┫技術論文 ┣━

予備酸化処理による高温酸化物の成長抑制と 遮熱コーティングの長寿命化

Suppression of Thermally Grown Oxide by Pre-oxidation Treatment and Durability Improvement of Thermal Barrier Coatings

根上将大 ^{*1}	日比野 真也 ^{*1}	川野明人 ^{*1}			
NEGAMI Masahiro	HIBINO Shinya	KAWANO Akihito			
野村 嘉道 ^{*2}	田中良造 ^{*1}	井頭 賢一郎 ^{*1}			
NOMURA Yoshimichi	TANAKA Ryozo	IGASHIRA Kenichiroh			

ABSTRACT

Thermally grown oxide (TGO) formed on bond coat surface of thermal barrier coatings (TBC) is considered as one of the serious causes of TBC spalling. In this study, we focused on thermal pre-oxidation treatment of the bond coat as a means for forming an α -Al₂O₃ layer for suppressing the growth rate of TGO. Firstly, we investigated high temperature oxidation behaviors of the bond coat surface with the α -Al₂O₃ layer by means of in-situ synchrotron X-ray diffraction (XRD) analysis. We also performed durability evaluation tests of TBC with the monolithic α -Al₂O₃ layer formed by pre-oxidation of the bond coat. Isothermal oxidation tests confirmed that the growth of TGO in the pre-oxidated TBC was much slower than that in the non pre-oxidated TBC.

キーワード: ガスタービン, 遮熱コーティング, 熱成長酸化物, 予備酸化, 放射光 **Key words**: Gas Turbine, Thermal Barrier Coatings, Thermally Grown Oxide, Pre-oxidation, Synchrotron Radiation

1. はじめに

産業用ガスタービン分野においては、近年より一層 の効率向上が求められており、タービン入り口ガス温 度(Turbine Inlet Temperature, TIT)の高温化が進 められている。また、高温の燃焼ガスから保護するた め、タービンの動静翼には遮熱コーティング(Thermal Barrier Coatings, TBC)が施工されている。しかしな がら、TBCはしばしば運用中に損傷を生じることから、 健全性及び耐久性の向上(長寿命化)が求められている。

TBCの損傷形態には様々なものがあるが、トップコートの剥離が特に問題となる。トップコートの剥離要因の 1つとして、ボンドコートの高温酸化によってトップ コートとの界面に形成される熱成長酸化物(Thermally Grown Oxide, TGO)の影響が一般に認知されてい る^{(1),(2)}。したがって、TGOの成長を抑制することができ れば、TBCの長寿命化につながると考えられる。

TGOの成長抑制方法としてこれまでにいくつかの手 法が提案されているが、その一つにボンドコート表面に

原稿受付 2019年12月5日 査読完了 2020年7月28日 *1 川崎重工業㈱ 〒673-8666 明石市川崎町1-1 E-mail: negami_masahiro@khi.co.jp *2 川崎重工業㈱ 〒651-2271 神戸市西区高塚台2-8-1 緻密な酸化物皮膜を形成する手法がある⁽³⁾。これは、酸 化物皮膜がボンドコート表面の酸化を防ぐと同時に、ボ ンドコート中のAlの外方拡散障壁として作用しさらな る酸化物の成長を抑制することで、TGOの成長速度を 低減するとされている。特に, α-Al₂O₃皮膜をボンド コートの予備酸化処理により形成する手法は、他の手法 に比べ簡便に酸化物皮膜を形成することができ,かつ TGOの成長抑制に大きな効果をもたらすことが示され ている(4)-(9)。一方で、予備酸化処理によって形成される 酸化物皮膜とガスタービンの運用中に形成されるTGO の保護機能の違いやそのメカニズムについては、十分に 解明されているとは言い難い。特に発生初期のTGOの 成長挙動の評価は、従来法では限界があった。しかし近 年になって、シンクロトロン放射光を用いることで金属 表面のごく初期の高温酸化生成物を逐次検出、分析でき ることが報告されている¹⁰⁰。SPring-8のような第三世代 の大型放射光施設で発生させたX線は、汎用的なX線回 折装置の管球の10¹⁰倍もの輝度を持ち、極めて短時間で の分析が可能である。つまり、発生初期の高温酸化生成 物の経時的変化をもとらえることができる。また、高輝 度であることから酸化生成物の検出感度も非常に高い。 したがって、前述のボンドコート酸化挙動の分析にも有 効と考えられる。

本研究ではTBCの長寿命化の手法として、上記のボ

ンドコートの予備酸化処理に着目した。予備酸化の有無 による大気環境でのTGO成長挙動の違いについて、シ ンクロトロン放射光を光源としたX線回折実験(X-Ray Diffraction, XRD)によって解明することを試みた。

また、予備酸化処理によりボンドコート表面に α -Al₂O₃を形成したTBCサンプルを作製し、静的酸化試 験を行うことで、予備酸化の有無が長期的なTGOの成 長速度に与える影響を評価した。

2. 実験方法

2.1 予備酸化処理したNiCoCrAIY表面の酸化挙動評価

Ni基合金 (CMSX-4, 標準的組成をTable 1に示す)を 基材として用いた。この基材にボンドコートとして NiCoCrAIY (Ni-23Co-17Cr-13Al-0.45Y) 合金粉末を高速 フレーム溶射 (High Velocity Oxi-Fuel, HVOF) により 約100 μ m施工した。この溶射皮膜を鏡面となるまで研 磨したものを酸化挙動分析用のサンプルとして用いた (サンプルサイズ: 15×10×1.5 mm)。

Sample Aは,予備酸化処理せず上記のまま酸化挙動 分析に供した。Sample Bに対しては,前報¹¹²で調査し た条件で予備酸化処理を行った。すなわち,真空雰囲 気条件 ($P_{0_2} = 約10^{-14} Pa$)下で1080 $^{\circ}$,4 hour熱処理し NiCoCrAIY表面に酸化膜を形成させた。なおこの熱処 理温度,時間は一般的な時効処理の条件⁽¹¹⁾である。

大気中でのボンドコート表面の酸化物の生成,成長 挙動は、その場X線回折(in-situ XRD)測定で評価した。 測定は大型放射光施設SPring-8のBL16XUにて実施した。 Fig. 1にin-situ XRD実験のセットアップを示す。サンプ ルは高温ステージ(Anton Paar社 DHS1100)上に設置 した。サンプルホルダには乾燥空気を通気して雰囲気を 管理した。サンプルは昇温速度10℃/minで1100℃まで 加熱後1hour保持し、この間連続してXRD測定を行う ことでボンドコート表面に形成する酸化物を逐次分析し た。XRD測定には、10 keVのX線を用いた。また、サ ンプル最表面の情報を敏感に検出するため、微小X線入 射角での測定を行った。すなわち、X線の入射角は0.5°, 2 θ 角は1°に固定し、2 θ_H 軸をスキャンしてin plane方 向の回折を測定した。XRD測定は5~7.5 minの時間間 隔で行った。

2.2 予備酸化処理のTBCへの適用とTGO成長速度評価

Ni基合金(MarM247,標準的組成をTable 1に示す)の 基材(75×25×5 mm)の表面にNiCoCrAlYを減圧プラ ズマ溶射(Low Pressure Plasma Spraying, LPPS)で 施工したのち、2.1節のサンプルと同じ真空雰囲気下の 条件で1080℃,4 hourの予備酸化処理を行い、さらに 8 wt.%イットリア安定化ジルコニア(Yttria Stabilized Zirconia, YSZ)粉末を大気プラズマ溶射(Atmospheric Plasma Spraying, APS)で施工してTBCサンプルを作 製した。このサンプルに対し、大気炉中での静的酸化試 験を実施した。本試験は、より実機に近い温度環境で の長時間試験を目的とするため,試験温度を2.1節の実 験より低い1050℃に設定した。10℃/minで1050℃まで 昇温,200 hour保持したのち炉冷するサイクルを繰り返 し累計保持時間が3000 hourに達するまで試験を行った。 途中で数度サンプルを取り出して端部を幅約5mmずつ 切断し,切断片から断面観察用サンプルを作製し,断 面をSEM観察した。この断面SEM像からTGO厚さを計 測し酸化速度を評価した。TGOの厚さは,SEM像から TGO部の面積を画像解析にて算出し,SEM像の横方向 長さで除した値と定義し,400倍のSEM像10枚に対して 計算して平均した値を用いた。

Table 1 Chemical composition of Ni-base superalloys used for substrates of TBC specimens.

	С	Cr	Ni	Co	Мо	W	Та	Ti	Al	В	Zr	Hf	Re
CMSX-4	-	6.5	Bal.	9	0.6	6	6.5	1	5.6	-	-	0.1	3
Mar M 247	0.16	8.2	Bal.	10	0.6	10	3	1	5.5	0.02	0.05	1.5	-

Fig. 1 Configuration of in-situ XRD test equipment (SPring-8 BL16XU)

結果と考察

3.1 予備酸化処理したNiCoCrAIY表面の酸化挙動評価

Fig. 2に,予備酸化処理後のサンプルの断面SEM画像 を示す。サンプル表面に約0.2 μmの厚さの酸化皮膜が 形成されていることがわかる。また,Fig. 3に,この酸 化皮膜の微小角X線回折測定結果を示す。サンプル表 面に形成された酸化皮膜がα-Al₂O₃単相であることがわ かる。つまり,予備酸化処理によりα-Al₂O₃膜がボンド コート表面に形成されたことが確認できた。

Fig. 4 (a) は,予備酸化処理を適用していないサンプ ル (Sample A) の1100℃までの昇温,および1100℃保 持中のNiCoCrAlY表面の酸化挙動をin-situ XRDで測定 した結果である。

昇温中サンプル温度が1000℃に達するまでの間は酸化 物の発生は確認されなかった。1000℃を超えた時点から, β -NiAlピークが消失し,またほぼ同時期に酸化物のピー クが出現した。出現した酸化物は回折ピーク位置から θ -Al₂O₃であると考えられる。1100℃保持中にはさらに α -Al₂O₃ピークが出現したが,保持終了時まで θ -Al₂O₃ のピークが消失することはなかった。なお、 θ -Al₂O₃は 多数の弱い回折ピークを生じるため、これら2種以外 の酸化物の有無については判別できなかった。Fig. 4 (b) は、予備酸化処理を適用したサンプル(Sample B)で 同じin-situ XRD測定を行った結果である。1100℃保持 開始直後から徐々に α -Al₂O₃ピークの強度が増加してお り、酸化皮膜の成長によるものと考えられる。一方で、 Sample Aで見られた θ -Al₂O₃の形成はいずれの時点で も確認されなかった。

Fig. 2 Cross-section SEM image of NiCoCrAIY surface after pre-oxidation at 1080°C for 4 hour in vacuum (before in-situ XRD oxidation measurements)

Fig. 5に, in-situ XRD試験後の各サンプル表面酸化 物の断面SEM像を示す。Fig. 5 (a) に示す予備酸化処理 を適用していないサンプル (Sample A) では,表面酸 化皮膜が 1 μ m以上に成長しており,かつ酸化物中に 多数の気孔がみられる。これは θ -Al₂O₃から α -Al₂O₃ への相変態での体積収縮により生じたと考えられる。 (θ -Al₂O₃から α -Al₂O₃への相転移は約12%の体積収縮 を伴う⁽¹³⁾。) 一方Fig. 5 (b) に示す予備酸化適用サンプル (Sample B) では,表面酸化皮膜の厚さは0.4 μ m程度に

Fig. 3 XRD pattern of NiCoCrAlY surface after pre-oxidation at 1080 °C for 4 hour in vacuum (before in-situ XRD oxidation measurements)

Fig. 4 Results of in-situ XRD analysis of oxide formation behavior when NiCoCrAlY thermal-sprayed coat was heated in ambient air environment, (a) Sample A (Non pre-oxidated), (b) Sample B (Pre-oxidated)

抑えられており,かつ酸化皮膜中には気孔等は見られず, 予備酸化で形成された酸化皮膜と同様の緻密な皮膜が維 持されていた。

 α -Al₂O₃は皮膜成長速度が小さく,高温酸化において 良好な保護性を持つ酸化皮膜であるとされるが,一方 で準安定相である θ -Al₂O₃の皮膜成長速度は, α -Al₂O₃ に比べ2桁以上速いとされている⁽¹⁴⁾。予備酸化処理を 適用することにより,酸化初期における θ -Al₂O₃の形 成を抑制できており,TGOの成長速度の低減が期待で きる。また,Fig.5 (a) に示す通り,大気中酸化で生じ たSample Aの酸化皮膜は比較的ポーラスである一方, Fig. 5 (b) に示す予備酸化処理を適用したSample Bの酸 化皮膜は緻密であり,保護皮膜としてより有用であろう と考えられる。

なお、予備酸化処理を適用したサンプルに θ -Al₂O₃等 の準安定アルミナが形成しなかった理由であるが、過 去の研究において、 α -Al₂O₃種結晶が存在する場合、 θ -Al₂O₃等の準安定Al₂O₃の α 化転移を促進することが 示されている^(IS)。よって、予備酸化処理によって形成さ れた α -Al₂O₃が種結晶として作用することで、 α 化転位 が即座に進行し、結果的に準安定アルミナがほとんど形 成しなかったと考えられる。

3.2 予備酸化処理のTBCへの適用とTGO成長速度評価

次に、TBCとしての長時間酸化環境におけるTGO 成長抑制効果を検証するため.予備酸化処理を適用し たTBCのサンプルを作製し、静的酸化試験を行った。 1050℃の大気中炉での静的酸化試験によるTGOの成長 速度を評価した結果をFig. 6に示す。なお、予備酸化処 理無しのサンプルは、ボンドコートの熱履歴をそろえる ためトップコートの溶射後, α-Al₂O₃が連続皮膜として 形成しなかった低酸素分圧雰囲気 (Po2 = 10⁻¹⁶ Pa)¹²で 熱処理したものである。また, Fig. 7, Fig. 8は, それぞ れ200 hour, 3000 hourの静的酸化試験後のTBCサンプル の断面のSEM像である。ボンドコートの予備酸化処理 を行ったサンプル は、予備酸化無しのサンプルに比べ、 著しくTGO成長が抑制されることが確認された。また、 Fig. 6 (b) に示す通り,予備酸化処理を行ったサンプル のTGOの成長は放物線則に沿った形となり、次式にお ける速度定数*k*は,約0.45 μm/hourであった。放物線 則に沿ったTGOの成長挙動は、TGO成長がスケール中 のOもしくはAlの拡散律速になっていることを示すと考 えられる。

$x = (kt)^{1/2}$ (x : TGO thickness [µm], t : Exposure time [hour])

一方,予備酸化無しのサンプルについては,おおむね 1000 hour以降のTGO成長速度は予備酸化したサンプル とほぼ同じであったが,酸化初期に大きなTGO成長速 度を示している。これは,3.1節で示したように準安定 Al₂O₃(*θ*-Al₂O₃等)の形成によるものと考えられる。つ

Fig. 5 Cross-section SEM images of NiCoCrAlY surface after in-situ XRD oxidation measurements, (a) Sample A (Non pre-oxidated), (b) Sample B (Pre-oxidated)

まり、準安定Al₂O₃が形成している間は大きな成長速度 を示している一方、準安定Al₂O₃から α -Al₂O₃へ変態が 完了した段階でTGOの成長速度が低下したと考えられ る。実際に、1400 hour時点での予備酸化処理無しのサ ンプルのTGO部は、Fig. 9のXRD測定の結果に示す通 り、 α -Al₂O₃単相となっていることが確認された。また、 BrummらはAl₂O₃スケール形成合金の酸化試験において、 1100[°]C以下では $\theta \rightarrow \alpha$ の相変態によって酸化速度定数が 試験途中に大きく低下することを示しており¹⁶、合金組 成は異なるものの本実験で確認された成長速度の変化も 同様の現象と考えられる。ただし、予備酸化無しのサン プルにおいて、準安定Al₂O₃がどの時点まで残留してい たのかについては詳細には確認できておらず、これを調 べることは今後の課題である。

以上をまとめると、初期の酸化過程で、予備酸化で生 じた α -Al₂O₃膜が θ -Al₂O₃等の準安定Al₂O₃スケールの成 長を抑制することが、予備酸化処理によるTGO抑制効 果として大きな役割を果たしていると考えられる。

Fig. 6 (a) Thickness of TGO of various samples during isothermal oxidation test at 1050°C , (b) Thickness of TGO vs. exposure time $t^{1/2}$

Fig. 7 SEM images of top coat/bond coat boundary of the TBC samples after isothermal oxidation at 1050°C for 200 hour,
(a) non pre-oxidated sample, (b) pre-oxidated sample

Fig. 8 SEM images of top coat/bond coat boundary of the TBC samples after isothermal oxidation at 1050°C for 3000 hour,
 (a) non pre-oxidated sample, (b) pre-oxidated sample

Fig. 9 XRD pattern of non pre-oxidated TBC sample between bond coat and top coat after isothermal oxidation at 1050°C for 1400 hour

4. まとめ

TBCのTGO成長抑制方法として、ボンドコートの予 備酸化処理に着目し、予備酸化処理後のNiCoCrAIYボ ンドコートの酸化挙動の分析を行った。その結果、以下 のことが判明した。

- NiCoCrAlY表面の酸化挙動を放射光を用いたin-situ XRD測定で評価した。その結果,NiCoCrAlY表面 に予めα-Al₂O₃予備酸化皮膜を形成しておくことで、 大気中での酸化初期過程においてθ-Al₂O₃等の準安 定Al₂O₃の発生を抑制することができ、かつ初期の 酸化生成物の成長を抑制できることがわかった。
- 大気炉中での3000 hourにわたる静的酸化試験により、予備酸化処理でボンドコート表面にα-Al₂O³膜を初期に形成させたTBCは、予備酸化処理していないTBCに比べTGOの成長速度が有意に低下していることがわかった。

以上の結果より,適切な条件でのボンドコートの予備 酸化処理は,TBCの耐久性向上に有効であると考えら れる。

5. 謝辞

本研究の一部は,国立研究開発法人新エネルギー・産 業技術総合開発機構(NEDO)の「戦略的省エネルギー 技術革新プログラム/実用化開発/高速負荷応答性を備 えた高効率中小型ガスタービンの開発」によって行われ たことを付記して謝意を表します。

また、本研究の放射光実験については、大型放射光施 設(SPring-8)のBL16XUを用いて、公益財団法人高輝 度光科学研究センター共同利用研究で実施されたもの であり(課題番号:2016A5010,2015B5010,2015A5010), ここに記して感謝の意を表します。

参考文献

(1) DeMasi-Marchin, T. J., Sheffler, D. K., Bose, J., Mechanisms of Degradation and Failure in a PlasmaDeposited Thermal Barrier Coating, J. of Gas Turbines and Power, Vol. 112, (1990), pp. 521-526.

- (2) Freborg, M. A., Freguson, B. L., Brindley, W. J., Petrus, G. J., Modeling Oxidation Induced Stresses in Thermal Barrier Coatings, Mater. Sci. A, Vol. 245, (1998), pp. 192-190.
- (3) Schmitt-Thomas, Kh. G., Dietl, U., Thermal Barrier Coatings with Improved Oxidation Resistance, Surf. Coat. Technol., Vol. 68/69, (1994), pp. 113-115.
- (4) Sun, J. H., Chang, E., Wu, B. C., Tsai, C. H., The Properties and Performance of (ZrO₂-8wt.%Y₂O³) (Chemically Vapour- deposited Al₂O₃) (Ni-22wt.%Cr-10wt.%Al-1wt.%Y) Thermal Barrier Coatings, Surf. Coat. Technol., Vol. 58, (1993), pp. 93-99.
- (5) 高橋智,吉葉正行,原田良夫,プラズマ溶射コーティン グシステムの高温酸化特性に及ぼすコーティングプロセ スの影響,日本金属学会誌,Vol. 68, No. 7, (2004), pp. 438-446.
- (6) Matsumoto, M., Hayakawa, K., Kitaoka, S., Matsubara, H., Takayama, H., Kagiya, Y., Sugita, Y., The Effect of Preoxidation Atmosphere on Oxidation Behavior and Thermal Cycle Life of Thermal Barrier Coatings, Mater. Sci. Eng. A, Vol. 441, (2006), pp. 119-125.
- (7) Nijdam, T. J., Sloof, W. G., Combined Pre-annealing and Pre-Oxidation Treatment for the Processing of Thermal Barrier Coatings on NiCoCrAIY Bond Coatings, Surf. Coat. Technol., Vol. 201, (2006), pp. 3894-3900.
- (8) Chen, W. R., Wu, X., Marple, B. R., Lima, R. S., Patnaik, P. C., Pre-oxidation and TGO Growth Behavior of an Air-Plasma-Sprayed Thermal Barrier Coating, Surf. Coat. Technol, Vol. 202, (2008), pp. 3787-3796.

- (9) Tolpygo, V. K., Clarke, D. R., The Effect of Oxidation Pre-Treatment on the Cyclic Life of EB-PVD Thermal Barrier Coating with Platinum-Aluminide Bond Coats, Surf. Coat. Technol., Vol. 200, (2005), pp. 1276-1281.
- (10) Yoneda, S., Hayashi, S., Ukai, S., Takeyama, M., Insitu X-ray diffraction analysis of Fe-Cr-Al alloys during initial oxidation using synchrotron radiation, JSPS Report of the 123rd Committee on Heat Resisting Materials and Alloys (Proceedings of 123-HiMAT-2015), (2016), pp. 375-378.
- (11) Harris, K., Erickson, G. L., Schwer, R. E., "Directionally Solidified and Single-Crystal Superalloys" Metals Handbook Tenth Edition, Volume 1, AMS International, Materials Park, OH, (1990), pp. 995-1006.
- (12) Negami, M., Hibino, S., Kawano, A., Nomura, Y., Tanaka, R., Igashira, K., Development of Highly Durable Thermal Barrier Coating by Suppression of Thermally Grown Oxide, J. of Gas Turbines and Power, Vol. 140, (2018), pp. 082101-1-082101-8.
- (13) 佐藤太一, 水酸化アルミニウムとアルミナについて, 鉱 物学雑誌, Vol. 19, No. 1, (1989), pp. 21-41.
- (14) 林重成,高温酸化アルミナスケールの相変態に及ぼす 種々の要因,日本金属学会誌,Vol. 77, No. 6, (2013), pp. 200-209.
- (15) 藤原進治,田村泰章, 真木一, 東紀史, 竹内美明, 高純度アルミナの新規開発, 住友化学技術誌, 2007-II, (2007), pp. 24-32.
- (16) Brumm, W. M., Grabke, H. J., The Oxidation Behavior of NiAl-I. Phase Transformations in the Alumina Scale During Oxidation of NiAl and NiAl-Cr Alloys, Corrosion Science, Vol. 33, (1992), pp. 1677-1690.