $C_p = (p p_2)/(P_2 p_2)$

- ζ 全圧損失係数 ζ = $(P_2 P)/(P_2 p_2)$ α 絶対流れ角 (周方向から計測) M 絶対マッハ数 S エントロピー (インペラ入口in 基準) $S = c_v \ln\{(p / p_{in})/(\rho / \rho_{in})^\kappa\}$ N_S 比速度 (無次元値)
- $SM \quad \forall \forall \forall \neg \forall \vee SM = (G_d / G_S) (\pi_S / \pi_d) 1$

添字

- 1 圧縮機段入口
- 2 インペラ出口
- 3 ディフューザベーン前縁位置
- 4 ディフューザ外径位置(段出口)
- in インペラ入口
- th ディフューザスロート位置
- d 運転点
- s サージ点

3. 実験方法および供試部品

実験装置の概要を図1に示す。駆動源は2軸ガスター ビンで、増速機を介して供試圧縮機に必要な回転数が得 られる。圧縮機の吐出空気の一部は圧力調整用バルブを 通して動力回収タービンに流れ、ガスタービンでの動力 不足分を補っている。また他は流量調整バルブを通って 大気に放出される。試験時には、このバルブを調整する ことによって圧縮機の吐出圧力と流量を変えて圧縮機の 性能カーブが得られる。

供試圧縮機の断面を図2に示す。圧縮機は単段式高圧 力比型で,空気流量は圧縮機の上流側にフローノズルを 設置して計測した。圧縮機の温度・圧力は図2に示した 位置で計測した。インペラとディフューザの性能分離の ためインペラ外径比1.01の位置の円周4ヶ所の静圧を計 測した。また,ディフューザの一つの流路の中心に沿っ て8点の静圧を計測した。

実験に使用したインペラの主要目を表1に示す。イン ペラは翼枚数32枚(長翼16枚,短翼16枚)のスプリッ ター式のバックワード型インペラである。ディフューザ の主要目を表2に示す。供試ディフューザはスパン方向 の入口角度分布を変えたもので,高さ方向も拡大した3

Fig.2 圧縮機断面図(単段式遠心圧縮機)

Table 1 インペラ主要目

Model	Z_B	D_2	b_2/D_2	β_{2B}	ω	Ns
	(-)	(mm)	(-)	(deg)	(rad/s)	(-)
D	16+16	350.6	0.0294	47.5	3560	0.62

Table 2 ディフューザ主要目

Model	入口 (前縁)	Z_v	D_{3}/D_{2}	$\alpha_{3V}(*)$	Ath	AR
	角度分布	(-)	(*)	(deg)	(mm ²)	(-)
DP-1	有	21	1.052	16.8	3011	3.87
			(

(*): D₃/D₂, α_{3V}はベーン入口(前縁)のミッドスパン位置での値

 流路断面 X-X
 ケブ*面
 前縁

Fig.3 ディフューザの形状

- 65 -

次元拡大ディフューザである。ディフューザの形状を図 3に示す。その流路断面形状は矩形断面の隅部をRにし たもので,入口(前縁)形状はパイプディフューザと同 様に楕円に近い形状である。そのハブからシュラウド間 のスパン方向の入口角度分布を図4に示す。

4. 非定常流体解析法

非定常流体解析は、既報と同様に市販の3次元,粘性, RANSソルバーを使用して行い,非定常解析法として Non Linear Harmonic法を用いた^{(1),(4),(5),(6)}。乱流モデル として1方程式のSpalart-Allmarasを使用した⁽⁷⁾。解析 格子は構造格子で、図5に示す。格子数はインペラ部 (入口側を含む)240万点,ディフューザ部(出口側を 含む)210万点の総計450万点で,翼の1ピッチ分を与え て周期境界条件としている。ハブからシュラウドのス パン方向はインペラ部73点,ディフューザ部65点であ る。境界条件として,インペラのハブ面と翼面は回転系 に,ディフューザのハブ面とベーンおよび全てのシュラ ウド面は静止系に固定した。また全ての固体壁面に対し て,すべりはなく断熱状態とした。入口境界条件として, 全圧,全温および流れ角(予旋回なし)を与え,出口条 件として静圧を与えた。

5. 結果および考察

実験結果の整理にあたって、インペラ出口側で測定した静圧₂を用いて連続の式により全圧P₂を算出した。ここで、インペラ出口のブロッケージファクタBLは半径方向速度分布の解析結果から求めた値の0.05とした。以下に述べる非定常解析の性能は時間平均の値でもって評価し、結果は時間変化に対する図以外は時間平均の値で示した。

5.1 圧縮機性能結果

本単段圧縮機は、圧力比が約8と高くインペラ出口の 流れは超音速となる。β_{2B}を47.5degと大きくとってい るが、計画回転時(修正100%回転)のインペラ出口で の絶対マッハ数の平均値は1.1となっている。図6に圧 縮機性能の実験結果を示す。計画の修正流量4.05kg/sの 点での圧力比と断熱効率は計画値を満足しており、かつ サージマージンSMも12%で圧力比8レベルの圧縮機と しては十分満足できるものである。図7に計画回転時で のインペラとディフューザの性能を分離した結果を示す。 チョーク流量は、ディフューザの閉塞で決まっている。 図中に解析結果も●で示しているが、解析結果は実測結 果とよく一致している。ここで、解析上の作動点①は低 流量側を、②は計画点を、③はチョークから抜け出る前 の状態を、④はチョーク側の点を示す。

- 66 -

5.2 流れ状態の分析結果

(1)インペラ出口断面内の流れ(解析結果)

図8に図7に示した作動点①,②,③でのインペラ出 口断面の絶対マッハ数 M_2 の分布を、図9に絶対流出角 α_2 の分布を示す(④は③と同等)。 M_2 は負圧面側が圧 力面側に比べて高い分布となっている。 α_2 はピッチ方 向(周方向),スパン方向(ハブからシュラウド間)と も分布しており、特にスパン方向の変化が大きい。

図10に作動点①,②,③でのピッチ方向で平均化した α2のスパン方向の分布を示す。また比較のため、ディ フューザ入口角度α3xの分布も示す。α2の傾向はα3xに

Fig.8 インペラ出口断面内の絶対マッハ数M2

対しハブ側ではミスマッチが見られるが, ミッドスパン からシュラウド側に向けて比較的よくマッチしている。

(2)インペラ出口からディフューザスロート近傍の流れ (解析結果)

図11に作動点②(計画点)でのミッドスパンにおけ る絶対マッハ数と静圧の時間変化値と時間平均値を示 す。本図より、ディフューザの前縁の上流に垂直衝撃 波が発生しているのがわかる。その位置は時間的に変化 せず、ほぼ空間的に固定されている。図12に90%スパン (シュラウド側)、ミッドスパンおよび10%スパン (ハブ 側)の各スパン位置での静圧の時間平均値を示す。衝撃 波の発生位置について、図11と図12に基づいて作成した 模式図を図13に示す。インペラ出口での平均マッハ数は 1.1であるが、衝撃波前までさらに加速され衝撃波後で 急激に減速されスロート部では亜音速となっている。こ れにともともない、静圧は衝撃波が発生する前まで低下 し衝撃波後で急激に上昇している。

時間変化値 (Time step = 0) (Time step = 0.25) (Time step = 0.5) (Time step = 0.75) 時間平均値 0.2 0.4 0.6 0.8 1.0 1.2 1.4 0.1 0.3 0.5 0.7 0.9 等高線の間隔 0.05 0.02M Pa a) 絶対マッハ数 M b) 静圧 Ps (MPa)

Fig.11 インペラ出口からディフューザスロート近傍の絶対マッハ 数と静圧の時間変化と時間平均値(作動点②,解析結果, ミッドスパン)

- 67 -

Fig.12 各スパン位置でのインペラ出口からディフューザスロート 近傍の静圧の時間平均値(作動点②,解析結果)

Fig.13 衝撃波の発生位置(作動点②)

(3)ディフューザ流路内の流れ

作動点①,②,③,④におけるディフューザ流路内 の静圧分布の解析結果を、90%スパン(シュラウド側), ミッドスパンおよび10%スパン(ハブ側)の各スパン位 置に対して、それぞれ図14-1、14-2、14-3に示す。静圧 は流れに直角方向にほぼ一定で、その分布はスパン位置 で大差のない結果となっている。

図14-2に示す流路の中心線に沿った静圧の変化を静

圧回復率C_Pの変化で示した結果を図15に示す(ミッド スパンでの値)。ハブ側の値は図には記載していないが、 ミッドスパンの値とほとんど同様な結果となっている。 図15には実測結果(ハブ側の壁圧の測定結果から求めた もの)をプロットして示したが、解析結果は実測結果と よく一致しているといえる。図16にディフューザ流路の 中心線に沿った絶対マッハ数の変化を示す(ミッドスパ ンでの値)。

これらの図より,チョーク状態の作動点④では,ス ロート部の流れは音速でスロート以降,ディフューザ流 路内で無次元距離Lが約0.25の位置まで加速されてマッ ハ数の増大と静圧の低下がもたらされる。そして衝撃波 が発生して静圧が回復する。圧縮機の吐出圧を上げて作 動点をチョークから抜け出す手前の③まで移動させると, ディフューザ流路内の衝撃波は弱まりながら上流側に移 動する。更に吐出圧を上げてチョークから抜け出た作動 点②に移動させると,スロート以降の流路内での膨張は なくなり衝撃波は消える。一方,前縁の上流側に生じる 衝撃波は上流側に移動しながら強まる。作動点②の場合, インペラ出口から衝撃波前までマッハ数は約1.2まで加 速され,衝撃波によって減速されスロート部でのマッハ 数は約0.8となっている。低流量側の作動点①も同様な 傾向となっている。

Fig.14-1 ディフューザ流路内の静圧分布 (解析結果, 90%スパン)

Fig.14-2 ディフューザ流路内の静圧分布(解析結果, ミッドスパン)

Fig.14-3 ディフューザ流路内の静圧分布(解析結果, 10%スパン)

Fig.15 ディフューザ流路の中心線に沿った静圧回復率の変化 (Lはディフューザ出口の値に対する比)

Fig.16 ディフューザ流路の中心線に沿ったマッハ数の変化 (解析結果、ミッドスパン)

(4)ディフューザ流路内での損失

図17に各作動点に対しインペラ出口からディフューザ 出口までの流量平均で求めたエントロピーSと全圧損失 係数くの解析結果を横軸にインペラ出口からの距離(半 径比R/R₂)をとって示す。図17の上図はインペラ出口 からディフューザ出口までの全体を、下図は半径比R/ R₂=1.2までを拡大して示したものである。作動点④の R/R₂が1.2近辺からのSの急上昇や、作動点③のR/R₂が 1.1近辺からのSの急上昇は前述の衝撃波の発生に対応し ている。計画点の②では、R/R₂が1.03近辺からSが急上 昇しているが、これは前述の通りディフューザ前縁の上 流に発生する衝撃波によるものである。流量を減少させ た作動点①の場合でも②と同様な傾向が見られる。ただ し、流量の減少にともなってスロートを通過するマッハ 数が低下しそれに応じて衝撃波前のマッハ数が増大する

Fig.17エントロピーと全圧損失係数(解析結果)上図:全体図、下図:R /R2 =1 ~ 1.2の拡大図

ため、衝撃波は強くなりSの増大の程度は②の場合に比べて大きくなっている。

なお、Sの増大に対応して、くは増大している。こ のくと前述の図15に示した静圧回復率 C_P の傾向がよく あっており、これによって図7に示した段効率 η が決ま る。

6. あとがき

インペラ出口の絶対マッハ数の平均値が1.1の超音速 の単段高圧力比型の圧縮機で得られた実験結果よりディ フューザ性能に着目して整理し,ディフューザ静圧回復 率の特性について確認した。またNon Linear Harmonic 法によるインペラとディフューザを組み合わせた解析を 行い,解析結果が実験結果とよく一致することを確認す るとともに,インペラとディフューザ間の流れの挙動や ディフューザ内での衝撃波等について分析した。さらに, ディフューザ内の流れの挙動を損失に関連付けて考察す ることができた。

参考文献

- (1) 川西月波,東部泰昌,金澤直毅,"遠心圧縮機用羽根付 ディフューザの性能に関する研究(第1報:低比速度型 ディフューザ)",日本ガスタービン学会誌,Vol.40, No.6, 2012.11
- (2) 川西月波,合田真琴,須賀信也,金澤直毅,"遠心圧縮 機用羽根付ディフューザの性能に関する研究(第2報: 低比速度型の入口角度分布による影響)",日本ガスター ビン学会誌,Vol.41,No.4,2013.7
- (3) 妹尾泰利, "高圧遠心圧縮機空力設計の現状と将来",日 本ガスタービンセミナー(第7回目)資料集,1979.1
- (4) He, L. and Ning, W., "Efficient approach for analysis of unsteady viscous flows in turbomachines", AIAA Journal, Vol.36, No.11, 1998
- (5) Vilmin, S., Lorrain, E., Hirsch, Ch. And Swoboda,M., "Unsteady flow modeling across the rotor/ stator interface using the nonlinear harmonic method", ASME Paper, GT2006-90210
- (6) Hembera, M., Loos, A., Kuhrmann, A., Danner,F.C.T., Kau,H.-P. and Johann,E.," Validation of the non-linear harmonic approach for quasi-unsteady simulations in turbomachinery ", ASME Paper, GT2009-59933
- (7) Spalart, P. R. and Allmaras, S. R.," A one-equation turbulence model for aerodynamic flows", AIAA Paper, 92-0439, 1992
- (8) Bennet, I., Tourlidakis, A., Elder, R.L.," Detailed measurements within a selection of pipe diffusers for centrifugal compressors", ASME Paper, 98-GT-92

東京大学 将来航空推進システム技術創成社会連携講座

渡辺 紀徳^{*1} WATANABE Toshinori

研究だより

キーワード: 航空推進, ジェットエンジン, 環境適合性, ものづくり, 産官学連携 Aero-propulsion, Jet Engine, Environmental Friendliness, Manufacturing, Industry—Government-Academia Cooperation

1. はじめに

東京大学大学院工学系研究科航空宇宙工学専攻では、 株式会社 I H I (以下 I H I) との共同研究契約に基づき, 将来航空推進システム技術創成社会連携講座を2012年12 月に設置した。その後,本年4月までに構成メンバーが 揃い,本格的な活動を開始している。社会連携講座とは, 民間企業または独立法人等から受け入れる共同研究の一 環として教育研究を行う大学院の講座と定義され,民間 機関との連携のもとで学術と社会の発展を推進する教育 研究の進展・充実を図ることを目的とするものである。 ここでは標記社会連携講座の活動について現状と今後の 計画を紹介する。

2. 講座の目的と体制

日本のジェットエンジン技術は着実に発展を続けてお り、民間エンジンでは欧米メーカーによる国際共同開発 の重要なパートナーとして確固たる位置を占めるに至っ ている。しかしながら、国際的なシェアはまだ大きくな く、本学会でもこれを拡大する方策について議論されて いるところである。今後の発展には様々な要素が必要と なるが、中でも基盤的な技術の創出と応用が非常に重要 と思われる。

本講座は将来の航空輸送の発展のため、安全で高度な 環境適合性を有する革新的な航空推進システムの実現を 目指し、先端的および基盤的な技術を創成すること、な らびに人材を育成することを目的としている。

講座の運営体制の概念を図1に示す。講座は特任教授 を筆者が兼務し、JAXA研究開発本部(現航空本部)か ら岡井敬一特任准教授が出向で着任している。他に協力 教員として,航空宇宙工学専攻の青木隆平教授,寺本進 准教授,姫野武洋准教授,横関智弘准教授が参加してい る。また,生産技術研究所と先端科学技術研究センター からも材料関係の先生方に参加してもらっている。一方,

Fig.1 講座の体制

JAXA航空本部とは新たな共同研究契約のもとで岡井特 任准教授を介して連携を取っており,さらに今後,他の 大学や研究所の方々にも可能な範囲でできる限り協力の 輪を広げて行きたいと計画している。

3. 教育研究の内容

講座では研究分野として以下の3分野を設定し,重点 的に共同研究を進める計画を立てた。

1)環境適合性の飛躍的な向上(省エネルギー化,低排 出物化,低騒音化等)[環境適合性分野]

2)機体/エンジン統合最適化(エネルギーマネージメントの高度化等)[エネルギー分野]

3)素材・ものづくり技術の高度化[ものづくり分野] 3分野それぞれに担当者を東大とIHIの双方で配置し て研究を実施する。各分野とも現時点では研究会を頻繁 に開催し,具体的な研究テーマの設定に向けて情報交換 と討論を続けている。

3.1 環境適合性分野

筆者がリーダーを務め、専攻の寺本・姫野両准教授お よび井上智博特任准教授が参加して研究会を実施してい る。大幅な省エネルギー化、低排出物化、低騒音化等を 実現する推進システムの概念検討ならびに革新要素技術 の研究を行うことを目指しており、当面、従来実施して 来た空力関係の研究を核として推進しつつ、今後のテー

原稿受付 2013年7月31日

^{*1} 東京大学大学院 工学系研究科 航空宇宙工学専攻 〒113-8656 文京区本郷7-3-1

Fig.2 制御技術の項目例 (エンジン断面図提供:(一財)日本航空機エンジン協会)

マを流れの制御に力点を置いて検討している。図2に制 御項目の例を示す。これまで遷音速圧縮機の失速特性に 対する周方向溝型ケーシングトリートメントの効果の 空力的なメカニズムを解明する研究⁽¹⁾や,ジェット騒音 をマイクロジェット噴射により抑制する手法の研究⁽²⁾を 行って来た。今後は図2のような空力制御を検討するほ か,空力弾性や燃焼等の分野に研究を広げる可能性も考 えて行く。また,エンジン性能解析・シミュレーション の高度化を通し,各研究項目の全体性能に対する感度を 見通しよく評価する技術の重要性も討論している。

3.2 エネルギー分野

岡井准教授がリーダーとなり,これまで主に I H I の 制御関係の技術者と研究会を開催し,テーマの検討を 行っている。パラダイムシフトを先導するため,従来の 航空エンジン関連研究者の枠を超えた分野統合的なネッ トワークを構築し,革新的な航空推進システムの概念検 討およびキーとなる要素技術の見極めを行うことを企図 している。研究項目として当面,新コンセプトエンジン システム,電動化の評価の高度化とエンジン・機体統合 解析,燃料電池の実用化に向けた統合評価の基礎技術,

Fig.3 ハイブリッド推進システムの例

図3はJAXAで研究されている新コンセプト推進シ ステムの例である⁽³⁾。ガスタービンと燃料電池のハイブ リッド発電による電力を,エネルギーマネージメントシ ステム (EMS)を介してモータに供給し,電動ファン で推力を得るシステムとなっている。本講座ではJAXA との共同研究を実施し,エンジンコンセプトの検討を通 じてエンジン・機体統合最適化の指針を明らかにする計 画である。

3.3 ものづくり分野

青木教授がリーダーとなり、横関准教授が幹事役を務 めている。また、生産技術研究所の吉川暢宏教授、先端 科学技術研究センターの山下秀特任教授にも協力いただ いている。この分野では日本の産業競争力を支える素 材・ものづくり技術をベースに、将来の航空エンジンの 発展に寄与する新素材とその製造プロセス、ならびに革 新的なものづくり技術の研究を実施する。現在のところ、 CFRPおよびCMCのエンジンへの適用に関する研究を中 心に、研究テーマの検討を行っている。他の分野に先駆 けて6月にCFRPの衝撃損傷に関するワークショップを 開催し、他大学の先生方にも集まっていただいた。特に 大学における基礎研究やシミュレーション手法の成果を、 エンジン製造にどのように生かしていくか等について活 発な議論が行われた。

3.4 教育活動

現在のところ初動段階であるが,博士課程の大学院生 1名をリサーチアシスタントとし,環境適合性分野の研 究を進めている。また,研究会には関連分野の大学院生 が参加しており,実機の情報を踏まえた研究討論に加わ ることができている。今後は講座が実施する研究への大 学院生の参加を拡大する方針である。また,来年度から 航空推進の革新技術に関する大学院講義を行うことにし ている。

4. 今後の計画

本講座は当面2015年度末までの予定で設置されている。 今後,教育研究活動を展開して行く中で,研究者・技術 者のネットワークを広げ,日本のジェットエンジン技術 の発展に寄与できれば幸いと思う。このため,ものづく り分野で開催したワークショップを他の分野でも実施し, 学外諸機関の方々に広く参加してもらう予定である。さ らに年1回程度,オープンな研究発表会を設ける計画で あり,興味のある方々には是非参加をお願いしたい。

一方,学会等でも情報交換と討論の機会を積極的に作りたいと考えている。本学会では10月に開催される定期 講演会で,パネルディスカッション「航空エンジンの電 動化とエネルギーマネージメント」を企画している。エ ンジンメーカーをはじめ,JAXAや機体メーカーにも登
壇を打診しており,多くの会員に討論に加わっていただ けると幸いである。また,日本航空宇宙学会では11月に 開催される飛行機シンポジウムで,オーガナイズドセッ ション「ジェットエンジンの構造・材料技術」を実施す る。

本学会の産官学連携委員会とガスタービンを考える会 で検討されている研究開発ロードマップやプロジェクト 提案と、基盤的な領域では共通する部分も多い。講座で はこのような学会活動とも協調を図り、航空推進技術の 革新的な進展に寄与したいと考えている。

5. まとめ

社会連携講座は東京大学の中で比較的新しい制度であ り、運営の方法にも十分確立していないところがある。 情報のコントロールや知財などの微妙な点で細心の注意 が必要であるが、活動に参加する全ての皆さんにプラス になるような運営に努めたい。これまでの少ない経験か らも、社会連携講座に当該技術分野の一つの拠点を形成 することで、関連する人の輪が予期以上に広がり、産官

本記事は9月号に掲載されましたが,編集上の不 具合により著者原稿の記載事項の一部が欠落して いましたので,あらためて掲載させて頂きました。 著者と読者の皆様にお詫び申し上げます。 学会誌編集委員会委員長 田沼 唯士 学連携に非常に有効に機能することが分かっており、こ の講座でも航空推進技術の拠点機能を果たすことを期し ているところである。会員各位のご協力を心からお願い する次第である。

最後になったが、本講座を設置していただいている IHIの関係各位に深く感謝して、締め括りとしたい。

参考文献

- (1) 佐久間康典,渡辺紀徳,姫野武洋,加藤大,周藤由香 里,「周方向単一溝型ケーシングトリートメントが遷音 速圧縮機性能に及ぼす影響」,第40回日本ガスタービン 学会定期講演会講演論文集,(2012), pp.51-56.
- (2) 岡田隆一,渡辺紀徳,鵜沢聖治,姫野武洋,大石勉, 「マイクロジェットが超音速ジェット騒音及び流れ場に 及ぼす影響」,第39回日本ガスタービン学会定期講演会 講演論文集,(2011), pp.71-76.
- (3) 田口秀之,岡井敬一,「JAXAにおける未来型航空エンジンシステムの研究」,日本ガスタービン学会誌, Vol.40, No.3, (2012), pp.101-105.

GTSJガスタービンセミナー(第42回)のお知らせ

「ガスタービンの最新技術と保守技術の動向」をテーマに,第42回ガスタービンセミナーを下記の通り開催致します。 学会の会員,非会員を問わず,皆様のご参加をお待ちしております。

 1. 日時: 2014年1月23日(木)
 10:30 ~ 17:20 (受付開始 10:00)

 1月24日(金)
 9:30 ~ 16:20

 場所:東京大学 浅野キャンパス 武田ホール (武田先端知ビル5階) 東京都文京区弥生2-11-16
 *会場地図は、日本ガスタービン学会ホームページに掲載。

- 3. 主催 : 公益社団法人 日本ガスタービン学会
- 4. 協 賛 : エネルギー・資源学会,可視化情報学会,火力原子力発電技術協会,計測自動制御学会,コージェネレー (依頼中) ション・エネルギー高度利用センター,自動車技術会,スマートプロセス学会,ターボ機械協会,電気学会, 日本エネルギー学会,日本ガス協会,日本機械学会,日本金属学会,日本航空宇宙学会,日本航空技術協会, 日本材料学会,日本セラミックス協会,日本鉄鋼協会,日本伝熱学会,日本トライボロジー学会,日本内燃機 関連合会,日本内燃力発電設備協会,日本燃焼学会,日本非破壊検査協会,日本品質管理学会,日本マリン エンジニアリング学会,日本流体力学会,腐食防食協会,溶接学会
- 5. セミナープログラム テーマ: 「ガスタービンの最新技術と保守技術の動向」

第1日目〔1月23日(木)〕

※講演時間には質疑応答の時間を含む。

会

ーセッ	「セッション【:最新技術動向」						
1	航空エンジン電動化の最新研究開発動向	10:30-11:30	東京大学 岡井 敬一 氏				
2	JAXA クリーンエンジンにおける 低 NOx 燃焼技術の開発	11:30-12:30	(独)宇宙航空研究開発機構 山本 武 氏				
3	中小型ガスタービンにおける DLE 燃焼器および 燃焼システムの開発動向	14:00-15:00	川崎重工業(株) 堂浦 康司 氏				
4	航空転用形ガスタービンの最新技術動向と予防保全	15:00-16:00	(株) I H I 山本 卓史 氏				
5	ガスタービン用セラミック材料技術	16:20-17:20	(独)産業技術総合研究所 鈴木 雅人 氏				

第2日目〔1月24日(金)〕

「セッションⅡ:最新技術・保守技術動向」							
6	吉の浦火力発電所の概要と保守・運転実績について	9:30-10:30	沖縄電力(株) 杉山 考広氏,儀間 武充氏 富士電機(株)				
			新村 宋一 氏,山形 迪史 氏				
7	金属組織子的知見に基つくタービン動静翼の 実機稼動環境推定	10:30-11:30	防衛大学校 三浦 信祐 氏				
8	最新のガスタービン保守と寿命延伸技術	13:00-14:00	(株) 東芝 澤 徹 氏				
9	最新のガスタービンの保守・管理技術について	14:00-15:00	(株) 日立製作所				
		11.00 10.00	市川 国弘 氏				
10	ガスタービン発電設備のメンテナンスと 性能・信頼性向上への取組み	15:20-16:20	三菱重工業(株) 金箱 篤彦 氏				

会

6. セミナーの内容

(1) 「航空エンジン電動化の最新研究開発動向」

(東京大学 岡井 敬一 氏) 航空エンジンの制御系統の電動化((More Electric Engine) MEE)は、旅客機全機レベルの電動化度向上の最近の進展に合わ せ脚光を浴びている。本講演では、旅客機全機レベルにおける今後の電動化の進展における技術の中核として位置づけられる エンジン電動化とエネルギーマネジメントの高度化に関する最新の研究開発動向を紹介する。長期的視点に立った推進系の電 動化に関する検討も活発化しており、最新の研究状況について現状と課題・展望についてあわせて紹介する。

(2) 「JAXAクリーンエンジンにおける低NOx燃焼技術の開発」

(独) 宇宙航空研究開発機構では、「クリーンエンジン技術の研究開発」の一環として、航空機エンジンのNOx排出を低減するための燃焼技術の研究開発を実施した。小型航空機用エンジンを想定し、目標値はJCAO CAEP/4 NOx基準の20%とした。希薄予 混合燃焼を用いた燃焼器を開発し、高圧燃焼試験により2012年度に目標を達成した。本講演では、燃焼器の開発、これをサポ ートした計測、試験設備について概説する。

(3) 「中小型ガスタービンにおけるDLE燃焼器および燃焼システムの開発動向」

(川崎重工業(株) 堂浦 康司 氏) 近年の環境意識の高まりと経済的な要因から,発電用ガスタービンにはNOx排出量の削減とフレキシブルな運用の両立が求め られている。こうした要求に対応するため,各社は燃焼器や燃焼システムの開発・改良を進めている。本講演では、川崎重工 業のDLE燃焼器および燃焼システムを中心に、中小型ガスタービンにおける開発動向について紹介する。

(4) 「航空転用形ガスタービンの最新技術動向と予防保全」

(株) IHI 山本 卓史 氏) 航空転用形ガスタービンは発電端効率が高く、かつ軽量コンパクトという特徴を有している。また発停回数に対する耐久性が 高く、起動、停止時間が短い特徴も有し、ピークカットあるいは分散電源向けとして様々な発電設備運用形態に対応できる。本 講演では、代表的な航空転用形ガスタービンである GE社製LM2500, LM6000の概要と最新技術動向を紹介するとともに、 お客さまの運用にあたって突発的に送電・送気が止まることを回避するために、従来取り組みを実施している予防保全の活動 について紹介する。

(5) 「ガスタービン用セラミック材料技術」

(④) 産業技術総合研究所 鈴木 雅人 氏) ガスタービンの高効率・高出力化を目指しタービン入口温度(TIT)の更なる高温化が強く求められており,新規冷却技術,超合 金単結晶翼形成技術などの目覚ましい成果と共に,次世代に向けたセラミック材料技術の重要度が高くなっている。本講演で は,現在処方で開発が進んでいる次世代技術として注目を集める各遮熱コーティング形成技術を概説するとともに,新規溶射 技術SPS/SPPS法やセラミック複合材料形成技術などの当グループの研究成果について紹介する。

(6) 「吉の浦火力発電所の概要と保守・運転実績について」

(沖縄電力(株) 杉山 考広 氏,儀間 武充 氏,富士電機(株) 新村 栄一 氏,山形 通史 氏) 沖縄県は、大小約160もの島々からなり、沖縄電力は沖縄本島をはじめとする37の有人離島に電力を供給している。吉の浦火 力発電所は、供給力とエネルギーセキュリティーの確保およびCO2排出量削減を図る観点から、沖縄電力初のLNGを燃料とす るコンバインドサイクル発電設備を導入した。2012年11月に1号機、2013年5月に2号機が運開し、各々251MWの発電設備は、 負荷調整電源としてDSS運用を含む迅速な起動停止と常に変化する電力需要に応答する負荷追従性が求められる。本講演では、 同発電設備の概要と保守・運転実績を紹介する。

(7) 「金属組織学的知見に基づくタービン動静翼の実機稼動環境推定」

(防衛大学校 三浦 信祐 氏) ジェットエンジンの性能を左右する高圧タービン動静翼はNi基超合金を採用し、内部冷却、表面コーティングを施すことで耐 用温度を上昇させてきた。しかし、稼働中のタービン動静翼各部位に負荷される温度・応力は、高温下で高速回転環境のため、 実測不可能であり、未だその詳細は解明されていない。このため、タービン動静翼の余命判定は時間管理と表面損傷状態によ り行われている。本講演では、金属組織学的知見を適用することで得られるタービン動静翼の稼働環境把握と余命判定技術、 長寿命化への可能性について概説する。

(8) 「最新のガスタービン保守と寿命延伸技術」

(株)東芝 澤 徹 氏) ガスタービンを用いたコンバインドサイクル発電設備は、二酸化炭素排出量の削減、エネルギーの高効率利用、及び経済性の 向上という特徴が市場要求に合致し、年々増加している。しかし、ガスタービンの燃焼器や動静翼などの部品は、損傷を受け やすく、定期的な補修と交換が必要となる。したがって、最適な補修と再生を繰り返しながら長く部品を使用することが、ラ ンニングコスト及び環境負荷の低減に寄与し、効果的な寿命延伸技術が求められている。本講演では、これら技術の開発状況 について紹介する。 530

(9) 「最新のガスタービンの保守・管理技術について」

(株)日立製作所 市川 国弘 氏) 電力の供給の信頼性と経済性を両立させるため、コンバインド発電設備の主機であるガスタービンには高効率化が要求され、 タービン入口ガス温度は年々急速に上昇してきている。これに伴い高温部品である燃焼器や動静翼の負荷条件は益々苛酷にな っている。ガスタービンを高い信頼性で運転するためには、これらの高温部材の損傷を的確に把握して設備の保全管理をする 必要がある。本講演では、ガスタービンの信頼性向上と長寿命化の観点から、高温部品の保守管理、余寿命診断技術、補修・ 長寿命化技術について述べる。

会

(10) 「ガスタービン発電設備のメンテナンスと性能・信頼性向上への取組み」

(三菱重工業(株) 金箱 篤彦 氏) 大型ガスタービンである1150℃級D形ガスタービンも市場投入から30年を経過する時期に来ており、プラント寿命の延命 対策の立案を求められるケースが増えてきた。本講演では、ガスタービンの老朽化は避けられないものではあるが、高い信頼 性を維持するためのメンテナンスに加え、プラント寿命を延長するために考慮すべき点につき、OEMとしての最新の取組み を交えて紹介する。

7. 参加要領

1) 参加費(税込)	: ◆主催および協賛団体会員	2日間 26, 250円 1日のみ 18, 900円
	◆学生会員	5, 250円
	◆会 員 外	2日間 36,750円 1日のみ 26,250円
	◆会員外 (学生)	8,400円
	◆資料のみ	1冊 5,250円(残部ある場合)

2)申込方法: 申込書に所属,氏名,加入学協会名,GTSJ会員は会員番号等必要事項を明記の上,下記事務局宛2014年1月16日(木)までにお送り下さい。 日本ガスタービン学会ホームページからも申込ができます。 また,参加費につきましては2014年1月22日(水)までに以下の方法にてお支払い下さい。 支払い期日に間に合わない場合には事務局までご連絡ください。
・郵便振替 00170-9-179578
・銀行振込 みずぼ銀行 新宿西口支店 (普)1812298
・現金書留
* 口座名はいずれも、「シャ)ニホンガスタービンガッカイ」です。

3) 事務局: 公益社団法人 日本ガスタービン学会

〒160−0023	東京都新宿区	西新宿 7 -	-5 - 13 - 402
Tel. 0 3 - 3 3 6 5 -	-0095	Fax. 0 3	3-3365-0387
URL. http://www.gts	sj.org	E-Mail	gtsj-office@gtsj.org

資料集・ネームカードは当日受付にてお渡しします。

第42回ガスタービンセミナー (2014年1月23,24日) 申込書

日本ガスタービン学会 行 <u>FAX 03-3365-0387</u> TEL 03-3365-0095

会社名	
所在地	Ŧ
ΤΕL	
FAX	

参加者名(所在地・連絡先が所属により異なる場合には、本用紙をコピーして別シートにご記入下さい。)

フリガナ 氏 名	所	属	T E L F A X E-MAIL	所属学協会 GTSJの方は員 No.をご記入下さい	参加日 O印をっけて下さい
					23 • 24
					23 • 24
					23 • 24
					23 • 24

【事務局への連絡事項】

	2日間	人数	1日のみ	人数	合計金額
正会員	26,250円		18,900円		円
学生会員	5, 250円		5, 250円		円
会員外	36,750円		26,250円		円
会員外(学生)	8, 400円		8, 400円		円
支払予	定日:	月	日	支払金額	円
払込方法 : (○を 1. 銀行振 2. 郵便振 3. 現金書	ーつけてください。)	宿西口支店 普 - 1 7 9 5 7 8 いずれも、「シ	序通 1812298 3) ャ)ニホンガスタート) ごンガッカイ」	です。
請求書の発行:	要	(宛名:) ・ 不要
領収証の発行(当日お	お渡しします): 要	(宛名:)・不要

○本会共催・協賛・行事○

会

告

主催学協会	会合名	共催 /協賛	開催日	会場	詳細問合せ先
日本機械学会 関西支部	ステップアップ・セミナー 2013「挑戦し続ける企業 の成長戦略」	協賛	2013/11/21	大阪科学技術センター 中ホール	日本機械学会関西支部 TEL:06-6443-2073,FAX:06-6443-6049 E-MAIL:jsme@soleil.ocn.ne.jp
日本機械学会	基礎教育講習会「エンジ ン技術の基礎と応用(そ の26)」	協賛	2013/11/22	(㈱堀場製作所 東京セールスオフィス エクセレントホール	日本機械学会 http://www.jsme.or.jp/
日本機械学会 関西支部	第329回講習会「機械加工・ 計測の基礎とものづくり最 前線―データの流れとモノ の流れ―」	協賛	2013/12/3-4	大阪科学技術センター 中ホール	日本機械学会関西支部 TEL:06-6443-2073,FAX:06-6443-6049 E-MAIL:jsme@soleil.ocn.ne.jp
日本マリンエン ジニアリング学会	技術者継続教育2013「先進 コース」講習会	協賛	2013/12/5-6, 2014/1/23-24, 2/13-14	岡山国際交流センター, 海上技術安全研究所, 三宮研修センター	日本マリンエンジニアリング学会 http://www.jime.jp
火力原子力発電 技術協会	平成25年度先進超々臨界圧 火力発電技術開発講演会 「A-USC要素技術開発(実 証機の早期実現を目指し て)」	協賛	2013/12/17	発明会館ホール	火力原子力発電技術協会技術部事務局 TEL:03-3769-3095,FAX:03-3769-3097

▷入会者名簿 <

〔正会員〕

下原	直人(I	Η	I)	西尾	良二(大阪ガス)	阿部	晃士(川崎重工業)	高島	啓(川﨑	奇重コ	〔業)
小口	和志(川峰	倚重]	[業)	松尾	佳憲(川崎重工業)	中安	稔(川崎重工業)	細川	哲也(JALエ	ンジニア	リング)
波多野	· 学(東	京 電	: 力)	大村	真啓(新潟原動機)	吉中	良充(日立製作所)	上村	典道(防	衛	省)

〔学生会員〕

日西 亮介(金沢工業大学) 三井 博明(早稲田大学)

〔学生会員→正会員〕

泰中 一樹(大阪大学) 中辻 伸和(全日本空輸)

〔賛助会員〕

カクタス・コミュニケーションズ

.....

533

2013年度役員名簿

会長	坂田	公夫 (JAXA)
副会長	藤谷	康男(日立)
法人管理担当執行理事	太田	有(早大),幡宮 重雄(日立),正田淳一郎(三菱重工),山脇 栄道(IHI)
公益目的事業担当執行理事	畔津	昭彦(東海大),岡崎 正和(長岡技科大),武 浩司(川崎重工),田沼 唯士(帝京大),
	辻田	星歩(法政大), 寺本 進(東大), 春海 一佳(海技研), 村田 章(東京農工大), 山根 敬(JAXA)
理事	桂田	健 (JAL), 高西 一光 (関電), 新関 良樹 (東芝), 古谷 博秀 (産総研), 渡辺 和徳 (電中研)
監事	塚越	敬三(三菱重工),藤綱 義行(東京農工大)

2013年度委員名簿(順不同)

倫理規定委員会 ○幡宮重雄(日立),太田有(早大),春海一佳 (海技研),正田淳一郎(三菱重工),山根敬(JAXA),山脇栄道 (IHI)

- 自己点検委員会 ○幡宮重雄(日立),太田有(早大),春海一佳 (海技研),正田淳一郎(三菱重工),山根敬(JAXA),山脇栄道 (IHI)
- 運営委員会 ○太田有(早大),笠原公輔(IHI),小森豊明(三菱 重工),酒井義明(東芝),幡宮重雄(三菱重工),春海一佳(海技 研),正田淳一郎(三菱重工),村田章(東京農工大),山田貴哉(東 京電力),山根敬(JAXA),山脇栄道(IHI),渡辺紀徳(東大)
- **企画委員会** ○正田淳一郎(三菱重工),太田有(早大),幡宮重 雄(日立),春海一佳(海技研),村田章(東京農工大),山根敬 (JAXA),山脇栄道(IHI)
- 国際委員会 ○中村良也(アイ・エヌ・シー・エンジニアリング),岡 井敬一(東大),太田有(早大),小森豊明(三菱重工),仲俣千由 紀(IHI),葉狩智子(川崎重工),福田雅文(高効率発電システ ム研),船崎健一(岩手大),松田寿(東芝),三好市朗(日立),山 根敬(JAXA),山本誠(東京理科大),渡辺紀徳(東大)
- 学術講演会委員会 ○山本武 (JAXA),壹岐典彦 (産総研),内田 竜朗 (東芝),太田有 (早大),斉藤圭司郎 (三菱重工),高橋康雄 (日立),武田淳一郎 (富士電機),東部泰昌 (川崎重工),仲俣千由 紀 (IHI),春海一佳 (海技研),姫野武洋 (東大),平野孝典 (拓 殖大),渡邊裕章 (電中研)
- 集会行事委員会 ○山根敬(JAXA),木村武清(川崎重工),酒井英 司(電中研),澤徹(東芝),辻田星歩(法政),中村友行(防衛省), 西江俊介(三井造船),西村英彦(三菱重工),浜辺正昭(IHI), 古谷博秀(産総研),松沼孝幸(産総研),藤井達(日立),細川哲 也(JALエンジニアリング),水野拓哉(JAXA),山形通史(富士 電機),山本誠(東京理科大),吉田征二(JAXA)
- ガスタービン技術普及委員会 ○岡崎正和(長岡技科大),秋山陵 (日立),賀澤順一(JAXA),木村武清(川崎重工),齊藤大蔵(東 芝),檜山貴志(三菱重工),福山佳孝(JAXA),古川洋之(IHI), 細川哲也(JALエンジニアリング),宮原忠人(エネルギーアドバ ンス),村田章(東京農工大),屋口正次(電中研),山本誠(東京 理科大),渡辺紀徳(東大)
- 学会誌編集委員会 ○田沼唯士(帝京大), 荒木秀文(日立), 壹岐 典彦(産総研), 石川揚介(東芝), 刑部真弘(東京海洋大), 桂田 健(JAL), 加藤千幸(東大), 阪井直人(川崎重工), 櫻井一郎(元)

2013年10月4日現在

○は委員長

JAL), 佐藤哲也(早大), 潮崎成弘(三菱重工), 鈴木康文(防衛 省), 辻田星歩(法政大), 寺澤秀彰(東京ガス), 寺本進(東大), 中野健(IHI), 新関良樹(東芝), 服部学明(三井造船), 早田 陽一(ダイハツ), 北條正弘(JAXA), 三鴨正幸(中部電力), 山 下一憲(荏原), 山田貴哉(東京電力), 吉野展永(IHI), 渡辺 和徳(電中研)

会

- 論文委員会 ○船崎健一(岩手大), 壹岐典彦(産総研), 石田克彦 (川崎重工), 太田有(早大), 加藤大(IHI), 幸田栄一(電中研), 柴田貴範(日立), 田頭剛(JAXA), 寺本進(東大), 姫野武洋(東 大), 山根敬(JAXA), 山本武(JAXA), 山本誠(東京理科大), 吉岡洋明(東芝), 渡辺紀徳(東大)
- ガスタービン統計作成委員会 ○武浩司(川崎重工),井出琢磨 (IHI),恵比寿幹(三菱重工),澤徹(東芝),野村藤樹(ターボ システムズユナイテッド),原田純(川崎重工),山上展由(三菱重 工),吉田知彦(日立),米田幸人(ヤンマー)
- 產官学連携委員会 ○渡辺紀徳(東大),壹岐典彦(産総研),石井 潤治(東芝),岡崎正和(長岡技科大),幸田栄一(電中研),永留 世一(川崎重工),西澤敏雄(JAXA),幡宮重雄(日立),平野篤 (防衛省),福泉靖史(三菱重工),藤岡順三(物材研),船崎健一 (岩手大),古川雅人(九州大),本阿弥眞治(東京理科大),満岡次 郎(IHI),吉田英生(京大)
- 広報委員会 ○村田章(東京農工大),酒井義明(東芝),佐藤哲 也(早大),東部泰昌(川崎重工),姫野武洋(東大),福山佳孝 (JAXA),松沼孝幸(産総研),山根敬(JAXA)
- 表彰委員会 ○藤谷康男(日立),春海一佳(海技研),田沼唯士(帝 京大),太田有(早大),幡宮重雄(三菱重工),山根敬(JAXA), 村田章(東京農工大)
- 情報システム化推進委員会 ○村田章(東京農工大),酒井義明(東 芝),佐藤哲也(早大),東部泰昌(川崎重工),姫野武洋(東大), 福山佳孝 (JAXA),松沼孝幸(産総研),山根敬(JAXA)
- IGTC2015実行委員会 ○渡辺紀徳(東大),井上洋(日立),大石勉 (IHI),太田有(早大),北山和弘(東芝),寺本進(東大),西 澤敏雄(JAXA),姫野武洋(東大),牧田光正(JAXA),松田寿 (東芝),山上舞(IHI)
- 産業用ガスタービン研究開発プロジェクト調査研究委員会 ○壹岐典彦(産総研), 松沼孝幸(産総研), 伊藤栄作(三菱重工), 岸部忠晴(日立), 高橋徹(電中研), 合田真琴(川崎重工), 米澤 克夫(IHI), 渡辺紀徳(東大)

日本ガスタービン学会入会のご案内

日本ガスタービン学会は、「エネルギー」をいかにして効率よく運用し、地球規模の環境要請に応える かを、ガスタービンおよびエネルギー関連分野において追求する産学官民連携のコミュニティーです。

会員の皆様からは,「ガスタービン学会に入会してよかったと思えること」の具体例として次の様な声 が寄せられています:

- タテ(世代)とヨコ(大学,研究機関,産業界)の交流・人脈が広がった。
- ・学会誌が充実しており、学会・業界・国外の専門分野の研究動向や技術情報が効率的に得られた。
- ガスタービンに熱い思いを持った人達と、家族的雰囲気で階層を意識せず自由な議論ができ、専門家の指導を得られた。

学会の概要(2013年3月現在)

会員のメリット

個人会員(正・学生会員):

学会誌無料配布(年6回),学術講演会の論文発表・学会誌への投稿資格,本会主催の行事の参加 資格と会員参加費の特典,本会刊行物の購入資格と会員価格の特典,調査研究委員会等への参加 賛助会員:

学会誌の無料配布,学会誌広告・会告掲載(有料),新製品・新設備紹介欄への投稿,本会主催行 事参加および出版物購入について個人会員と同等の特典

会員別	入会金	会費 (年額)	後期入会時 会費(初年度のみ)
正会員	500円	8,000円	4,000円
正会員(65才以上*)	500円	5,000円	2,500円
学生会員	500円	2,500円	1,250円
賛助会員	1,000円	一口 70,000円とし,一口以上	一口 35,000円

入会金と会費(2013年度から)

※当該年度3月1日現在

後期・・・9月1日~翌2月末まで

会

入会方法

学会ホームページにて入会手続きができます(http://www.gtsj.org/index.html)。 学会事務局にお電話いただいても結構です。申込書を送付致します。

〒160-0023 東京都新宿区西新宿7-5-13 第3工新ビル402 電話番号:03-3365-0095 E-mail: gtsj-office@gtsj.org

現在の電力システムで採用されている「同時同容量」 は、ユーザー側の需要に合うように電力供給を行う仕 組みである。例えば、需要および供給の相違は、30分で 3%以内にしなければならない。電力会社が、これを守 ることによって電力の安定供給が行われてきた。ところ が、この「同時同容量」というシステムは、電力が不足 してもユーザーは使いたいだけ使い、電力会社はそれに 追従して発電するという非常に危険なものである。この ことは、東日本大震災直後の電力不足時に計画停電を行 わざるを得なかったことで明らかになった。本来は、人 工呼吸器を使っている家庭や交通信号等を考えれば、計 画停電という無差別停電は行うべきではない。

電力会社自身も、需給ひっぱく時に使用抑制をする条 件で通常時電力料金を低くしている契約者を設定してい たはずであるが、うまく機能しなかった。さらに、この 計画停電では、電力卸売り事業者(IPP)発電の送電も カットした。例えば、商社等が発電所を持ち電力会社の 送電線を利用して契約ユーザーに電力を売っているので ある。電力卸売り事業者は、ユーザーとの間で電力供給 契約をしており、それが電力会社の都合で履行できなく なったのである。これは、電力に関して自由な発想に基 づく事業が制限されることを示している。

現在,発送電分離等の新たな電力システムの議論が行 われている。発送電分離が実際に行われるかよりも,需 要者である市民を巻き込んだ新たなエネルギーシステム 構築ができるかが問題である。また,本特集で紹介した 中低温熱回収タービンが、安定出力の再生可能エネル ギーとして次第に活用されていくことが期待される。7 年後に開催が決まったオリンピックまでに、日本がどの ような電力システムや再生可能エネルギー利用システム を構築できるのか世界の注目を集めている。オリンピッ ク村や施設に、我々の考えている市民を巻き込んだ電力 システムを構築してみたいものである。

最後になるが、本号刊行にあたり、執筆者の方々には お忙しい中、快く原稿作成をお引き受けいただき深謝の 限りである。編集委員一同、心よりお礼を申し上げた い。なお、本号の企画編集は、服部学明 委員(三井造 船)、早田陽一 委員(ダイハツディーゼル)、山下一憲 委員(荏原製作所)および刑部真弘(東京海洋大学)が 担当させていただいた。 (刑部真弘)

(表紙写真) 今回の表紙については, 【論説・解説】の著者より流用 しております。
詳細については、各記事をご参照ください。
・「中低温熱回収用ニ相タービンの開発」
····· (P.456 ~ 460)
・「低温排熱回収250kW級小型バイナリー発電設備「グ
リーンバイナリータービン 」 (P.473 ~ 476)
・「地熱バイナリ用低温熱回収システム」 \cdots $(P.477 \sim 481)$
伊Turboden社のORCサイト
・「カリーナ温泉発電設備」 (P.482 ~ 487)

沖縄県那覇市で開催された定期講演会が無事盛会のうちに 終了いたしました。今回も現地のたくさんの方々に準備の段 階からお世話になりました。沖縄に来て印象的だったのが、 「かりゆしウェア」です。沖縄では仕事のときのフォーマル な(背広のような)服装となっているそうで、男女を問わ ずカラフルな色やデザインのシャツを着ていらっしゃいまし た。最初は会社の制服として支給されているのかと思い、会 う人ごとに「それはご自分の服ですか」と尋ねてみたのです が、みなさん、仕事着としてご自分で好きな柄や素材のもの を買っていらっしゃるとのことでした。暑い沖縄の気候に 合っていて、見た目にもきちんとした印象があり、形がほぼ 決まっているので選ぶときにもあまり悩まなくていいなあと 思いながら見ておりました。そうしたら、学術講演会委員会 委員のうちの2名の方がかりゆしウェアを着て登場。私も調 達すればよかった。残念…。ところで、この「かりゆしウェ ア」の歴史は浅く、昭和45年に「沖縄シャツ」として発売さ れたのが始まりで、その後沖縄サミットの年に名称が「かり ゆしウェア」に統一され、柄や衿の形のバリエーションも増 えて一気に普及したようです。沖縄の気候に合った実用的な 形で、さらには観光PRにもなるこのウェアを正装に制定し て、多くの県民の方が着用されているという点でも沖縄の行 動力と柔軟な県民性を感じました。 (中村) 2003.8.29改訂

- 1. 本学会誌の原稿はつぎの3区分とする。
- A. 投稿原稿:会員から自由に随時投稿される原稿。 執筆者は会員に限る。
- B. 依頼原稿:本学会編集委員会がテーマを定めて特 定の人に執筆を依頼する原稿。執筆者は会員外でも よい。
- C. 学会原稿:学会の運営・活動に関する記事(報告, 会告等)および学会による調査・研究活動の成果等 の報告。
- 2. 依頼原稿および投稿原稿は、ガスタービン及び過給 機に関連のある論説・解説,講義,技術論文,速報 (研究速報,技術速報),寄書(研究だより,見聞記, 新製品・新設備紹介),随筆,書評,情報欄記事,そ の他とする。刷り上がりページ数は原則として、1編 につき次のページ数以内とする。

論説・解説,講義	6ページ
技術論文	6ページ
速報	4ページ
寄書,随筆	2ページ
書評	1ページ
情報記事欄	1/2ページ

- 3. 執筆者は編集委員会が定める原稿執筆要領に従って 原稿を執筆し、編集委員会事務局まで原稿を送付する。 事務局の所在は付記1に示す。
- 4. 会員は本学会誌に投稿することができる。投稿され た原稿は, 編集委員会が定める方法により審査され, 編集委員会の承認を得て、学会誌に掲載される。技術 論文の投稿に関しては、別に技術論文投稿規程を定め る。
- 5. 依頼原稿および学会原稿についても、編集委員会は 委員会の定める方法により原稿の査読を行う。編集委 員会は、査読の結果に基づいて執筆者に原稿の修正を 依頼する場合がある。
- 6. 依頼原稿には定められた原稿料を支払う。投稿原稿 および学会原稿には原則として原稿料は支払わないも のとする。原稿料の単価は理事会の承認を受けて定め る。
- 7. 学会誌に掲載された著作物の著作権は原則として学 会に帰属する。但し、著作者自身または著作者が帰属 する法人等が、自ら書いた記事・論文等の全文または 一部を転載、翻訳・翻案などの形で利用する場合、本 会は原則としてこれを妨げない。ただし、 著作者本人 であっても学会誌を複製の形で全文を他の著作物に利 用する場合は、文書で本会に許諾を求めなければなら ない。
- 8. 著作者は、学会または学会からの使用許諾を受けた 者に対し著作者人格権を行使しない。
- 9. 本会発行の著作物に掲載された記事. 論文などの著 作物について、著作権侵害者、名誉毀損、またはその 他の紛争が生じた場合、当該著作物の著作者自身又は 著作者の帰属する法人等を当事者とする。

付記1. 原稿送付先および原稿執筆要領請求先 ニッセイエブロ㈱ 制作部 ガスタービン学会誌担当 〒105-0004 東京都港区新橋5-20-4 Tel. 03-5733-5158 Fax. 03-5733-5164 E-mail : eblo_h3@eblo.co.jp

2010.8.27改訂

- 1. 本学会誌に技術論文として投稿する原稿は次の条件 を満たすものであること。
 - 1) 主たる著者は本学会会員であること。
 - 2) 投稿原稿は著者の原著で、ガスタービンおよび過 給機の技術に関連するものであること。
 - 3) 投稿原稿は、一般に公表されている刊行物に未投 稿のものであること。ただし、要旨または抄録と して発表されたものは差し支えない。
- 2. 使用言語は原則として日本語とする。
- 3. 投稿原稿の規定ページ数は原則として図表を含めて A 4 版刷り上がり6ページ以内とする。ただし、1 ページにつき16,000円の著者負担で4ページ以内の 増ページをすることができる。
- 4. 図・写真等について、著者が実費差額を負担する場 合にはカラー印刷とすることができる。
- 5. 投稿者は原稿執筆要領に従い執筆し、正原稿1部副 原稿(コピー)2部を学会編集委員会に提出する。原稿 には英文アブストラクトおよび所定の論文表紙を添付 する。
- 6. 原稿受付日は原稿が事務局で受理された日とする。
- 7. 投稿原稿は技術論文校閲基準に基づいて校閲し、編 集委員会で採否を決定する。
- 8. 論文内容についての責任は、すべて著者が負う。
- 9. 本学会誌に掲載される技術論文の著作権に関しては. 学会誌編集規定7.および8.を適用する。

日本ガスタービン学会誌 Vol.41 No.6 2013.11

発行日	2013年11月20日		
発行所	公益社団法人日本ガスタービン学会		
	編集者 田沼 唯士		
	発行者 坂田 公夫		
〒160-0023 東京都新宿区西新宿7-5-13			
	第3工新ビル402		
	Tel. 03-3365-0095 Fax. 03-3365-0387		
	郵便振替 00170-9-179578		
	銀行振込 みずほ銀行 新宿西口支店		
	(普) 1703707		
印刷所	ニッセイエブロ(株)		
〒105-0004 東京都港区新橋5-20-4			
	Tel. 03-5733-5158 Fax. 03-5733-5164		

©2013, 公益社団法人日本ガスタービン学会

複写をご希望の方へ 本学会は、本誌掲載著作物の複写に関する権利を一般社団法人学術著 作権協会に委託しております。

本誌に掲載された著作物の複写をご希望の方は,一般社団法人学術著 作権協会より許諾を受けて下さい。但し、企業等法人による社内利用目 的の複写については、当該企業等法人が公益社団法人日本複写権セン (一般社団法人学術著作権協会が社内利用目的複写に関する権利を 再委託している団体)と包括複写許諾契約を締結している場合にあっ~ は、その必要はございません(社外頒布目的の複写については、許諾が 必要です)。

一般社団法人 学術著作権協会 権利委託先

〒107-0052 東京都港区赤坂9-6-41 乃木坂ビル3F FAX:03-3457-5619 E-mail:info@jaacc.jp

複写以外の許諾(著作物の引用、転載、翻訳等)に関しては、社学術 著作権協会に委託致しておりません。直接、本学会へお問い合わせくだ さい