┫技術論文┣━

次世代ジェットエンジンの性能・重量評価

Performance and Weight Estimation of Next Generation Jet Engines

田口 秀之^{*1} TAGUCHI Hideyuki 西田 俊介^{*1} NISHIDA Shunsuke **岡井 敬一***1 OKAI Keiichi

ABSTRACT

The performance and weight of a next-generation jet engine with a thrust of 20,000 lbf class are evaluated. The specifications of a geared turbo fan (GTF) engine as a reference engine are defined, and the high-altitude performance and weight is estimated, as the first step. In addition, the performance and the weight of parallel hybrid (PH) engine and turbo-electric (TE) engine using a superconducting motor/generator are compared to that of GTF engine. Using the results of these studies, the issues when adding electric elements to the jet engine are discussed.

キーワード:ジェットエンジン, 性能, 超電導, 電動化 **Key words**: Jet Engine, Performance, Superconductivity, Electrification

1. はじめに

これまで、宇宙航空研究開発機構(JAXA)におい て、高効率軽量ファン・タービン技術実証プロジェクト (aFJR)⁽¹⁾、グリーンエンジン技術の研究開発⁽²⁾が進めら れてきた。現在は、この研究成果を引継ぎ、コアエンジ ン技術実証プロジェクト(En-Core)⁽³⁾、次世代ジェット エンジンの設計・解析技術開発(DANTE)が進められ ている。DANTEにおいては、離陸推力で20,000 lbf級の 次世代ジェットエンジンを検討対象として、新規エンジ ン要素を含むエンジンシステムを比較検討するための設 計・解析手法を確立することを目指している。本論では、 比較検討の基準となるGeared Turbo Fan(GTF)エン ジンの性能・重量評価結果と、電動要素を含む電動化エ ンジンの比較検討結果について概説する。

2. 要求仕様設定

2.1 新規エンジン要素の導入における課題

次世代ジェットエンジンの設計・解析技術開発 (DANTE)は、既存のジェットエンジンを基準として、 様々な新規エンジン要素を導入した際の性能向上と重量 増加をできるだけ正確に推算し、その新規エンジン要素 の効果を評価することを目的としている。従来、新規エ ンジン要素として、モータ、発電機、熱交換器、ウェー ブロータ、デトネーション燃焼器等の適用が提案され、 導入による性能向上の効果が検討されている。一方、新

原稿受付 2020年8月30日 查読完了 2021年6月8日

*1 宇宙航空研究開発機構 〒182-8522 調布市深大寺東町7-44-1 E-mail: taguchi.hideyuki@jaxa.jp 規エンジン要素の追加による重量増加の影響について, 熱交換器付きエンジンの重量評価⁽⁴⁾⁻⁽⁵⁾や電動要素付エン ジンの重量評価⁽⁶⁾を行った先行研究があるが,詳細に検 討した例は少ない。その原因として,新規エンジン要素 を組み込む際に発生するジェットエンジン本体の改造に 伴う重量増加を評価するためには,ジェットエンジン全 体の再設計を行う必要があることが挙げられる。

2.2 基準エンジンの定義

そこで、本研究では、短期間で設計を変更できる基準 エンジンを定義することにした。エンジンの推力レベル としては、近い将来の需要の高い150席級の旅客機に搭 載できる20,000 lbf級を選択した。エンジン方式として は、Pratt&Whitney社が先行開発して燃料消費率の低減 を達成し、Rolls Royce社も追従開発をしているGeared Turbo Fan(GTF)方式を選定した。

Fig. 1に,本研究で基準エンジンとして設定した DANTE-GTF Engineを示す。エンジン各部の空力設計

Fig. 1 DANTE-GTF Engine

- 1 -

においては、開発済のPW1100G-JMの文献(7)も参考にし つつ、ファン、低圧圧縮機、高圧圧縮機、燃焼器、高圧 タービン、低圧タービンおよび変速ギアを独自に設計し、 CFD解析で性能評価を行った。

Table 1に設計点仕様を示す。国内線旅客機に適用す ることを想定し,設計点の高度は10689m,マッハ数は 0.78とした。エンジン入口から燃焼器入口までの全体 圧力比を36,バイパス比を13とした。ギアの変速比は 3とし,ファン軸回転数は4000rpm,低圧軸回転数は 12000rpmとした。高圧軸回転数は18000rpmとした。

rusic r opeemeutons at Design rom	Table 1	Specifications	at Design	Point
-----------------------------------	---------	----------------	-----------	-------

Altitude	10668m	
Mach number	0.78	
Overall Pressure Ratio	36	
Bypass Ratio	13	
Fan Rotation Speed	4000 rpm	
LPC Rotation Speed	12000 rpm	
HPC Rotation Speed	18000 rpm	

2.3 圧力比と効率の設定

DANTE GTF Engineの要素設計においては、最新の ジェットエンジンの諸元を参考にしつつ、燃料消費率の 更なる低減を目指して、少し高めの目標値を設置した。

Table 2にエンジン要素の設計点圧力比を示す。コア 導入部のファン圧力比は1.2,低圧圧縮機の圧力比は1.5, 高圧圧縮機の圧力比は20とした。低圧圧縮機と高圧圧縮 機の圧力比バランスについて、トレードオフ検討を行っ たが、本研究では空力設計の最適化検討までは行わない 前提としたため、燃料消費率に対する影響は少なかった。 高圧タービンと低圧タービンの圧力比は、ファン・圧縮 機の必要動力を基にして設定した。

Outer Fan (Bypass)	1.37
Inner Fan (Core)	1.2
Low Pressure Compressor	1.5
High Pressure Compressor	20.0

5.13

6.12

High Pressure Turbine

Low Pressure Turbine

Table 2 Pressure Ratio

Table 3に, エンジン性能解析で目標値として設定 した, エンジン要素のポリトロープ効率と段数を示す。 ファン, 低圧圧縮機, 高圧圧縮機のポリとロープ効率は 89%とした。高圧タービン, 低圧タービンのポリトロー プ効率は90%とした。エンジン要素のポリトロープ効率 については, エンジンの燃料消費率に大きく影響する ことを確認している。エンジン要素の空力設計において, 全てのエンジン要素で設定した目標値を達成できること を確認している。ただし, 高圧圧縮機については, 想定

Table 3 Specifications of Components

	Polytropic Efficiency	Number of Stages
Outer Fan (Bypass)	89%	1
Inner Fan (Core)	89%	1
Low Pressure Compressor	89%	1
High Pressure Compressor	89%	8
High Pressure Turbine	90%	2
Low Pressure Turbine	90%	3

している作動範囲を実現する設計に達していないため、 継続して改良設計を行っている段階である。

3. 高空性能解析

DANTE-GTF Engineについて、国内線旅客機の飛行 範囲を想定して、高空性能解析を行った。高空性能解析 はエンジン性能解析ソフトウェア⁽⁸⁾に新規に設計したエ ンジン要素の性能マップを組み込んで実施した。また、 想定した飛行範囲において、各エンジン要素の作動点が 作動範囲から逸脱しないことを確認した。ただし、高圧 圧縮機に関しては新規設計の圧縮機では作動範囲を逸脱 するため、既存の圧縮機からスケーリングして、性能解 析に適用した。

Fig. 2にDANTE-GTF Engineの正味推力マップを示 す。高度0~12000m, マッハ数0~1の範囲で正味推 力を推算した。離陸時が最も正味推力が大きく, 高度, マッハ数が上昇すると, いずれも正味推力が低下してい る。

Fig. 3にDANTE-GTF Engineの燃料消費率マップを 示す。高度とマッハ数の解析範囲は正味推力と同様であ る。高度が上昇すると,燃料消費率は低下する傾向にあ る。一方,マッハ数が上昇すると,燃料消費率は上昇す る傾向にある。

Fig. 2 Net Thrust Map (DANTE-GTF Engine)

- 2 -

Fig. 3 Specific Consumption Map (DANTE-GTF Engine)

4. 航空機運航時の燃料消費量の推算

DANTE-GTF Engineの高空性能解析結果を適用して, 航空機運航時の燃料消費量(積算値)の推算を行った。

Fig. 4に, 燃料消費量の推算で使用した仮想飛行経路 (高度, マッハ数履歴)を示す。巡航条件は, DANTE-GTF Engineの設計点と同じとし, 高度10689m, マッハ 数0.78とした。仮想飛行経路は先行研究⁽⁶⁾の結果を参照 して設定した。

Fig. 4 Assumed Flight Trajectory

Fig. 5に仮想飛行経路を飛行するために必要な仮想推 カパターンを示す。この推力パターンも先行研究⁽⁹⁾の結 果を参照して設定した。離陸時に大きな推力を必要とす るため、離陸推力に合わせて、エンジンの大きさを調整 し、燃料消費量を推算した。

燃料消費量の推算においては、既存エンジンとの比較 のため、CFM56 Engineのエンジン諸元を公表データか ら推測して解析モデルを設定し、燃料消費量を推算した。 また、DANTE-GTF Engineについて、飛行時の必要推 力に合わせた寸法拡大を行った上で、Table 3で設定し た効率の場合と、エンジン全要素について更に1%の効 率改善を実現できる場合の燃料消費量を推算した。

Fig. 6に燃料消費量(Fuel Burn)の推算結果を示す。 グラフの縦軸は燃料消費量の積算値とした。

この図から、CFM56 Engineに比べて、DANTE-GTF Engineの燃料消費量は、16%程度低減していることが判

る。この性能の違いの主な要因は,バイパス比と全体圧 力比の設定値の違いによるものと考えられる。

DANTE-GTF Engineにおいて,エンジン全要素の効率を1%向上させた場合は,基準エンジンに比べて燃料 消費量が2.5%程度低減している。

今後も,各エンジン要素の改良設計結果を受けて,要 素レベルの効率改善がエンジン全体性能に与える影響を 評価する予定である。

5. 重量推算

次世代ジェットエンジンに新規エンジン要素を導入す る場合,性能向上効果を推算するとともに,追加のエン ジン要素による重量増加の程度についても,正確に推算 することが重要である。そこで,今後の検討の基準とす るために,DANTE-GTF Engineの構造解析と重量推算 を進めている。

高圧系のコアエンジンを構成する高圧圧縮機, 燃焼器, 高圧タービンについては, グリーンエンジン技術の研究 開発⁽²⁾において,熱構造解析, 翼振動モード解析,軸振 動モード解析等を行い,構造成立性を確認した形状でエ ンジンモデルを作成した。

Fig. 7に減速ギアの形状モデルを示す。PW1100G-JM 用の減速ギアの公開情報を参考にして,DANTE-GTF 用に減速比3のサンギア,遊星ギア,リングギアを設計 し,重量推算用のモデルを作成した。

Fig. 7 Reduction Gear Model

低圧系を構成するファン,低圧圧縮機,低圧タービン については,各要素の基本設計結果とCFD解析結果を 反映して,翼,ディスク,ケーシングの形状を設定し, 構造解析を進めている。

Fig. 8に低圧系を含むエンジン全体のケーシングの構 造モデルを示す。ケーシング各部の肉厚は,エンジン各 部の内部温度と内部圧力を境界条件として,構造最適化 解析を行って設定した。各部の支持構造の形状について は,国産ターボファンエンジンFJR710の図面等を参考 にして設定した。

Fig. 9に構造最適化解析で使用したケーシング内部温 度の境界条件, Fig. 10に同解析で使用したケーシング 内部圧力の境界条件を示す。

現段階では、ケーシングの内部温度、内部圧力に対す る構造成立性は確認できており、自重と推力荷重の評価 を進めている。推力荷重に対して、局所的に補強が必要

Fig. 8 Structure Model of Casing

Fig. 9 Temperature Distribution of Casing

Fig. 10 Pressure Distribution of Casing

な個所があることが判明しているが,重量に対する影響 は少ないと考えている。

また,低圧系の回転部品の構造強度については,想定 寿命を設定し,ファンから評価を始めている。

並行して,現時点のDANTE-GTF Engineの構造モデ ルを用いて,従来エンジンとの重量比較を行った。従来 エンジンの重量推算は,以下の手順で行った。

- (1) DANTE-GTFの構造モデルを用いて、ファン部、 コア部の換算密度(体積に対する重量)を計算。
- (2) 公開情報のエンジン寸法とバイパス比から、ファン
 部、コア部の体積を概算し、DANTE-GTFの換算
 密度を適用して重量を推算。

Table 4 に,従来エンジンとDANTE-GTF Engineの 仕様(離陸推力,ファン直径,バイパス比),推算重量, 離陸推力当たりの重量の比較を示す。従来エンジンの例 として,推力が同程度のCFM56 Engineの推力当たりの 重量を推算した。実際の重量と比べて,3%程度の推算 誤差があったが,エンジン形式の比較検討の際に,参考 情報として利用可能と考られる。

CFM56 Engineに比べて, DANTE-GTF Engineの推 力当たりの重量は,約8%小さくなった。この要因とし ては, DANTE-GTF Engineの方がバイパス比が大きく, 同じ推力に対して相対的にコアエンジンが小さいことが 考えられる。

Engine Type		CFM56	DANTE-GTF
Take-off Thrust		105 kN	70 kN
Fan Diameter		1524 mm	1600 mm
Bypass Ratio		5	13
Estimated Weight	Fan	523 kg	305 kg
	Gear	0	341 kg
	Core	963 kg	363 kg
	LPT	415 kg	161 kg
	Total	1901 kg	1169 kg
Estimated Weight / Thrust		18.1 kg/kN	16.7 kg/kN
Actual Weight /Thrust		18.6 kg/kN	_

Table 4 Comparison of Estimated Weight

6. 電動化エンジンの性能・重量検討

DANTE-GTF Engineをベースにして,新規エンジン 要素として,推力に寄与する電動要素(モータ,発電 機)を組み込んだ電動化エンジンの性能・重量検討を 行った。

Fig. 11に電動化エンジンの一形態として検討した, DANTE-PH (Parallel Hybrid) Engineの構造モデルを 示す。このエンジンでは,低圧軸の後端に超電導モータ を接続し,ファン駆動力の約1割を電気でアシストする 想定とした。飛行フェーズによってファン駆動力が変化 するが,アシスト率は約1割で固定した。電気でアシス トする場合,その時間によって搭載する必要のあるバッ テリーの重量が変化するため,エンジン本体,超電導 モータ,バッテリー,電装品,および燃料消費量の合計 を推進系重量として,比較検討の対象とした。尚,超電 導モータでアシストする動力分をコアエンジンの必要動 力から差し引いてコアエンジンを軽量化する検討は行っ ていない。

Fig. 11 DANTE-PH (Parallel Hybrid) Model

Fig. 12に更に電動化を進めた概念として,DANTE-TE (Turbo-Electric) Engine ¹⁰⁰を示す。このエンジンで は、コアエンジンに直結された超電導発電機で全ての ファン駆動力を発生し、超電導モータでファンを駆動す ることとした。このため、DANTE-PH Engineの約10倍 の駆動力の超電導発電機/モータを使用する必要がある。

超電導モータ/発電機については、固定子に液体水 素温度で良好な超電導特性を示すMgB2線材、回転子に 液体窒素温度で作動するYBCO線材を適用した全超電導 モータ/発電機を想定し、先行研究⁽¹¹⁾の設計手法を用い て設計した。軽量化のため、将来の技術開発を想定し て、負荷の程度を決める電気装荷を実績値の約2倍の 400kA/mとし、回転数も実績値の約2倍の12000rpmま で許容することとした。

Table 5に超電導発電機/モータの基本設計結果を示 す。実績のある常電導モータの出力密度が5kW/kg程度 であることに対し、今回の検討では17~38kW/kgと、 大幅な軽量化を想定している。超電導モータ/発電機を 実際に製作する場合は、極低温冷媒の遮熱構造やシール

Fig. 12 DANTE-TE (Turbo Electric) Model

Table 5 Specifications of Super-Conducting Generator / Motor

Device	Rotation Speed	Power	Weight	Power Density
Assist Motor	12000rpm	1.4MW	70kg	21kW/kg
Core Generator	12000rpm	12MW	374kg	38kW/kg
Fan Motor	4000rpm	12MW	707kg	17kW/kg

構造も設計する必要があるため,出力密度が少し低下し, モータ/発電機の重量が増加する可能性がある。

推進系重量は,エンジン1台当たりのエンジン本体, モータ/発電機,バッテリー,電装品および燃料消費量 の合計と定義した。

DANTE-PH Engineについては、動力アシストをする 時間の長さに応じて、必要とする電力量が変化し、搭載 するバッテリーの重量が大きく変化するため、以下の3 種類について検討した。

- T/O (Take-off) Assist 最大推力を必要とする離陸時のみの短時間のファン 動力を超電導モータでアシストする。
- (2) Climb Assist 離陸から加速上昇までの飛行フェーズのファン動力 を超電導モータでアシストする。
- (3) Full Assist 離陸,加速上昇,巡航,着陸までの全飛行フェーズ のファン動力を超電導モータでアシストする。

バッテリーの重量については、アシスト動力の時間履 歴から必要電力量を積算して、エネルギー密度で除する ことで求めた。バッテリーのエネルギー密度は、将来の 技術開発を想定して、実績値の約2.3倍の500Wh/kgとした。

Fig.13にDANTE-GTF Engine, DANTE-PH Engine, DANTE-TE Engineの推進系重量の比較を示す。この図 から、今回比較した3つのエンジン方式においては、電 導化エンジンの重量推算で、将来技術を想定した楽観的 な仮定を置いたものの、DANTE-GTF Engineが最も推 進系重量が軽くなるという結果であった。

Fig. 13 Weight of Propulsion System and Fuel

DANTE-PH Engineについては、アシスト時間が長く なると、燃料消費量が少し低減するものの、それ以上に バッテリー重量が増加して、推進系重量全体も重くな る傾向であることが判った。DANTE-PH EngineのT/ O Assistであれば、DANTE-GTF Engineよりは推進系 重量が重いものの、過大なバッテリー重量の増加が無い ため、今後、詳細な検討を行う価値がある可能性がある。 推進系重量が少し上昇しても、着陸後に超電導モータで 無排気タキシングできる等の付加価値を見出せる可能性 がある。

DANTE-TE Engineについては、本検討ではエンジン サイクルはDANTE-GTF Engineと共通であり、動力伝 達でギアの代わりに超電導モータ/発電機を使用するが、 動力伝達時の効率は同じで、燃料消費量の変化は無いも のとした。一方、DANTE-TE Engine では12MW級の 超電導モータ/発電機およびインバータ等の電装品を搭 載する必要があり、エンジン本体と同程度の重量増加が あるため、推進系重量は最大となった。実際には、駆動 用電力の周波数変換に用いるインバータにおける電力損 失も考慮する必要があるため、更に重量が増大する可能 性がある。このため、今回の検討の範囲では、この方 式を選択する理由が見当たらない。今後、違う推力レベ ルや、分散ファン等を適用した際に利点を見いだせるか、 追加の検討が必要である。

DANTE-TE Engineに燃料電池を組み合わせて、同じ 燃料流量で追加の電力を発生させることで熱効率を向上 させることも、可能性として考えられる。しかしながら、 現在のDANTE-TE Engineに燃料電池の重量が加算され ると、仮に燃料消費量を0にできたとしても、DANTE- GTF Engineより推進系重量が重くなることは明確であり、現段階で検討の対象とする必要は無いと思われる。

6. 結論

推力20,000lbf級の次世代ジェットエンジンについて, 新規エンジン要素を組み合わせた場合の性能・重量評価 を行うことを目的として,基準エンジンと電動化エンジ ンの性能・重量評価を行った。結果として,以下の知見 を得た。

- ·バイパス比13, エンジン全体圧力比36のGeared Turbofan Engine (DANTE-GTF Engine)を設計し, 高度0~12000m, マッハ0~1の範囲で作動できる ことを確認した。
- ・DANTE-GTF Engineの航空機搭載時の燃料消費量の 推算を行い,従来エンジンより約16%の燃料消費量低 減を実現できる可能性を確認した。
- ・DANTE-GTF Engineの熱構造解析と重量推算を行い, 従来エンジンより約10%の軽量化を実現できる可能性 を確認した。
- ・ファン動力の約1割を超電導モータでアシストする Parallel Hybrid Engine (DANTE-PH Engine)の性能・重量推算を行い、離陸時に限定したアシストであれば、DANTE-GTF Engineに対して推進系重量(エンジン本体、電動機器、バッテリー、燃料消費量の合計)の上昇が少ないことを確認した。
- ・DANTE-PH Engineにおいて,アシスト時間が長くな ると,燃料消費量の低減効果よりバッテリー重量の増 大効果の方が大きく,推進系重量が増大することを確 認した。
- ・ファン動力の全てをコアエンジンで発電した電力で供給するTurbo-Electric Engine (DANTE-TE Engine)
 の性能・重量推算を行った結果,今回の検討範囲では, 推進系重量が最も大きくなった。

謝辞

本研究を遂行するにあたり,共同研究先である東京大 学新領域創成科学研究科の大崎教授,寺尾助教の助言を 受け,超電導機器の設計解析を実施した。また,JAXA コアエンジン技術実証プロジェクト(EnCore)の福山 客員研究員より,航空機軌道解析結果の提供を受けた。 ここに謝意を表する。

参考文献

- 西澤敏雄, JAXA の研究開発プロジェクト:高効率軽量ファン・タービン技術実証(aFJR), 日本ガスタービン学会誌Vol. 47 No. 1 (2018), P53-54.
- (2) 田口秀之,中村俊哉,田頭剛,石井達哉,山本武,山根 敬,次世代ジェットエンジンに適用するグリーンエンジ ン技術の研究開発,第46回ガスタービンセミナー (2018).
- (3) 山根敬, コアエンジン技術, JAXA航空シンポジウ

ム 2019, http://www.aero.jaxa.jp/news/event/pdf/ sympo190905/sympo19090503.pdf.

- (4) Xu, L., Kyprianidis, K. G. and Grönstedt, T., , "Optimization Study of an Intercooled Recuperated Aero-Engine," AIAA Journal of Propulsion and Power, 29 (2) pp. 424-432 (2013).
- (5) 二ノ宮竜成,伊藤優,長崎孝夫,「翼型熱交換器で構築した 軽量ICRエンジン搭載航空機のフューエルバーン」日本 ガスタービン学会誌,47 (6) pp. 429-436 (2019).
- (6) 大島竜輝, 姫野武洋, 渡辺紀徳, 伊藤優,「サイクル解析と 重量推算に基づく電動化航空推進システムの性能評価」 第48回日本ガスタービン学会定期講演会, B-1, (2020).
- (7) 佐藤篤, 今村満勇, 藤村哲司, PW1100G-JMエンジン開発, IHI技報, Vol. 53, No. 4 (2013).
- (8) GasTurb 13, https://www.gasturb.de/software.

- (9) 福山佳孝,山根敬,西澤敏雄,航空機運航燃料消費量へのエンジン性能と重量の影響評価-エンジン回転数による推力制御の場合,第46回日本ガスタービン学会定期講演会(2018).
- (10) Okai, K., Taguchi, H., Terao., Y., Ishida, Y., Ohsaki, H., Electromagnetic-Component-Coupled Performance Analysis of Future Turboelectric Aircraft Propulsion Systems, AIAA-2020-3678, AIAA/IEEE Electric Aircraft Technologies Symposium (2020).
- (11) Terao, Y., Ishida, Y., Ohsaki H., Heideman, D. Okai, K., Taguchi, H.,Electromagnetic Analysis of Fully Superconducting Synchronous Machines for Future Turbo Electric Propulsion Systems, AIAA-2020-3550, AIAA/IEEE Electric Aircraft Technologies Symposium (2020).