サイクル計算による アンモニア/天然ガス混焼ガスタービンの性能予測

Performance Prediction by Cycle Simulation for Ammonia / Natural Gas Co-fired Gas Turbine

伊藤 慎太朗^{*1} ITO Shintaro 内田 正宏^{*1} UCHIDA Masahiro **藤森 俊郎***1 FUJIMORI Toshiro 小林 秀昭^{*2} KOBAYASHI Hideaki

ABSTRACT

Performances of an NH3/natural-gas co-fired gas-turbine have been studied by simplified cycle simulations which account for NO emission from NH₃. Results showed that generator-end efficiency increases and turbine inlet temperature decreases with increasing NH₃ mixing ratio because the lower heating value of NH₃ is lower than that of natural gas. These changes cause saving fuel and reducing damages to turbines. On the other hand, generator-end efficiency decreases as the NO conversion ratio increases due to incomplete combustion of NH₃. It was shown that high NOx emission has adverse effects both on air pollution and operating cost. Further, it was also shown that the turbine outlet temperature decreases with increasing NH₃ mixing ratio, leading to the low thermal efficiency of the heat recovery steam generator. However, it is expected that high thermal efficiency could be maintained by adjusting the compressor inlet air flow rate to keep the turbine inlet temperature constant.

キーワード: ガスタービン, アンモニア, 天然ガス, サイクル計算, 効率 **Key words**: Gas Turbine, Ammonia, Natural gas, Cycle simulation, Efficiency

1. 緒言

火力発電設備からのCO2排出量を低減するため、アン モニアを燃料として利用する技術が注目されている。ア ンモニアは、再生可能エネルギーから生成される水素の エネルギーキャリア(1),(2),(3)の一つであり、①水素からの 生成技術が確立されている, ②輸送・貯留インフラが 存在し、ハンドリング技術も確立されている、③20℃、 0.857 MPaで液化するため、水素に比べ輸送・貯留コス トが低い, ④分子中の水素含有率が高い, ⑤水素に再変 換することなく直接燃焼可能であり, 分子中に炭素原子 を持たないカーボンフリー燃料でもある、というような 優れた特性を持つ。このため、ガスタービン用燃料とし てアンモニアを利用することができれば、CO2排出量の 削減に大きく寄与する。しかし,燃料としてのアンモニ アには、課題も存在する。アンモニアは代表的な炭化 水素燃料であるメタンに比べ、層流燃焼速度が約1/5⁽⁴⁾ 低位発熱量が約37%, 断熱火炎温度が200 ℃~400 ℃程 度低い。このため、アンモニアをガスタービンで使用す

原稿受付 2019年4月9日 查読完了 2019年10月18日

*1 (株)IHI 技術基盤センター 〒235-8501 横浜市磯子区新中原町1番地 E-mail: ito7931@ihi-g.com

*2 東北大学 流体科学研究所 〒980-8577 仙台市青葉区片平2-1-1 る場合には燃焼安定性の悪化、燃焼効率の低下が懸念される。また、アンモニアは分子中に窒素原子を含んでおり、Fuel-NOxの発生が懸念される。一方で、アンモニアは、NOxの愛元作用も有しており、NOxの生成および還元に関して複雑な反応メカニズムを有していることから^{(5),(6)}、アンモニア燃焼におけるNOx濃度の予測は難しい。アンモニアは従来の炭化水素燃料とは大きく異なる燃焼特性を持つため、アンモニアを燃料として用いる場合には、従来の燃焼器設計技術が直接適用できず新たな技術開発が必要となる。これらの課題を解決し、自動車用エンジン⁽⁷⁾、工業炉⁽⁸⁾、ガスタービン^(9),00)、石炭焚きボイラ^{(11),02}といった燃焼機器でアンモニアを燃料として利用するための研究が行われている。

著者らは、これまでに天然ガス焚きガスタービンでア ンモニアを混焼することを目的として、スワールバー ナにおけるアンモニアの燃焼特性把握、低NOx燃焼技 術について研究開発を行ってきた^{(13,(14,(15,06)}。しかし、ア ンモニア/天然ガス混焼が、発電端効率やコジェネレー ションシステムの総合熱効率等のガスタービン性能に及 ぼす影響については知見が不足している。例えば、倉 田ら^{(7),(8)}がマイクロガスタービンで実施したアンモニア /メタン混焼試験では、アンモニア混焼時にNO濃度は 最大で1200 ppmを超え、アンモニアのNO転換率は最大 57%に達することが報告されている。このようにアンモ

ニアの燃焼により生成されるNOx濃度は、天然ガス燃 焼に比べ非常に高濃度であり、ガスタービン性能に大き く影響を与える可能性がある。そこで、本研究ではアン モニア燃焼からのNO生成を考慮したサイクル計算によ り、アンモニアを燃料として使用することが、発電端効 率や総合熱効率等のガスタービン性能に与える影響につ いて評価した。

2. 主な記号

$C_{\rm NO}$:NO転換率 [%]
$G_{\rm A}$: 圧縮機吸入空気量 [kg/s]
$G_{\rm CH4}$:メタン供給量 [kg/s]
$G_{\rm EX}$: 排気ガス流量 [kg/s]
$G_{\rm NH3}$:アンモニア供給量 [kg/s]
$G_{\mathbb{W}}$: 排熱回収ボイラ(HRSG: Heat Recovery Steam
	Generator)給水量 [kg/s]
$h_{ m IC}$: 圧縮機入口ガスのエンタルピ[MJ/kg]
$h_{ m IT}$: タービン入口ガスのエンタルピ[MJ/kg]
$h_{\rm OC}$: 圧縮機出口ガスのエンタルピ[MJ/kg]
h_{OH}	:HRSG出口における排気ガスのエンタルピ
	[MJ/kg]
$h_{\rm OT}$: タービン出口ガスのエンタルピ[MJ/kg]
$h_{\rm S}$: HRSGで生成される蒸気のエンタルピ [MJ/kg]
h_{OT}	: HRSGに供給される水のエンタルピ[MJ/kg]
$H_{\rm CH4}$:メタンの低位発熱量, 50.0 [MJ/kg]
$H_{ m NH3}$: アンモニアの低位発熱量, 18.6 [MJ/kg]
$H_{\rm F}$: 混合気体の低位発熱量 [MJ/kg]
$P_{ m CH4}$:メタン供給圧力 [kPa]
P_{IC}	: 圧縮機入口ガス圧力 [kPa]
P_{IT}	:タービン入口圧力 [kPa]
$P_{ m NH3}$:アンモニア供給圧力 [kPa]
$P_{\rm OC}$: 圧縮機出口ガス圧力 [kPa]
P_{OH}	: 排熱回収ボイラ出口排気ガス圧力[kPa]
P_{OT}	:タービン出口圧力 [kPa]
$P_{\rm S}$: 排熱回収ボイラ発生蒸気圧力[kPa]
P_{W}	: 排熱回収ボイラ給水圧力[kPa]
$r_{ m NH3}$: アンモニア混焼率 [%]
$T_{ m CH4}$:メタン供給温度[℃]
$T_{\rm IC}$: 圧縮機入口ガス温度[℃]
$T_{\rm IT}$: タービン入口温度[℃]
$T_{ m NH3}$: アンモニア供給温度[℃]
$T_{\rm OC}$: 圧縮機出口ガス温度[℃]
$T_{\rm OH}$: 排熱回収ボイラ出口排気ガス温度[℃]
$T_{\rm OT}$: タービン出口温度[℃]
$T_{\rm S}$: 排熱回収ボイラ発生蒸気温度[℃]
T_{W}	: 排熱回収ボイラ給水温度[℃]
Wc	: 圧縮機動力 [MW]
$W_{\rm F}$: 燃料の総投入熱量[MW]
$W_{\rm G}$: 発電出力 [MW]
W_{T}	: タービン出力 [MW]

η_{C}	:圧縮筬効率 [%]
η G	: 発電機効率 [%]
η ge	: 発電端効率 [%]
η T	: タービン効率 [%]
η th	: 総合熱効率 [%]

添字

ac :実際の状態

 :損失がない理想状態 id

3. 計算方法

3.1 計算モデル

サイクル計算にはAspen Technology社製の商用プ ロセスシミュレータであるAspen HYSYS v9を用いた。 Fig. 1に構築したガスタービンのサイクル計算モデルを 示す。ガスタービンは出力2MW級のシンプルサイクル ガスタービンを想定した。計算では、ガスタービン単体 の場合、タービン出口に排熱回収ボイラ(HRSG: Heat Recovery Steam Generator)を設置した場合の二つの システムで評価を行った。エンジン本体は圧縮機、燃焼 器およびタービンの3部品から構成される簡易モデルと し、圧縮機の中間段あるいは出口での抽気、軸やタービ ンの冷却空気、脱硝装置については考慮していない。ま た,各要素間の流路における熱および圧力損失は無視し た。

Fig. 1 Cycle simulation model of Gas Turbine with HRSG

3.1.1 圧縮機 圧縮機は圧縮機入口における温度, 圧 力, 圧縮機入口と出口の圧力比, 圧縮機効率, 空気流量 を入力値とし、圧縮機出口における空気のエンタルピを 算出した。ここで圧縮機効率は75%で一定とし、以下の ように定義した。

$$\eta_{\rm C} = 100 \times W_{\rm C,id} / W_{\rm C,ac} \tag{1}$$

$$W_{C,ac} = G_A (h_{0C} - h_{IC})_{ac}$$
(2)
$$W_{C,ac} = G_A (h_{0C} - h_{IC})_{ac}$$
(3)

1 >

$$W_{\rm C,id} = G_{\rm A} (h_{\rm OC} - h_{\rm IC})_{\rm id} \tag{3}$$

ここでエンタルピの計算にはPeng-Robinsonの状態方程 式(17)を使用した。圧縮機出口温度は圧縮機出口エンタル ピから算出した。

3.1.2 燃焼器 燃焼器には, 圧縮機で圧縮された空気, 燃料としてメタンとアンモニアガスを供給した。燃料 の供給圧力はメタン・アンモニアともに2000 kPaとし, アンモニアの温度は供給圧力における凝縮温度よりも十 分に高い温度とした。燃料の混合比率はアンモニア混焼 率で表し,投入燃料の全熱量に占める投入アンモニアの 熱量の比率として以下のように定義した。

*r*_{NH3} =100×*G*_{NH3}*H*_{NH3}/(*G*_{NH3}*H*_{NH3}+*G*_{CH4}*H*_{CH4}) (4)
 燃焼器内のける燃焼反応としては以下に示す3つの総
 括反応を考慮した。

 $CH_4+2O_2 \rightarrow CO_2+2H_2O+803 \text{ kJ/mol}$ (R1)

 $NH_3+0.75O_2 \rightarrow 0.5N_2+1.5H_2O+318 \text{ kJ/mol}$ (R2)

NH₃+1.25O₂→NO+1.5H₂O+226 kJ/mol (R3) 反応式 (R1), (R2) はメタンおよびアンモニアの完 全燃焼反応式であり,反応式 (R3) はアンモニアから のNO生成反応である。アンモニア/メタン混焼におけ る主なエミッションとしては,未燃NH₃, CO,未燃炭 化水素,NOxが挙げられる。本計算では,これらのうち, NOxが生成されることによる発電端効率や総合熱効率 の変化を評価するため,NOx以外のエミッションにつ いては無視した。また,アンモニアとメタンではNOx の生成メカニズムが異なるが,試験結果¹³³より,メタン の燃焼により生成されるNOxは、アンモニアの燃焼に より生成されるNOxに比べては無視できるほど低濃度 であり,NOxの主成分はNOであることがわかっている。 そこで,アンモニアから生成されるNOのみを考慮した。

燃焼器における実際の燃焼現象は,空間的および時間 的に変化する非常に複雑な現象であるが,定常運転時の 発電端効率や総合熱効率に対しては,燃焼器出口におけ る温度および組成が重要であり,過渡的な温度および組 成は影響しないため,総括反応式を用い,瞬時に反応す るものとした。

Table 1に,反応式(R1)~(R3)の反応割合を示す。 メタンは全量が完全燃焼するとした。一方で,アンモニ アについては,NO生成による発熱量の変化を表現する ため,一部がNOに変換されるものとし,反応式(R2), (R3)の反応割合をパラメータとして変化させた。反応 式(R2),(R3)の反応割合の変化は,(R3)の反応割 合をNO転換率として定義し,Table 1のように示す。

Table 1 Reaction ratio of CH₄ and NH₃

	Methane	Ammonia
Reaction ratio of R1[%]	100	0
Reaction ratio of R2[%]	0	100 - C _{NO}
Reaction ratio of R2[%]	0	$C_{\rm NO}$
Total reaction ratio[%]	100	100

3.1.3 タービン タービンについてはタービン入口に おける温度, 圧力, タービン入口と出口の圧力比, ター ビン効率, 排気ガス流量を入力値とし, タービン出口に おける空気のエンタルピを算出した。タービン出口圧 力については, ガスタービン単体の条件では101.3 kPa, HRSG有りの場合には圧力損失を考慮し104.3 kPaとした。タービン効率は条件によらず85%で一定とし、以下のように定義した。

$$\eta_{\rm T} = 100 \times W_{\rm T,ac} / W_{\rm T,id} \tag{5}$$

$$W_{\rm T,ac} = G_{\rm EX} (h_{\rm OT} - h_{\rm IT})_{\rm ac} \tag{6}$$

$$W_{\rm T,id} = G_{\rm EX} (h_{\rm OT} - h_{\rm IT})_{\rm id}$$
⁽⁷⁾

$$G_{\rm EX} = G_{\rm A} + G_{\rm CH4} + G_{\rm NH3} \tag{8}$$

タービン出口温度は, 圧縮機と同様にタービン出口の エンタルピから算出した。

3.1.4 HRSG HRSGの挙動は排気ガスと水のエネル ギー保存則から算出した。計算では熱損失を無視し,以 下のように定義した。

$$G_{\rm EX}(h_{\rm OT} - h_{\rm OH}) = G_{\rm W}(h_{\rm S} - h_{\rm W})$$
 (9)

ここで給水温度/圧力,蒸気温度/圧力およびHRSG出 口の排気ガス温度は一定とした。ガスタービン運転条件 の変更によるタービン出口のエンタルピ変化に対しては, 式(9)が成り立つよう給水量を調整して計算を行った。

3.1.5 発電出力,発電端効率,総合熱効率発電出力, 発電端効率,総合熱効率は以下のように定義した。

$$W_{\rm G} = \eta_{\rm G} / 100 \times (W_{\rm T} - W_{\rm C})_{\rm ac} \tag{10}$$

$$\eta_{\rm GE} = 100 \times W_{\rm G} / W_{\rm F} \tag{11}$$

$$\eta_{\rm th} = 100 \times \{ W_{\rm G} + G_{\rm W} (h_{\rm S} - h_{\rm W}) \} / W_{\rm F}$$
(12)

 $W_{\rm F} = G_{\rm NH3} H_{\rm NH3} + G_{\rm CH4} H_{\rm CH4} \tag{13}$

発電機効率については,条件によらず95%で一定とした。また,発電出力は,条件によらず2.0 MWで一定となるよう燃料流量を調整した。

3.2 計算条件

Table 2に計算条件を示す。Case 1はHRSGが無いガ スタービン単体運転の場合であり、アンモニア混焼率と NO転換率をパラメータとした。Case 2および3はHRSG が有るコジェネレーションシステム運転の場合であり、 アンモニア混焼率のみをパラメータとした。いずれの条 件においても、発電出力が一定となるように燃料流量を 調整した。Case 3のみは、発電出力に加え、タービン入 口温度がメタン専焼(*r*NH3=0%)の1045 ℃のまま一定 となるように圧縮機吸気空気量も調節した。これらの計 算条件の違いが、タービン入口/出口温度、発電端効率、 総合熱効率等に及ぼす影響を評価した。

4. 計算結果

4.1 ガスタービン単体運転条件(Case 1)

4.1.1 NO発生が無い場合のガスタービン性能 Fig. 2 にCase 1でNOが発生しない場合(*C*NO=0%)における アンモニア混焼率とメタンおよびアンモニアの質量流 量,総質量流量および燃料の総投入熱量の関係を示す。 アンモニア混焼率が増加すると、メタン流量は単調に 低下し、アンモニア流量は単調に増加する。増減量の 変化に着目すると、メタンの減少量に対してアンモニ アの増加量が大きく、燃料の総質量流量はアンモニア 混焼率に対し単調増加する傾向にある。一方で、燃料

Unit	Item	Case 1	Case 2	Case 3	
System	-	Without HRSG	nout HRSG With HRSG		
	$G_{\rm A} [{ m kg/s}]$	9.5		Calculated	
	$T_{\rm IC}$ [°C]	15			
Compressor	P _{IC} [kPaA]	101.3			
compressor	$T_{\rm OC}$ [°C]	377			
	P _{OC} [kPaA]	1114			
	$\eta_{ m C}$ [%]	75			
	r _{NH3} [%]	0-100			
	$G_{\rm CH4}$ [kg/s]	Calculated			
	$T_{\rm CH4}$ [°C]	30			
Combustor	$P_{\rm CH4}$ [kPaG]	2000			
Combustor	$G_{\rm NH3}$ [kg/s]	Calculated			
	$T_{\rm NH3}$ [°C]	70			
	$P_{\rm NH3}$ [kPaG]	2000			
	<i>C</i> _{NO} [%]	0, 5, 10 0			
	$P_{\rm IT}$ [kPaA]	P _{OC}			
Turbina	T_{IT} [°C]	Calcula	Calculated		
Turonne	$P_{\rm OT}$ [kPaA]	101.3	104.3		
	η _T [%]	85			
	T_{W} [°C]	-	60		
	$P_{\rm W}$ [kPaA]	-	1300		
LIDSC	$T_{\rm S}$ [°C]	-	180		
IIKSO	Ps [kPaA]	-	800		
	$T_{\rm OH}$ [°C]	- 160			
	$G_{\rm W}$ [kg/s]	- Calculated			
Generator	$\eta_{ m G}$ [%]	95			
Generator	$W_{\rm G} [{ m MW}]$	2.0			

Table 2 Calculation condition

* Same value as $T_{\rm IT}$ of case 2, $r_{\rm NH3}=0\%$.

Fig. 2 Effect of NH_3 mixing ratio on fuel mass flow rate and total fuel heat input (Case 1, $C_{NO}=0$ %)

の総投入熱量はアンモニア混焼率が増加すると単調減 少しており、メタン専焼(r_{NH3}=0%)からアンモニア 専焼(r_{NH3}=100%)へ変化すると約3.7%低下した。これ はアンモニアの低位発熱量がメタンの約37%と非常に小 さいことが原因である。アンモニアは低位発熱量が小さ いため、アンモニア混焼(r_{NH3}>0%)時にメタン専焼

(r_{NH3}=0%)時と同じ総投入熱量を維持すると、総燃料 流量が増加し、タービン通過ガス流量が増加する。ター ビン通過ガス流量が増加すると、タービン出力が増加す るため、2MWの発電出力得るのに必要な総投入熱量が 低下する。これはアンモニアのように低位発熱量が小さ い燃料では、燃料供給動力の一部がタービンで回収され ることを示している。このため、アンモニア混焼により 発電端効率は向上するものの、アンモニアの供給動力を 加味した送電端効率は低下する可能性がある。一方、ア ンモニアの気化、昇温にガスタービンや工場の未利用排 熱が利用できれば送電端効率の低下を抑制できる可能性 がある。また、実際のガスタービンでは、タービン通過 ガス流量が増加すると、タービン効率が変化する。ま た,タービンでの圧力損失が増加すると,圧縮機出口圧 力が増加し、圧縮機効率にも影響を与える可能性があ る。より詳細な検討を行うためには、具体的なアンモニ ア供給方法やタービンおよび圧縮機の性能変化を考慮し

た計算モデルが必要となる。

Fig. 3にNOが発生しない場合(C_{NO}=0%)における アンモニア混焼率と発電端効率およびCO₂排出量削減率 の関係を示す。CO₂排出量削減率は、メタン専焼(r_{NH3} =0%)のCO₂排出量に対する削減割合と定義した。発 電端効率はアンモニア混焼率の増加に対して単調増加し ており、メタン専焼(r_{NH3}=0%)からアンモニア専焼 (r_{NH3}=100%)へ変化すると最大で1%程度高い値となる。 これはアンモニア混焼率の増加により総投入熱量が低下 したためであり、発電出力が一定のため発電端効率が増 加する結果となった。CO₂排出量削減率は、アンモニア 混焼率に対しほぼ線形に減少している。アンモニア混焼 率50%でのCO₂排出量削減率は約51%と発電端効率が向 上する効果によりアンモニア混焼率よりもやや高いCO₂ 削減効果が得られている。

Fig. 3 Effect of NH_3 mixing ratio on generator-end efficiency and CO_2 reduction ratio (Case 1, $C_{NO}=0$ %)

Fig. 4にNOが発生しない場合(*C*NO=0%)における アンモニア混焼率とタービン入口および出口ガス温度の 関係を示す。アンモニア混焼率が増加すると,双方のガ ス温度が単調に低下する。これはアンモニアの火炎温度 がメタンに比べ低いこと,アンモニア混焼により燃料の 総投入熱量が低下することが原因である。タービン入口 ガス温度の低下は,タービンの耐久性の向上や破損リス クの低減に寄与すると考えられる。

Fig. 4 Effect of NH₃ mixing ratio on gas temperature at turbine inlet and outlet (Case 1, C_{NO} = 0 %)

4.1.2 NO転換率の影響 ガスタービン単体運転条件 (Case 1) で, NO転換率をパラメータとし, エンジンに 及ぼす影響を調査した。ここで計算では, アンモニア混 焼率に依らずNO転換率は5,10%で一定とした。実際の ガスタービンでは、アンモニア混焼率によってNO転換 率が変化するはずであるが、本計算はNO発生の影響を 検討することが目的であるため、NO転換率を固定した 検討を行った。

Fig. 5にNO転換率 5%および10%におけるアンモニ ア混焼率とタービン出口におけるNO濃度の関係を示 す。ここでNO濃度は無水条件での濃度とし,酸素濃度 16%に換算して示した。NO濃度はアンモニア混焼率に 対し単調に増加する。計算した条件中でNO濃度が最 も高くなるのは,NO転換率10%のアンモニア専焼条件 (*r*NH3=100%)であり,1800 ppm以上の値となる。

Fig. 5 Effect of NH_3 mixing ratio and NO conversion ratio on NO concentration at turbine outlet (Case 1)

Fig. 6. 7にアンモニア混焼率と、総燃料流量および 発電端効率の関係、CO2排出量削減率の関係をそれぞれ 示す。ここで,総燃料流量,発電端効率,CO2排出量削 減率はNOが発生しない場合(C_{NO}=0%)を基準として, そこからの差分で示した。 総燃料流量は、アンモニア 混焼率が高いほど、またNO転換率が高いほど増加する。 これは、式 (R2), (R3) に示すように、1molのアンモ ニアが完全燃焼すると318kJの熱量が得られるが、NO に変換されると226 kJの熱量しか得られず、より多くの 燃料を投入する必要があるためである。発電端効率は, アンモニア混焼率が高く、またNO転換率が高いほど低 下する。アンモニア専焼条件(r_{NH3}=100%) で発電端効 率を比較すると、NO転換率が5%増加する毎に約0.38% が低下する。Fig. 3で示したようにNOが発生しない場 合 (C_{NO}=0%) に、メタン専焼 (r_{NH3}=0%) からアン モニア専焼 (r_{NH3}=100%) への変更で約1%の発電端効 率上昇が得られる。しかし、NO転換率と発電端効率が 正比例の関係にあると仮定すると、NO転換率13%以上 でアンモニア専焼 (r_{NH3}=100%) の場合の発電端効率が メタン専焼 ($r_{\rm NH3}$ = 0%) よりも低くなると推定される。

CO₂排出量削減率は,NO転換率が高いほど減少する。 アンモニア混焼率50%では,NO転換率が5%増加する 毎にCO₂排出量削減率が約0.35%減少する。

以上のように、アンモニアからのNO生成は、発電端 効率低下などガスタービンの運転性能に悪影響を及ぼす。 NO生成による総燃料流量の増加は、CO2排出量の削減

Fig. 6 Effect of NH₃ mixing ratio on change in total fuel mass flow rate and generator-end efficiency (Case 1, $C_{\rm NO}$ =5, 10%)

Fig. 7 Effect of NH_3 mixing ratio on change in CO_2 reduction ratio (Case 1, C_{NO} =5, 10%)

量が期待値を下回るなどの結果を引き起こす。このため、 エンジン性能の正確な予測のためには、NOx生成量の 正確な予測が重要となる。さらに、大量のNOx生成は、 脱硝装置の大型化、脱硝用還元剤の流量増加といった設 備および運用コストの増大にもつながるため、低NOx 燃焼技術の開発も非常に重要である。

4.2 コジェネレーションシステム運転条件(Case 2, 3)
4.2.1 空気流量一定の場合(Case 2) 発電出力 2 MW程度の小型ガスタービンでは、タービン出口に排 熱回収ボイラを設けたコジェネレーションシステムとし て使用すること一般的である。そこでコジェネレーショ ンシステムにおけるアンモニア混焼の影響を検討した。

Fig. 8にコジェネレーションシステムにおけるアンモ ニア混焼率と燃料の総投入熱量および発電端効率の関係 を示す。燃料の総投入熱量については, Fig. 2とFig. 8の 比較から, アンモニア混焼率によってコジェネレーショ ンシステムで0.14 MW程度多いことが確認できる。また, 発電端効率については, Fig. 3とFig. 8の比較から, コ

Fig. 8 Effect of NH₃ mixing ratio on total fuel heat input and generator-end efficiency (Case 2)

ジェネレーションシステムで約0.46%低いことが確認で きる。これらの変化は、HRSGを設けたことでタービン 出口の圧力損失が3kPa増加した影響によるものである。

Fig. 9~11にコジェネレーションシステムのアンモニア混焼率と、HRSGへの給水量および総合熱効率の関係、タービン入口および出口ガス温度の関係、排気ガス流量の関係をそれぞれ示す。給水量および総合熱効率はアンモニア混焼率に対し単調に減少する。この理由はタービン入口および出口ガス温度と排気ガス流量の変化から理解することができる。アンモニア混焼率が増加すると、ガス温度は単調に減少し、ガス流量は単調に増加する。これらの変化により、式(9)左辺で排気ガス流量の増加よりも、タービン出口エンタルピの減少、すなわち、タービン出口温度の低下が支配的となり、給水量が低下する。本計算モデルにおける総合熱効率は、式(12)に示すように、給水量と燃料の総投入熱量のバランスによって変化する。ここではアンモニア混焼率の増加に対する給

Fig. 9 Effect of NH₃ mixing ratio on water supply rate to HRSG and total thermal efficiency (Case 2)

Fig. 10 Effect of NH_3 mixing ratio on gas temperature at turbine inlet and outlet (Case 2)

Fig. 11 Effect of NH₃ mixing ratio on exhaust gas flow rate at turbine outlet (Case 2)

水量低下の影響が,燃料の総投入熱量減少の影響よりも 強く,総合熱効率が低下した。このように,アンモニア 混焼によるタービン出口温度の低下は,コジェネレー ションシステムにおいて,総合熱効率の低下を起こす可 能性がある。一方で,タービン入口温度は,ガスタービ ン単体運転条件(Case 1)の場合と同様に,アンモニア 混焼により低下しており,タービンの耐久性に良好な影 響をもたらすと考えられる。

4.2.2 タービン入口温度一定の場合(Case 3) 前 節で総合熱効率の低下はタービン出口温度の低下が主 要因であることが示された。そこで,アンモニア混焼 によるHRSGへの影響を回避するため,アンモニア混 焼時(r_{NH3}>0%)のタービン入口温度がメタン専焼時 (r_{NH3}=0%)のタービン入口温度1045 ℃のまま一定とな るよう,圧縮機吸入空気量を調整した計算を行った。

アンモニア混焼率と圧縮機吸入空気量および排気ガス 流量の関係をFig. 12に,タービン入口および出口のガ ス温度の関係をFig. 13に示す。圧縮機吸入空気量およ び排気ガス流量はアンモニア混焼率が増加すると単調に 減少する。このとき,一定に固定しているタービン入口 温度だけでなく,タービン出口温度もアンモニア混焼率 によらず一定になることがFig. 13より確認できる。ター ビンの入口および出口の条件は式(5)~(7)に従うため,条 件を固定したタービン入口温度および圧力,タービン出 口圧力だけでなく,タービン出口温度も一定の状態でバ ランスするよう圧縮機吸入空気量が調整されていること を示している。

Fig. 12 Effect of NH₃ mixing ratio on compressor inlet air flow rate and exhaust gas flow rate at turbine outlet (Case 3)

Fig. 13 Effect of NH_3 mixing ratio on gas temperature at turbine inlet and outlet (Case 3)

び発電端効率の関係を示す。Fig. 8とFig. 14の比較から, タービン入口温度一定の場合(Case 3)にも空気流量一 定の場合(Case 2)と同様に,アンモニア混焼率が増加 すると燃料の総投入熱量が減少し,発電端効率が増加す る傾向であることが確認できる。しかし,アンモニア混 焼率の変化に対する感度は,タービン入口温度一定の場 合(Case 3)の方が大きい。これは圧縮機吸入空気量が 減少することで,圧縮機動力が低下したためである。圧 縮機動力の低下は,式(10)より2MW発電に必要なタービ ン出力が減少をもたらし,結果として総投入熱量の低下 につながる。

Fig. 14 Effect of NH_3 mixing ratio on total fuel heat input and generator-end efficiency (Case 3)

Fig. 15に、アンモニア混焼率に対するHRSGへの給 水量および総合熱効率の変化を示す。Fig. 9とFig. 15の 比較から、アンモニア混焼率に対する給水量の変化は、 タービン入口温度一定の場合(Case 3)と空気流量一定 の場合(Case 2)で同じ傾向である。しかし、アンモニ ア混焼率に対する給水量の変化量はタービン入口温度一 定の場合(Case 3) 方が大きい。この傾向から, 空気流 量一定の場合(Case 2)におけるタービン出口温度の低 下よりも、タービン入口温度一定の場合(Case 3)にお ける排気ガス流量の減少の方が、給水量に与える影響が 強いことが確認できる。一方で総合熱効率に関しては, タービン入口温度一定の場合(Case 3)と空気流量一定 の場合(Case 2)で大きく傾向が異なる。これはタービ ン入口温度一定の場合(Case 3)にも、アンモニア混焼 率増加に対する給水量低下による熱効率低下の影響があ るが、燃料の総投入熱量低下の影響がより大きく、発電

Fig. 15 Effect of NH_3 mixing ratio on water supply rate to HRSG and total thermal efficiency (Case 3)

64

- 64 -

端効率が増加の影響が支配的になるためである。

以上のように、タービン入口温度を一定に保つように 圧縮機吸入空気量を調整することで、アンモニア混焼時 に総合熱効率を高く保つことができることが示された。 しかし、実際のガスタービンでは、圧縮機吸入空気量の 減少により高温部材の冷却空気の不足やタービン入口ガ ス温度の上昇に依るダメージが懸念されため、これらの バランスを取るような装置の変更が必要である。

5. まとめ

NO転換率を考慮したアンモニア/天然ガス混焼モデ ルガスタービンのサイクル計算を行い以下の知見を得た。

- (1) アンモニアの低位発熱量はメタンに比べ小さいため、 アンモニア混焼率が増加すると、燃料の総質量流量 が増加するが、総投入熱量は低下し、発電端効率が 増加する。
- (2) アンモニアからのNO発生は完全燃焼と比べて30% 程度の発熱量の損失となる。このためアンモニア混 焼でNOが生じると燃料の総質量流量増加,発電端 効率低下といったエンジン性能への悪影響が発生す る。
- (3) アンモニアは燃焼温度が低いこと、またアンモニア 混焼時には燃料の総投入熱量が減少するため、アン モニア混焼によりタービン入口および出口のガス温 度が低下する。この結果、コジェネレーションシス テムの総合熱効率が低下する可能性がある。
- (4) アンモニア混焼によるコジェネレーションシステムの総合熱効率の低下を防ぐため、タービン入口ガス 温度が一定になるよう圧縮機入口空気流量を減少させると、総合熱効率は増加する。

謝辞

本研究は、内閣府総合科学技術・イノベーション会議 の戦略的イノベーション創造プログラム (SIP)「エネ ルギーキャリア」(管理法人:JST)によって実施された。 ここに記して謝意を表する。

参考文献

- C. Zamfirescu, I. Dincer, Using ammonia as a sustainable fuel, Journal of Power Sources, Vol. 185, Issue 1 (2008), pp. 459-465.
- (2) E. A. Gilmore, A. Blohm, S. Sinasabaugh, An economic and environmental assessment of transporting bulk energy from a grazing ocean thermal energy conversion facility, Renewable Energy, Vol. 71 (2014), pp. 361-367.
- (3) P.Trop, D. Goricanec, Comparisons between energy carriers' productions for exploiting renewable energy sources, Energy, Vol. 108, Issue C (2016), pp. 155-161.

- (4) Hayakawa A., Goto T., Mimoto R., Arakawa Y., Kudo T., Kobayashi H., Laminar Burning Velocity and Markstein Length of Ammonia/Air Premixed Flames at Various Pressures., Fuel, 159 (2015), pp. 98-106.
- (5) 小林秀昭, 早川晃弘, カーボンフリーアンモニア燃焼, 日本燃焼学会誌, 58巻, 183号 (2016), pp. 41-48.
- (6) M. Tayyeb Javed, Naseem Irfan, B.M.Gibbs, Control of combustion-generated nitrogen oxides by selective non-catalytic reduction, Journal of Environmental Management, No. 83 (2007), pp. 251-289.
- (7) 小池誠, 宮川浩, 鈴置哲典, 小笠原和人, 水素エネルギキャ リアとしてのアンモニアとレシプロエンジン燃焼への適 用, 日本燃焼学会誌, 58巻, 184号 (2016), pp. 99-106.
- (8) 石川遥平,林潤,武石裕行,岡南貴大,山本康之,飯野公夫, 赤松史光,同軸流拡散火炎におけるNH₃/N₂/O₂火炎の安 定性に関する研究,日本機械学会論文集, Vol. 84, No. 859 (2018), pp. 1-17.
- (9) Iki, N., Kurata, O., Matsunuma, T., Inoue, T., Suzuki, M., Tsujimura, T. and Furutani, H., Micro Gas Turbine Firing Kerosene and Ammonia, Proceedings of ASME Turbo Expo 2015, GT2015-43689 (2015).
- (10) Kurata, O., Iki, N., Matsunuma, T., Inoue. T., Tsujimura, T., Furutani, H., Kobayashi, H., Hayakawa, A., Performances and emission characteristics of NH3-air and NH₃-CH₄-air combustion gas-turbine power generations, Proceedings of the Combustion Institute, vol. 36 (2017), pp. 3351-3359.
- (11) 中国電力株式会社 プレスリリースhttp://www.energia.co.jp/press/2017/10540.html
- (12) 石原咲子, 張聚偉, 伊藤隆政, 藤森敏郎, 微粉炭焚きボイラ におけるアンモニア混焼が排出NOxに与える影響, 第55 回燃焼シンポジウム前刷集, C133 (2017).
- (13) 伊藤慎太朗, 加藤壮一郎, 斎藤司, 藤森俊郎, 小林秀昭, ス ワールバーナにおけるアンモニア・都市ガス混焼の基礎 特性, 第53回燃焼シンポジウム前刷集, A323 (2015).
- (14) 伊藤慎太朗, 加藤壮一郎, 斎藤司, 藤森俊郎, 小林秀昭, アンモニア・天然ガス混焼ガスタービン燃焼器技術の開発, 第54回燃焼シンポジウム前刷集, A332 (2016).
- (15) 内田正宏, 伊藤慎太朗, 加藤壮一郎, 斎藤司, 藤森俊郎, 詳 細反応機構を使用したアンモニア/メタン混焼挙動の Large-Eddy-Simulation, 第54回燃焼シンポジウム前刷集, C333 (2016).
- (16) 大西正悟, 伊藤慎太朗, 内田正宏, 斎藤司, 藤森俊郎, アン モニア・天然ガス混焼 ガスタービン燃焼器技術の開発 -第二報 低NOx燃焼方法の実験的検討-, 第55回燃焼シン ボジウム前刷集, D232 (2017).
- (17) Peng, D. Y., D. B. Robinson, A New Two-Constant Equation of State, Industrial and Engineering Chemistry Fundamentals, vol. 15-1 (1976), pp. 59-64.