噴流保炎一次燃焼による燃焼ガスを二次希薄予混合気の燃焼反 応に利用した二段燃焼法による超低NOx作動範囲拡大

Extending the operating range of ultra-low NOx emissions by enhancing the reactions of the secondary lean mixtures injected into the reverse-jet stabilized primary stage combustion products

中須 崇文 ^{*1}	齋藤 拓海*1	山田 秀志 ^{*2}	林 茂 ^{*3}
NAKASU Takafumi	SAITO Takumi	YAMADA Hideshi	HAYASHI Shigeru

ABSTRACT

The lean-lean two stage combustion, characterized by the enhancement of the reactions of ultra-lean to lean mixtures injected into the hot combustion products of the lean-burn primary stage, was investigated to show its potential in achieving low NOx emissions while maintaining complete combustion over a wide range of power of gas turbines. For single-digit NOx emissions, the stagnation reverse flow combustion was employed as a means of flame stabilization for the primary stage because of its robust flame holding capability at very lean conditions. Methane was used as fuel and emissions measurements and direct flame imaging were conducted at $T_i = 373$ and 573 K and at atmospheric pressure. NOx emissions less than 5 ppm (15% O₂) were achieved for a primary equivalence ratio of 0.5 with combustion efficiency greater than 99.9% over a range of gas temperatures ranging from 1400 to 1900 K.

Key words : Lean-lean two stage combustion, Stagnation reverse flow combustion, Robust flame holding, Ultra-low NOx emissions, Perfectly premixed methane-air mixtures

1. はじめに

ガスタービンの作動ガス温度は、タービンの耐熱性の 制約により当量比1付近での火炎温度よりもかなり低く 抑えられている。したがって、希薄予混合燃焼はガス タービンに本質的に適したNOx排出削減のアプローチ といえる。しかし、希薄予混合燃焼によるNOx削減は 燃焼温度の抑制に基づくものであるので、未燃焼成分の 排出が増大しやすいという問題があり、それが妨げと なって希薄予混合燃焼の持つNOx抑制能力を十分発揮 できない、あるいはNOx排出を維持できる出力範囲が 狭いという問題がある。この問題は、希薄予混合燃焼を 適用する場合の常套手段である、希薄予混合燃焼を のパイロット燃焼領域を配設し、作動状態に合わせて両 燃焼領域への燃料の配分を適切に制御する燃料ステージ ングにおいても当然、存在する。希薄予混合燃焼によっ

原稿受付 2016年11月29日 査読完了 2017年6月1日 *1 法政大学大学院 〒184-8584 小金井市梶野町3-7-2 *2 宇宙航空研究開発機構 *3 法政大学 てNOx排出をどこまで減らせるか、どこまで作動範囲 を拡大できるかは、希薄側可燃限界に近い予混合気をい かに完全燃焼させるかにかかっているといってもよい。

この課題に対して、林らは直列ステージングの2段目 燃焼域において、1段目の希薄燃焼域からの燃焼生成 物中に希薄な予混合気を噴射し、その反応促進に燃焼 生成物の熱とラジカルとを利用するlean-lean two-stage combustion (LL2)を提案し、気体燃料および液体燃料 を用いた基礎研究⁽¹⁾⁻⁽⁴⁾でその有効性を示しただけでなく、 商用エンジンでの実証にも成功している⁽⁵⁾。この方式の 特徴は、2段目に噴射される混合気が単独では点火、あ るいは保炎できないくらい希薄でも反応させることがで きる点で、結果的に広い作動範囲で超NOx排出が達成 されている。また、一般的な予混合希薄燃焼において問 題となる振動燃焼を抑制できることも示唆されている。

メタン焚き実エンジン搭載燃焼器⁽¹⁾では先端が閉じら れ、側壁に複数の2次予混合気噴射孔が周方向および軸 方向に開けられた多数のパイプを貫通させた円形多孔板 を保炎器とする超短縮火炎バーナを用いた。多孔板保炎 器上には多数の1次希薄予混合気の短小火炎が保持され、 その直下流において燃焼生成物中に希薄な2次予混合気 が噴射される。出力は基本的に、2次空気への燃料流量 の制御だけで増減できる。希薄予混合燃焼による局所的 高温部の発生を抑制させることはもちろん,2次予混合 気噴射による高温領域での滞留時間の短縮によるNO生 成の抑制も狙っている。

一方,実エンジン搭載液体用燃焼器⁽²⁾では,1次燃焼 域においては,予混合管内に逆火が起きないように工夫 された旋回空気流れ中に,管入口近傍で圧力スワールノ ズルを用いて灯油を噴霧し,形成された希薄予混合気の 火炎が予混合管出口下流に保炎される。その燃焼ガス塊 中に,2次燃焼域では独特な形状のインジェクターから 燃料噴霧の予蒸発による希薄から超希薄な予混合気が噴 射される。この燃焼器を搭載した出力300 kW級再生ガ スタービンは,灯油燃焼において50%出力から定格まで の作動範囲にわたり高い燃焼効率と10 ppm以下(15%O₂ 換算値)の超低NOx排出を達成している⁽⁵⁾。

これら一連の研究において、2段目の混合気の濃度が サーマルNOxを生成するほどに高くなければ、その反 応によるNOx濃度の実質的な増加はないこと、条件に よっては、むしろ減少することもあることが見出された。 このことは、1段目をより希薄にしても高い燃焼効率を 維持できさえすれば、さらなるNOxの排出削減が実現 できることを示唆している。

ガスタービン燃焼器において, 燃焼領域の下流におい て追加で燃料, あるいは燃料と空気を噴射することで低 NOx作動範囲を拡大できることが実機で示されており, 今後, この方式の普及が進むと考えられる。

これまでの保炎方式よりもより希薄な条件において, 混合気の流速や燃料濃度の変動を受けても吹き飛びが起 きにくいロバストな保炎手段として,混合気を燃焼室の ドーム壁面に向けて噴射する噴流保炎に着目した。この 方式では,噴流の外周と燃焼室壁との間の空間に形成さ れる高温燃焼ガスの再循環領域が噴流の着火を担ってお り,多孔板による保炎はもちろん,旋回による保炎より も格段に保炎性能に優れている。

噴流による保炎は,航空エンジンでは蒸発管型燃焼器 に相当古くから利用されてきた。液体燃料は燃焼室内に 突起した蒸発管の中で蒸発し,空気と混合してできた燃 料大過剰な混合気がドーム壁に向けて噴射され,対向し て流入する空気噴流と衝突して拡散火炎を形成する。

一方,オゾン層保全の観点から超低NOx排出が要求 される超音速機用エンジンの燃焼器においては、ジェッ ト燃料の希薄予混合予蒸発燃焼の保炎手段として研究さ れた⁽⁶⁾。また,噴流保炎燃焼器の排出特性に関しジェッ ト燃料蒸気をプロパンで模擬した基礎的な研究も行わ れた。一方,比較的最近,Zinnらは,Stagnation Point Reverse Flow Combustorと呼ぶ燃焼器の排出特性を報 告している⁽⁷⁾。これは,噴射ノズル先端からドーム壁面 までの距離が300 mmもあり,天然ガス燃焼試験の結果 として,非予混合噴射においてもNOxレベルは予混合 気噴射のレベルに近いことを示しており,液体燃料につ いても実験を行っている。

しかし,上記のいずれの研究も基礎研究で,1段燃焼 領域に噴流保炎方式を採用したLL2方式燃焼器の排出に 関したものではない。

そのため我々はLL2燃焼器の1段目に適用することを 目的として噴流保炎方式に関する研究を行った。その第 一段階としてメタンを用いて予混合気と非予混合気につ いて実験を行い,灯油について実験を行った。これら の試験結果において,保炎性能が良好なことと,超低 NOxのポテンシャルを確認している^{(8),(9)}。本論では,こ れらの試験結果をもとに設計した気体燃料用LL2方式2 段燃焼器の大気圧下における排出性能について報告する。

2. 試験装置

燃焼器の概略図を図1に示す。燃焼筒は竪置きの内 径80 mm,長さ300 mm,厚さ2 mmの石英管で形成さ れ、燃焼室ドーム壁に相当する底面は厚さ50 mmのセ ラミックファイバー製円板で形成されている。ガス分析 の際には、火炎および燃焼ガスからの放射による熱損失 を抑制するため、燃焼筒を断熱材製円筒内に納めている。 火炎撮影の際には、この円筒を取り外し、また、燃焼筒 はより透明性の高い石英管(長さ250 mm)に取り換え た。

表1,表2はそれぞれ,1段目および2段目のイン ジェクターの要部寸法,噴射孔の径,個数および総開 口面積を示す。両者の総開口面積は実質的に同じであ る。1段目インジェクターは、二重円管構造になってお り、予混合気は二重円管内を通り、先端部において外周 壁に周方向等配で取り付けられた4本の逆L字管(内径 10 mm, 厚さ1 mm)の出口から底面に向けて噴射され る。2段目インジェクターは、1段目インジェクターの 内管内に同軸に配置された, 先端が閉じた円筒で, その 先端部の側壁には噴射孔が軸方向に10 mm間隔で4段, その各段に4個ずつ周方向等配で配置され、それらか ら2段目予混合気が半径外向きに噴射される。噴射孔の 周方向位置は、底面側から数えて1段目と2段目、3段 目と4段目が、それぞれ同一で、相互に45度ずれている。 2段目のインジェクターの噴射孔の直径は上流ほど大き くなっている。これは2段目の予混合気をより多く、1 段目の燃焼領域に供給させるねらいがある。

1段目と2段目のインジェクターの燃焼筒内への突出 長さは、独立に変えられる。以後の説明において、燃焼 室底面を基準とした1段目の噴射孔の端面の位置をZ_{in1}, 2段目の最も底面寄りの噴射孔の中心位置をZ_{in2},ガス 採取位置をZ_pと表す。

先行研究⁶⁰において,2段目の予混合気噴射位置を1 段目の予混合気噴射位置に近づけると燃焼効率が向上す ることが確認されている。この結果を設計に反映し,1 段目のインジェクターの上端部に周方向4か所の切欠き を設け,そこに2段目の最も上流側の噴射孔が位置する ようにした。その結果、それらの孔は軸方向で1段目の 噴射孔に5mmまで近づけられた。

燃料にはメタンを使用し、ヒーターで予熱した空気を スタティックミキサーで混合させ、均質な予混合気を形 成し、1段目と2段目のインジェクターに供給した。1 段目および2段目空気流量(*m*_{a1}, *m*_{a2})は、ともに5.4 g/sに固定した。

Fig. 1 Photographs and drawings of injectors used.

Table 1 Dimensions of primary injector	Table 1	nensions	Di	sions	of	primary	injector
--	---------	----------	----	-------	----	---------	----------

Outer tube and wall thickness, mm	32 ID*1-1
Inner tube and wall thickness, mm	25 OD*2-1
Cross-sectional area of mixture passage, mm ²	313
Number and diameter, mm of holes	$4 \times \phi 10$
Total opening area of holes, mm ²	314

*¹InnInner diameter, *²OutOuter diameterer

Table 2 Dimensions of secondary inje

Inner diameter and wall thickness, mm	19.7-1
Cross-sectional area of mixture passage, mm^2	305
	$4 \times \phi 3$
Number and diameter of holes*3, mm	$4 \times \phi 3$
(From top to bottom rows)	$4 \times \phi 4$
	$4 \times \phi 8$
Total opening area of holes, mm ²	308

*310mm interval

3. 排ガス測定および火炎撮影

排ガス採取には直径0.7 mmの吸入孔がアーム部にそ れぞれ8か所開けられている水冷式の十字プローブを用 い,測定にはHORIBA製MEXA-9110Hを使用した。排 ガス分析の際には,ガス分析計の表示の値が定常な状態 を示すことを確認してからデータを取得している。排ガ ス測定を予め定めた当量比で行うため,分析計の酸素濃 度の表示を見ながら燃料流量を調節した。

火炎撮影にはCANON製EOS 50Dを使用し、輝度の比 較ができるように、撮影条件はシャッタースピード1/6 s、絞り値6.3、ISO感度2000とした。

4. 試験結果および考察

4.1 1段目および2段目予混合気噴射位置の影響

最初にNOx排出と燃焼効率に対する1段目と2段目 予混合気噴射位置の影響について調査した。予混合気温 度 T_i は373 Kとし、この温度において余裕をもって1段 目予混合気を完全燃焼できる条件にするため、1段目当 量比 ϕ_1 は0.7とし、2段目当量比 ϕ_2 は0から0.7まで変化 させた。

(1)1段目予混合気噴射位置の影響

2段目予混合気噴射位置Zin2を55 mmに固定し,1段 目噴射予混合気位置Zin1を10 mm,30 mm,50 mmと変化 させ、火炎写真を図2に、ガス採取位置Z_Pが300 mmに おけるNOx排出と燃焼効率のグラフを図3に示す。1 段目のインジェクターの位置が燃焼室の底部から離れる ほど1段目燃焼領域の輝度が高くなっている。Zin1=10 mmにおける1段目の予混合気は、燃焼室底部に衝突し、 燃焼室出口方向に戻っており、2段目の最も上流側の噴 射孔付近にまで反応領域が伸びていることが示唆される。 Zin1=30 mm,50 mmにおいては1段目の噴射孔の下に再 循環領域が形成された。

2段目に燃料を供給すると、 ϕ_2 =0.1において燃焼効率は99%よりさらに低く落ち込む。燃焼効率の落ち込み は Z_{in1} が低いほうが小さくなっている。この条件における2段目の燃焼領域において写真では確認できないが 肉眼で極めて弱い発光がとらえられている。 ϕ_2 =0.3に おいて青みがかった反応領域が明確に見えるようにな り、このときの燃焼効率は99.9%よりも高くなっている ことが分かった。 ϕ_2 をさらに増加させると、さらに出 ロガス温度が上昇し、 ϕ_2 が0.7における出口ガス温度は 約1900 Kであった。燃焼効率が99.9%を達成できる最も 低い出口ガス温度 T_b は Z_{in1} が10 mmのときに1420 K, 50 mmのとき1460 Kと推定される。

NOx濃度はZ_{in1}に大きく依存していることが確認され た。Z_{in1}=10 mmのNOx濃度はZ_{in1}=50 mmに比べて半分 になっている。この傾向は、1段目でのNO生成機構に おける滞留時間の影響であることが推測される。1段目 の予混合気噴射位置を低くすることによって、輝度が高 い領域での滞留時間が短くなり、NOxの生成を抑制し、 1段目で生成されたOH等のラジカルを多く含む燃焼ガ スが2次領域に供給されることによって反応が促進され た結果、燃焼効率の落ち込みを抑制できることが示唆さ れる。

Fig. 2 Photographs of flames showing effects of primary mixture injection position, Z_{in1} , on flame structure for Z_{in2} =55 mm and $\phi_1 = 0.7$.

Fig. 3 NOx emissions and combustion efficiency vs. overall equivalence ratio, φ_t, for different primary mixture injection positions, Z_{in1}.

(2)2段目予混合気噴射位置の影響

1 段目予混合気噴射位置Z_{in1}を10 mmに固定し, 2 段 目予混合気噴射位置Z_{in2}を15 mm, 35 mm, 55 mmと変 化させた。前節に記したように Z_{in1} =10 mmにしたのは, Z_{in1} =30 mm, 50 mmと比較してNOx濃度が最も低く,燃 焼効率の落ち込みが最も低かったからである。

火炎写真を図4に、 Z_p =300 mmにおいてNOx濃度と 燃焼効率を表したグラフを図5(a)に示す。前節の図3に 示すのと同じように、2段目に燃料を供給すると、 ϕ_2 =0.1において燃焼効率は99%より低く落ち込む。燃焼効 率の落ち込みは2段目予混合気噴射位置 Z_{in2} が低いほう が小さくなっている。このとき2段目の燃焼領域では、 写真では確認できないが肉眼で極めて弱い発光がみとめ られる。燃料をさらに増やした ϕ_2 =0.3になると青みが かった反応領域が明確になり、2段目の燃焼領域に占め る割合が大きくなる。それらは噴射孔の周方向位置に対 応して石英管内壁に沿って筋状に伸びている。 ϕ_2 をさ らに増加させると、反応領域が短くなり、より強く発光 するようになる。

Zin2を低い場合はZin2からZpまでの距離が離れ,2段目 予混合気の滞留時間が長くなる。そこで,2段目予混合 気の滞留時間を合わせるために,ガス採取位置Zpから2 段目予混合気噴射位置Zin2までの距離,すなわちZp-Zin2 を245 mmにして実験を行った。この条件におけるNOx 濃度と燃焼効率のグラフを図5(b)に示す。2段目予混合 気の滞留時間を等しくした場合においても,Zin2が低い ほうが燃焼効率の落ち込みは小さくなっていることがわ かる。この場合においても2段目予混合気噴射位置に よって燃焼効率の落ち込みに差があることから,1段目 で生成されたOH等のラジカル濃度がより高い燃焼ガス が2次領域に供給されることで反応が促進されることが 示されている。

NOx濃度は燃焼室出口においてZ_{in2}に依存しないこ とが確認された。全体当量比 φ_tが0.6以下の範囲では10 ppm以下という超低NOx燃焼が達成された。 2 段目の 燃料を増加させると,NOx濃度が 1 段燃焼時と比較す ると φ_t<0.6の範囲まで減少している。図 3 ではNOx濃 度の縦軸のスケールが図 5 の 2 倍で目盛られているため φ_t<0.6の範囲ではNOx濃度はほとんど変化が無いよう にみえるが,同じスケールでプロットすると図 5 の結果 は図 3 の結果とほぼ一致する。高温既燃ガス中に希薄な 予混合気を噴射するとNOxが減少するという現象はこ れまでの実験においてもみとめられている⁽¹⁾。このこと から 2 段目に希薄な予混合気を供給すると 1 段目で生成 されたNOxの一部が 2 段目予混合気中のHCによってシ アン等に還元⁽¹⁾されるReburning⁽¹²と類似することが起き ていることを示唆している。

Fig. 4 Photographs of flames showing effects of secondary mixture injection position, Z_{in2} , on flame structure for $Z_{in1}=10$ mm and $\phi_1 = 0.7$.

4.2 予混合気温度および1段目当量比の影響

予混合気温度の影響を調べるために前節に記した $T_i=373$ Kでの実験に加え, $T_i=573$ KにおいてNOxをさ らに低減させるために1段目の当量比がより低い $\phi_1 =$ 0.5, 0.6で1段目の当量比の影響について調査した。なお, 1段目予混合気噴射位置 Z_{in1} は10 mm, 2段目予混合気 噴射位置 Z_{in2} は15 mm, ガス採取位置 Z_p は300 mmとした。

2段目当量比 ϕ_2 を0から0.7と変化させたときの火炎写 真を図 6 に,NOx濃度と燃焼効率を表したグラフを図 7 に,NOx 濃度の15%O2換算値を図 8 に示す。1 段燃 焼時($\phi_2 = 0$)には、 $\phi_1 = 0.5$ で青みを帯びた火炎が形 成され、 $\phi_1=0.6$ に増加させると1段目燃焼領域の輝度 が高くなる。2 段目に燃料を供給すると、 $\phi_2=0.1$ にお いては、2 段目の燃焼領域において、写真では確認でき ないが肉眼で極めて弱い発光がとらえられている。 ϕ_2 = 0.3では青みがかった反応領域が明確に見え、石英管 内壁を沿うように細長い火炎が形成される。 $\phi_2=0.5$ 以 上の範囲では、反応領域は2 段目のインジェクター周辺

Fig. 5 NOx emissions and combustion efficiency vs. overall equivalence ratio, ϕ_t , for different secondary mixture injection positions, Z_{in2} .

部まで短くなっている。同一条件での ϕ_2 を比較した場 合、1段目の当量比 ϕ_1 が大きい方が2段目の反応領域 が短くなることが分かる。

 $\phi_1 = 0.6$ において、この試験における全ての範囲で、 燃焼効率は99.9%以上であった。一方、 $\phi_1 = 0.5$ におい て2段目に空気のみが噴射される場合($\phi_2=0$)の燃焼 効率は99.2%であるが、燃焼ガス温度が1400 K以上にな ると完全燃焼(99.9%)が実現できる。

NOx濃度は1段目の当量比に大きく依存し、 $\phi_1 = 0.5$ においては、この試験の全ての範囲で5 ppm(15%O2換算値)以下を達成し、 $\phi_1=0.6$ においては10 ppm前後となった。

この実験では、 ϕ_1 を固定して ϕ_2 を変化させているが、 完全燃焼と超低NOx燃焼を両立できるように $\phi_1 \ge \phi_2$ の 両方を変化させることで、より広い作動範囲でNOx 濃 度を 5 ppm (15%O₂換算値)以下に抑制することが可能 である。 ϕ_1 =0.5においては、前節に記載した結果と比 較してNOx濃度が低いことから、予混合気温度が高い

Fig. 6 Photographs of flames showing effects of primary and secondary mixtures equivalence ratios, ϕ_1 and ϕ_2 , on flame structure for Z_{in1} =10 mm and Z_{in2} =15 mm.

Fig. 7 NOx emissions and combustion efficiency vs. overall equivalence ratios, ϕ_1 , for primary equivalence ratios, ϕ_1 , of 0.5 and 0.6.

Fig. 8 NOx emissions corrected to 15% O₂ and combustion efficiency vs. overall equivalence ratios, ϕ_{1} , for primary equivalence ratios, ϕ_{1} , of 0.5 and 0.6.

方が,1段目の当量比をより低くすることが可能となり, 低NOxにできるといえる。したがってこの燃焼方式は, 空気入口温度が高い再生サイクルのガスタービンや高圧 力比のガスタービンに向いているといえる。

4.3 反応の進捗とNOxの生成

ガス採取位置を軸方向に変化させ、2段目予混合気の 反応の進捗とそれに伴うNOxの生成について調査した。 また、参考までにNOxの内訳、すなわちNOとNO₂の軸 方向変化についても調べた。1段目および2段目予混合 気噴射位置 Z_{in1} , Z_{in2} は、それぞれ10 mm, 15 mmで、予 混合気温度 T_i は573 K, 1段目当量比 ϕ_1 は0.5および0.6 とした。

(1)反応の進捗

φ₁=0.5においてCOおよびHCの濃度とガス採取位置 に対する変化を表したグラフを図9(a)に示す。1段燃焼 $(\phi_2=0)$ の場合, CO濃度の値は燃焼室出口までほとん ど変化しない。これは空気噴射により燃焼ガス温度が低 くなったことによって反応が凍結されたためと考えられ る。 φ₂=0.1においては、CO濃度は増大してZ_p=200 mm で最大になり、その後減少しているのに対し、HC濃度 は単調に減少している。これは、HCが分解しながらCO およびCO2が生成されていることが示唆され、HC→CO とCO→CO₂との競合によって、それらの値が決まって いるといえる。 φ2が0.2以上では、 燃焼室出口に近づく ほどCO, HCのいずれの濃度も単調に減少することが分 かった。また、2段目の当量比が大きい場合、COおよ びHCの濃度は1段燃焼 ($\phi_2=0$) よりも低くなっている。 このことから、2段目の燃焼ガス温度が高い方が1段目 からのCOの酸化反応がより促進されることが分かる。

 ϕ_1 =0.6においてCOおよびHCの濃度のガス採取位置 に対する変化を表したグラフを図 9 (a)に示す。この場合, ϕ_1 =0.5の場合と比較して、COとHCの濃度の値が低く なっている。このことから、1 段目の当量比 ϕ_1 が高い 方が、2 段目の混合気の反応がより速く進むことが示唆 される。なお、1 段目の燃焼ガス温度は ϕ_1 =0.5で1200 K、 ϕ_1 =0.6で1300 Kである。

(2)NOxの生成

 ϕ_1 =0.5においてNOとNO₂濃度の軸方向変化を表した グラフを図10(a)に示す。出口におけるNOxのほとんど はNO₂である。1段燃焼(ϕ_2 =0)の場合,2段目でNO がごくわずかに生成される。1段目の燃焼ガス流中に希 釈空気が噴射されることによって1段目で生成された NOがNO₂に変換していることが示唆される。このこと はSanoらによって明らかにされている¹³³。 ϕ_2 =0.3の場合, NOxのすべてがNO₂でその濃度は燃焼室出口に近づくほ どわずかに減ることがわかる。

これは、2段目予混合気中のHCによりNOxがシアン 等に還元^{III}されていることを示唆している。これは、燃 焼ガス中にHCを噴射し、NOxを削減するReburning^{f12}に よっておきている還元反応である。通常、Reburningを

Fig. 9 CO and HC emissions along the combustor axis for secondary mixture of different primary equivalence ratios for ϕ_1 of 0.5 and 0.6.

利用するのは残存酸素濃度が非常に低い条件である。し かし、本実験での2段燃焼領域での酸素濃度は相当高い ために、還元が起きにくい条件であるが、炭化水素濃 度が極めて高いために還元反応が起きていると考えられ る。

 $\phi_1=0.6$ においてNOとNO2濃度の軸方向変化を表した グラフを図10(b)に示す。 $\phi_1=0.6$ では $\phi_1=0.5$ の場合より もNO濃度が高いが、これは、1段目の火炎温度が高く なったことによってThermal NOも生成されるように なったと考察される。 $\phi_2=0.3$ のとき、1段目で生成さ れたNOはNO2に変換され、 $Z_p=100$ mmにおいては全て NO2に変換される。これは、2段目の燃料のHCがNOか らNO2への変換に関係していることが示唆される。炭化 水素によりNO-NO2変換が起きることは、Horiらの実 験によって明らかにされている⁽⁴⁾。燃焼室出口に近づく ほどNOが増加していることから、1段目で変換により 生成されたNO2の一部がNOに戻ることが示唆される。 2段目の燃料をさらに増加させた $\phi_2=0.6$ では、 $Z_p=100$ mmにおいてNO濃度が増加することが確認できるが、 これもThermal NOによるものと考えられる。

4.4 実用化に向けた課題への対応

この研究では、LL2コンセプトの低NOx排出(<5 ppm以下)と高効率(>99.9%)の両立に対する有効性 をガス燃焼で検証することと、最良混合条件での排出レ ベルの確定を目的としていたので、SUS材の板金溶接に よるインジェクターを用い、均質予混合気を外部から供 給して実験を行った。実用化に際してのインジェクター の耐久性の課題は、耐熱金属の精密鋳造、あるいは最近 実用になったAdding Manufacturing により製作するこ とで解決できると考えられる。一方、混合気については、 噴射孔の直上流で燃料を気流中に噴射して混合する方式

Fig. 10 Concentration of NO and NO₂ along the combustor axis for secondary mixture of different primary equivalence ratios for ϕ_1 of 0.5 and 0.6.

を採用することを検討している。その場合,局所的な燃料濃度の不均一さが残るのは避けられないが,実験結果が示すように,2段目におけるNO生成は,その当量比が0.6程度までは実質的にないことから,不均一さによるNOxの増大はそう大きくないと考えられる。現在,実用に向けたインジェクター設計を行っている。

5. 結論

直列希薄 – 希薄ステージングの2段目燃焼域において, 1段目の希薄燃焼域からの燃焼生成物中に希薄な予混合 気を噴射し,その反応の促進に燃焼生成物の熱とラジカ ルとを利用するLL2燃焼器の排出特性について調査した。 その結果,以下の知見を得た。

- (1) 1段目に噴流保炎方式を用いることでより希薄側での安定した保炎が可能となる。この方式により断熱火炎温度が1400 Kから1900 Kまでの広い作動範囲で完全燃焼(99.9%以上)と5 ppm(15%O2換算値)以下の超低NOx排出を達成できる。
- (2) 1段目予混合気噴射位置をドーム壁面に近づけることでNOxが抑制され、1段目で生成されたラジカル濃度が高い燃焼生成物中に2段目予混合気が噴射されることで反応が促進され、高い燃焼効率を達成できる。
- (3)予混合気温度が高い場合には、1段目の当量比が低い場合においても燃焼器出口において高い燃焼効率を達成できる。そのため、1段目の当量比をより低くすることが可能となり、出口ガス温度が等しい場合においてもNOxを低減できる。
- (4) 1段目予混合気が完全燃焼していない場合であって も、出口ガス温度が約1400 K以上になると完全燃 焼を実現する。
- (5) 2段目予混合気中のHCによって1段目で生成され たNOxの一部が還元される場合がある。
- (6) 1段目で生成されたNOのほとんどは2段目の燃料 が噴射されるとすぐにNO₂に変換され,NO₂の一部 はNOに戻る場合がある。

参考文献

- S. Hayashi, and H. Yamada, 2000, "NOx emissions in combustion of lean premixed mixtures injected into hot burned gas," Proceedings of the Combustion Institute, 28:2443-2449.
- (2) S. Hayashi, H. Yamada, and M. Makida, 2005, "Extending low-NOx operating range of a lean premixed-prevaporized gas turbine combustor by reaction of secondary mixtures injected into primary stage burned gas," Proceeding of the Combustion Institute, 30:2903-2911.

- (3) N. Aida, T. Nishijima, S. Hayashi, H. Yamada, and T. Kawakami, 2005, "Combustion of lean prevaporized fuel-air mixtures with hot burned gas for low NOx emissions over an extended range of fuel-air ratios," Proceedings of the Combustion Institute, 30:2885-2892.
- (4) S. Adachi, A. Iwamoto, S. Hayashi, H. Yamada, and S. Kaneko, 2007, "Emissions in combustion of lean methane-air and biomass-air mixtures supported by primary hot burned gas in a multi-stage gas turbine combustor," Proceedings of the Combustion Institute, 31:3131-3138.
- (5) H. Fujiwara, M. Koyama, S. Hayashi, and H. Yamada, 2005, "Development of a liquid-fueled dry low emissions combustor for 300kW class recuperated cycle gas turbine engines," GT2005-68645 Proceedings of GT2005 ASME Turbo Exposition, Nevada, USA.
- (6) P. B. Robarts, J. R. Shekleton, D. J. White, and H. F. Butze, 1976, "Advanced low NOx combustors for supersonic high-altitude aircraft gas turbines," ASME paper NO. 76-GT-12.
- (7) M. K. Bobba, P. Gopalakrishnan, J. M. Seitzman, B. T. Zinn, 2006, "Characteristics of Combustion Processes in a Stagnation Point Reverse Flow Combustor," GT2006-91217, Proceedings of GT2006 ASME Turbo Expo 2006: Power for Land, Barcelona, Spain.
- (8) 野崎浩太,廣井巧,中村聡志,山田秀志,林茂,2014, 淀み点逆流燃焼における排気性能に及ぼす噴射形態の影
 響,第42回日本ガスタービン学会定期講演会講演論文 集,pp.249-25
- (9) T. Hiroi, T. Saitoh, T. Nakasu, H. Yamada, S. Hayashi, 2016, "Effects of Atomization on Emissions in Reverse Flow Flame Stabilized Combustion," Asian Joint Conference on Propulsion and Power 2016, AJCPP2016-163: Takamatsu, Japan.
- (10) T. Saitoh, T. Nakasu, T. Hiroi, H. Yamada, S. Hayashi, 2016, "Emissions Characteristics of Combustion of lean secondary premixed gas jets injected into burned gas from primary stage by lean premixed combustion supported by Reverse jet flame holding," GT2016-56826 ASME Turbo Expo 2016: Seoul, South Korea.
- (11) Miller. J. A, Klippenstein. J, and Glarbog. P, 2003, "A Kinetic Issue in Reburning: The Fate of HCNO." Combustion and Flame 135: 357-62.
- (12) Myerson, A. L., 1974, "The Reduction of Nitric Oxide in Simulated Combustion Effluents by Hydrocarbon-Oxygen Mixtures." Proceedings of the Combustion Institute 15:1085-92.
- (13) T. Sano, 1984, "NO₂ Formation in Mixing Region of Hot Burned Gas with Cool Air." Combustion Science and Technology 38: 129-44.
- (14) M. Hori, N. Matsunaga, Malte. P. C, and Marinov. N. M, 1992, "The Effect of Low-Concentration Fuels on the Conversion of Nitric Oxide to Nitrogen Dioxide." Proceedings of the Combustion Institute 24:909-16.