┫技術論文 ┣

地上型圧縮空気エネルギー貯蔵(CAES)による 中容量ガスタービン発電システムの出力変化率の改善

Improvement of Load Changing Rate of Heavy Duty Gas Turbine Applied with Overground Compressed Air Energy Storage (CAES) System

後藤 絢大^{*1} GOTO Kenta 中野 晋^{*2} NAKANO Susumu 竹田 陽一*^{1,2} TAKEDA Youichi

ABSTRACT

In order to stabilize power grid systems, thermal power generation systems, especially gas turbine systems, are used frequently to regulate the electric power demand. One of functions required for electric power generators as load following is to improve in the load changing rate. However, most existing gas turbine systems have an issue that is the so-called "a booting-up congestion owing to the high temperature exhaust gas". In this study, we propose an overground compressed air energy storage (CAES) system to solve the issue. The operation method of an existing medium-capacity gas turbine applying the overground CAES is presented to improve the load changing rate. It is shown that the time to reach the rated power output from the partial load can be reduced to 1/2 of the normal operation of the existing turbine system by increasing the air supply from the CAES.

キーワード: ガスタービン, CAES, 負荷調整, 出力変化率, 圧縮機, リザーバ **Key words**: Gas turbine, CAES, Load-following, load changing rate, Compressor, Reservoir

1. はじめに

地球温暖化防止の観点から、発電時に二酸化炭素を排 出しない再生可能エネルギーの導入が進められており, 日本においても増加傾向にある。しかしながら再生可能 エネルギー、とりわけ太陽光や風力などといった変動出 力型再生可能エネルギーは出力が天候に依存するため, 電力需要に合わせた出力調整が困難である。現時点では, 大容量電力の貯留が困難であるため、変動電源の導入増 加時には、他の発電設備によって電力需要に合わせて出 力を調整する負荷追従運転を行うことが電力系統安定化 のためには不可欠である。負荷追従運転には比較的起動 時間が短く、出力調整も容易であるといった特徴を持つ 火力発電、その中でも特に起動性、応答性に優れるガス タービンが用いられてきた。従来の重構造ガスタービン 設備は、定格運転時に高効率な運転が行われるように設 計されていているが、負荷追随用ガスタービンには、最 低負荷から定格負荷までの運転範囲の拡大と、起動時間 の短縮等の負荷変化率の増加が求められる。負荷変化率 の増加に関しては、既存の重構造ガスタービンで起動時

原稿受付 2022年11月17日 查読完了 2023年7月6日

- *1 東北大学大学院 工学研究科ファインメカニクス専攻 〒980-0845 仙台市青葉区荒巻青葉 6-6 E-mail: Kenta.goto@rift.mech.tohoku.ac.jp
- *2 東北大学大学院 工学研究科 附属先端材料強度
 科学研究センター
 〒980-0845 仙台市青葉区荒巻青葉6-6

や発電出力増加時に燃料投入量を増加させて出力変化率 を上げる際に、いわゆる「排ガス温度高起動渋滞」⁽¹⁾と いう課題がある。これは、タービンシステムでは高温部 位の保護のため、燃焼温度の上昇を排ガス温度の監視で 行っているが、燃料流量の増加による排ガス温度の上昇 が、タービン運転の制限値を超えてしまい、実際には燃 料投入量を増やすことができず出力増加率を上げられな いといった課題である。

本研究では、既存の重構造ガスタービンに地上設置型 のCAES (Compressed Air Energy Storage) システム を付加することで、ガスタービンの負荷追随性を向上さ せることを検討している。負荷追随機能の一つである タービンの運転範囲の拡大に関しては、本研究の先行研 究として、中容量ガスタービンシステムに地上CAESを 付加することで、日本における昼食時間帯の約1時間の 電力需要の低下時に圧縮機吐出空気の一部を貯留するこ とで、その運転範囲を約1.4倍拡張できることを示した⁽²⁾。 今回は、この地上CAESをタービン出力の変化率の向上 に適用する。実機中容量ガスタービンの部分負荷から定 格出力までの運転データを基に、中容量ガスタービンを 対象としたタービンシステムの動作解析プログラム(3)に より、現状の運転方法の再現、仮想的に燃料流量を増加 させた場合、および地上CAESからの空気供給を受ける 場合の3ケースに関してタービンシステムの動作解析を 実施し、タービン出力変化率の増加に対する地上CAES の有効性を検討した。

記号の説明

```
A: 流路断面積, タンク表面積 [m<sup>2</sup>]
C<sub>p</sub>: 定圧比熱 [J/(kg K)]
dt:時間刻み [s]
f: 圧縮機吸気流量のωに関する関数 [-]
g: 質量比 [-]
H<sub>B</sub>: 発熱量 [J/kg]
h:比エンタルピー []/kg]
I: ロータの慣性モーメント [kgm<sup>2</sup>]
M:質量 [kg]
m: 質量流量 [kg/s]
P: 圧力 [Pa]
Pr:正規化圧力比[-]
Q:正規化吸気流量比[-]
R: 気体定数 [J/(kg K)]
T:温度 [K]
t:時間 [s]
V:体積[m<sup>3</sup>]
W:出力 [W]
α:対流熱伝達率 [W/(m<sup>2</sup>K)]
β:放射率 [-]
η<sub>B</sub>: 燃焼効率 [-]
η μ: ポリトロープ効率 [-]
κ:比熱比 [-]
\sigma: Stefan-Boltzmann 定数 [W/(m<sup>2</sup>K<sup>4</sup>)]
\omega:角速度 [rad/s]
添え字
1: 貯留タンク流入
2: 貯留タンクから放出タンク
3: 放出タンク流出
a:空気または大気
C: 圧縮機
caes : CAES
co:圧縮機吐出側
co2:二酸化炭素
d:定格点
dst: 放出タンク
ex:出口
f:燃料
G:発電機
g: 燃焼ガス
H2O:水蒸気
in:入口
loss:軸受損失
N2:窒素
O2:酸素
out:

タンク外壁
rated:IGV定格開度時
rt:貯留タンク
shft:IGV開度減少時
```

```
T:タービン
```

θ : IGV開度

2. 地上CAES

2.1 基本構成

既存のCAESシステム^{(4),(5)}では, 圧縮機とタービンの 回転軸が分離, または切り離しが可能な構造で, 圧縮機 とタービンは独立に運転できる。一方, 既存発電用ガス タービンは圧縮機とタービンが同一の回転軸を有する場 合が多いため, 圧縮機とタービンをそれぞれ独立に運転 することはできない。このため, 既存発電用ガスタービ ンに地上CAESを適用するためには, 圧縮機とタービン を分離運転しないことが制約になる。

地上CAESを付加したガスタービンシステムの概要を Fig. 1に示す。地上CAESシステムは、タービンシステ ム圧縮機の吐出空気の一部を貯留する貯留タンクと、貯 留タンク内の空気を昇圧する中間圧縮機、昇圧した空気 を貯留する放出タンク、およびバルブ類から構成される。 貯留タンク内の空気は、タービンシステム圧縮機の運転 状態を変更することなく燃焼器空気流量を増加させたい 場合に、圧力調整弁を介して燃焼器に供給される。中間 圧縮機は、供給過剰になった変動電源出力によって稼働 する。

Fig. 1 Schematic diagram of over ground CAES

2.2 地上CAESシステムの運転方法

圧縮機吐出空気の貯留は,系統への電力需要が少ない ときで,例えば待機運転中や部分負荷運転時が考えられ る。ここでは,部分負荷運転時の圧縮機吐出空気の一部 を貯留する場合を考える。タービン負荷が少ない状態で は,圧縮機吐出圧は低下するため,貯留タンク内に貯め られる空気圧は,圧縮機定格吐出圧以下になる。タンク から供給できる空気はタンク圧よりも低下するため,こ の圧力状態では,タービン出力増加時に燃焼器に空気を 送ることはできない。そのため,放出タンク内の空気を タービン出力増加時にも送れるように,貯留タンクの空

気を中間圧縮機で昇圧し放出タンクに蓄える。放出時は, 本研究で対象とする負荷変化率を上げる場合の操作に なるが、タービン出力は部分負荷運転されており、例え ば入口案内弁(IGV)を絞ることで圧縮機吸気流量を減 らした運転を行っている。Fig. 2は圧縮機の性能曲線と して,各回転数における圧縮機吸気流量比と正規化圧力 比を示したものである⁽⁶⁾。横軸の正規化吸気流量比は修 正流量を設計点である定格修正流量で除した値で、縦軸 の正規化圧力比は圧力比を定格圧力比で除した値である。 回転数は修正回転数と定格修正回転数の比をパーセント で表示したものである。なお、本論文中の燃料流量や圧 縮機吸気流量など流量と記載されるものは、体積流量と の記載がない限り質量流量を表す。圧縮機の吐出圧は, タービンの負荷によって決まる。タービン動作は、 圧力 比の小さい領域を除き,修正流量(m√T/P)が一定に なるため、タービン入口温度が一定の場合、流量の低下 と共に圧力も低下する。定格回転数での圧縮機性能曲 線はIGVを絞ることで、図の破線へとシフトする⁽⁷⁾。今、 部分負荷運転として①の状態にあるとものとする。この 状態で、CAESからの空気供給によってタービン流量を 定格流量にしてタービン出力を定格に持っていくことを 考える。運転点④と①の流量差分の空気をCAESから供 給する。タービンの負荷上昇に伴い,圧縮機吐出圧は破 線で示した特性曲線上を上昇する。Fig. 2に示した例で は、IGV開度68%の性能曲線上の10%サージマージン点 (以後,単にサージ点と呼ぶ)②は,IGV定格開度にお ける定格運転点の圧力比④を下回るため、このIGV開度 では圧力比を定格値まで上昇できない。②に到達する前 にIGV開度を上げ、例えばFig. 2のIGV開度78%の状態に 持っていく。この状態の性能曲線のサージ点③は定格運 転での圧力比④をわずかに上回るため、CAESからの空 気供給によってタービン動作点を定格値まで上昇できる。 CAESからの空気供給を終了させる時は、IGV開度を定 格開度に広げて圧縮機吸気流量を定格流量に持っていく。

Fig. 2 Characteristic curves of the compressor and operation method of CAES

2.3 圧縮機性能曲線の移動方法

Fig. 2において圧縮機性能曲線はIGV開度によって シ フトさせたが、ここではその移動方法の概略を述べる。 この方法は生井・井上⁽⁷⁾によって示された方法と同様の 方法である。Fig. 3はFig. 2に示した定格回転数でIGV定 格開度の圧縮機性能曲線(図中*BCD*で示す実線)を、回 転数は同一に保ちIGV開度を定格開度の68%にした場合 の性能曲線(図中*GHJ*で示す破線)への移動方法を示す 図である。

Fig. 3 Shifting method for characteristic curves of the compressor

初めにIGV定格開度における定格運転点Cを移動する。 定格運転点の正規化吸気流量比をQratedd, 正規化圧力比 をPr.rated.d, 圧縮機入口の正規化圧力比をPr.rated.inとする。 また, IGV開度を絞った時の正規化吸気流量比をQ_{shft}d とする。IGV開度を絞り圧縮機吸気流量比をQshtdにし た時、圧縮機入口圧比も低下する。回転数は一定のため 体積流量はIGVを絞った場合も変わらない。また、流体 の運動エネルギーを無視できると仮定した場合、IGV前 後でエンタルピーは等しく, IGVを通過する流れを絞り 膨張流れと考え、空気を理想気体と仮定すれば、ジュー ル・トムソン係数はゼロになり圧力降下による温度変化 は生じなくなる。このため、圧力変化は密度変化に比 例する。つまり、圧縮機入口圧力の低下は空気質量流 量の低下に比例することになる。よって、Fig. 3の原点 と点E(Q_{rated.d}, P_{r.rated.in})を通る直線上で流量がQ_{shft.d}と なる点K (Q_{shftd}, P_{r.shftin}) がIGVを絞った状態での圧縮 機入口の正規化圧力比になる。次に原点と定格運転点C (Q_{rated,d}, P_{r,rated,d})を結ぶ直線を引き、この線と点L(Q_{shft,d} .0) から立てた垂線の交点をH(Q_{shftd}, P_{r,shftd})とする。 点C, Fおよび原点からなる三角形と、点H, Lおよび原 点から成る三角形で,両者は相似三角形になる。同様に, 点E. Fおよび原点から成る三角形と点K. Lおよび原点 からなる三角形も相似になる。よって線分の比CF: EF と*HL*:*KL*は等しくなる。これらの比は定格運転におけ る圧力比とIGVを絞った時の圧力比に対応する。よって 点H (Q_{shft,d}, P_{r,shft,d}) が定格運転点C (Q_{rated,d}, P_{r,rated,d})の IGVを絞った時の作動点となる。ここで、Pr.shft.inは定格

運転点の正規化吸気流量比Qrateddと正規化圧力比、Pr.ratedd およびIGV開度絞った時の正規化吸気流量比Qshft,dを用 いて式(1)で表される。また、点K(Qshft,d, Pr.shft,in)はFig. 3の細破線で示すIGV開度を定格開度の68%に絞った時 の抵抗曲線上に位置する。IGVの抵抗曲線は流量に関し て2次式になり、流量ゼロでは抵抗はゼロで大気圧に対 応する正規化圧力比Prin,atmになる。点K(Qshft,d, Pr.shft,in) と点(0, Pr.in,atm)を通る流量の2次式として抵抗曲線上 の圧力比Prは式(2)で表される。

$$P_{r,shft,in} = \frac{Q_{shft,d}}{Q_{rated,d}} P_{r,rated,in} \tag{1}$$

$$P_{r} = P_{r,in,atm} - \frac{(P_{r,in,atm} - P_{r,shft,in})}{Q_{shft,a}^{2}} Q^{2}$$
(2)

定格回転数,定格IGV開度の状態にある圧縮機性能 曲線上の任意の点(Q_i, P_{ri})は,定格運転点吸気流量比 Q_{rated,d}をQ_{shft,d}までIGVで絞った時,式(1)と(2)から導かれ る式(3),および式(4)を満たす点(Q, P_r)に移動する。

$$\frac{P_{r,in,atm}}{Q_{shft,d}^2} \left(\frac{Q_{rated,d} - Q_{shft,d}}{Q_{rated,d}} \right) Q^2 + \frac{P_{r,in,atm}}{Q_i} - P_{r,in,atm} = 0$$
(3)

$$P_r = \frac{Q}{Q_i} P_{r,i} \tag{4}$$

3. 計算方法および計算条件

3.1 タービンシステムの基礎式

タービン回転軸の運動方程式は式(5)で表される。ター ビン出力W_T,および圧縮機動力W_Cは、入口温度T_{in}と 圧力比 (P_{ex}/P_{in})を用いて式(6)および(7)で示される。損 失W_{loss}は軸受損失を考慮した。発電機出力W_Gは式(5)の タービン出力から圧縮動力および式(5)左辺の慣性力によ る仕事を差し引いて算出する。タービン入口温度T_{in}Tは 式(8)に示す燃焼前後のエンタルピーの釣り合いから算出 する。圧縮機の吸気流量と圧力比は対象としたガスター ビンシステムの圧縮機特性曲線⁽⁶⁾から求めた。圧縮機吸 気流量は、式(9)に示すように、回転数の関数として特性 曲線から読み取った値にIGV開度の面積比を乗じて算出 する。これらの計算では、空気および燃焼ガスを理想気 体の混合ガスとして扱った。

$$\frac{d\omega^2}{dt} = \frac{2}{I} \left(W_T - W_C - W_{loss} - W_G \right) \tag{5}$$

$$W_{\mathcal{C}} = m_{\mathcal{C}} C_{p,\mathcal{C}} T_{in,\mathcal{C}} \left\{ \left(\frac{P_{ex,\mathcal{C}}}{P_{in,\mathcal{C}}} \right)^{\frac{\kappa-1}{\eta_{p,\mathcal{C}}\kappa}} - 1 \right\}$$
(6)

$$W_T = m_T C_{p,T} T_{in,T} \left\{ 1 - \left(\frac{P_{ex,T}}{P_{in,T}} \right)^{\eta_{p,T} \frac{\kappa - 1}{\kappa}} \right\}$$
(7)

$$T_{in,T} =$$

$$\frac{h_a m_c + h_{caes} m_{caes} + h_f m_f + \eta_B H_B m_f}{m_a (C_{p,co2} g_{a,co2} + C_{p,H20} g_{a,H20} + C_{p,N2} g_{a,N2} + C_{p,02} g_{a,02})}$$
(8)

$$m_{\mathcal{C}} = \frac{A_{\theta}}{A_{\theta, rated}} f(\omega) \tag{9}$$

なお、上式において、圧縮機のポリトロープ効率は参考 文献(6)に示される図から読み取り、タービンのポリト ロープ効率は、Smith線図⁽⁸⁾から推定した断熱効率を比 熱比と圧力比で表される断熱効率とポリトロープ効率の 関係式⁽⁹⁾から算出した。また、式(8)に用いられる燃焼効 率は参考文献(10)に示される環状缶型燃焼器の燃焼効率を 示した図から読み取った値を用いた。

3.2 CAESシステムの基礎式

次にタンク内状態量変化の計算方法を示す。タンク内 の状態量変化は、式(10)および式(11)に示す質量保存式、式 (12)および式(13)に示すエネルギー保存式、式(14)および式 (15)に示す状態式を用いて算出した。また、エネルギー 式ではタンク表面からの放熱を、対流熱伝達率7(W/ (m²K))、放射率0.5と仮定して計算した。

$$\frac{dM_{rt}}{dt} = m_1 - m_2 \tag{10}$$

$$\frac{dM_{dst}}{dt} = m_2 - m_3 \tag{11}$$

$$\frac{d(C_p M_{rt} T_{rt})}{dt} = m_1 C_p T_{co} - m_2 C_p T_{rt} -A_{rt} \left[\alpha (T_{rt,out} - T_a) + \beta \sigma (T_{rt,out} ^4 - T_a^4) \right]$$
(12)

$$\frac{d(C_p M_{dst} T_{dst})}{dt} = m_2 C_p T_{rt} - m_3 C_p T_{dst}$$

$$-A_{dst} \left[\alpha (T_{dst out} - T_a) + \beta \sigma (T_{dst out}^4 - T_a^4) \right]$$
(13)

$$P_{rt} = \frac{M_{rt}}{V_{rt}} R T_{rt} \tag{14}$$

$$P_{dst} = \frac{M_{dst}}{V_{dst}} RT_{dst}$$
(15)

3.3 対象ガスタービンと計算条件

地上型CAES動作の計算は、中容量ガスタービンシス テムを解析対象とし, 既開発のガスタービンシステムダ イナミックシミュレータ^{(3),(1)}にCAES動作計算プログラ ム⁽²⁾を組み込み行った。対象としたガスタービンシステ ムと地上型CAESの基本仕様をTable 1に示す。タービ ンシステムの計算には、計算条件として、 タービンロー タの回転数, IGV開度, および燃料流量を与える必要が ある。計算は実機タービンシステムの起動から定格運転 までの一実施例を対象とし、その時の運転条件をFig.4 に示す。薄色太線が運転データで、実機運転を再現す る計算の計算条件は、運転データを濃色細線で近似し た値を用いている。また、計算は60%回転数から開始す る。Fig. 4には発電機出力の計測データと計算結果も一 緒に示した。これは、本計算におけるIGV開度操作を説 明するためである。次章では出力変化率を上げるために CAESを適用する運転方法と、比較のために燃料流量の み増加させる運転方法を試す。それらの運転では通常運 転に比べて出力の増加率が上昇する。時間に対するIGV 開度操作を通常運転と同じにすると、出力増加に伴い作 動点がサージ点に達する恐れが生じる。Fig. 4に示した

通常運転のIGV開度と発電機出力を比較すると,経過時 間1.8hでIGV開度は68%から増加する。この時の発電機 出力は64%になる。本計算で実施する出力変化率を増加 させるための2ケースの運転方法でも,発電機出力が 64%に到達した時点で,IGV開度を68%から増加させる。 以後,Table 2に示すように,ケース1を実機運転条件, ケース2を燃料流量のみを増やす運転条件,ケース3を CAESからの空気供給を受ける運転条件とする。

Fig. 5に実機運転方法を含めた3ケースの計算入力条件の燃料流量とIGV開度を示す。また、参考のためケース3のCAESからの供給空気量も示す。経過時間1.35 hから燃料流量投入量は増加する。ケース2と3の燃料増加率はケース1の2倍にした。ケース3で1.6 hで燃料流量の増加が止まるが、これは発電機出力が定格出力に 到達したため燃料流量が保持されたことを示す。

IGV開度に関しては、ケース3が最初に68%開度から 増加を開始する。Fig. 2に示したように78%開度でIGV 開度を保持する。78%開度では、圧縮機性能曲線のサー ジ点は定格運転点の圧力よりも上回るため、この開度で 負荷を上昇させても圧縮機の安定運転は維持できる。発 電機出力が定格出力到達後は、燃料流量とIGV開度を定 格値まで増加させる。IGV開度の増加に伴い圧縮機吸 気流量は増加するため、CAESからの空気を減少させる。 ケース2では1.58 hからIGV開度の増加が始まる。なお、 ケース2 およびケース3のIGVの開度増加率はケース1 と同じである。

4. 結果および考察

4.1 実機運転データとの比較

前章のFig. 4に実機発電機出力と計算結果の比較図を 示した。実機タービンシステムはコンバインドサイクル のため、計測される発電機出力はガスタービンと蒸気 タービンの出力の合計値になる。本研究ではガスタービ ンのみから成るシステムを対象としているため、実測 データから蒸気タービン出力の推定値を差し引いて比較 に用いた。なお、蒸気タービンの出力は、供給蒸気と排 気蒸気の計測値から、それらのエンタルピー差によって 推定した。Fig. 4において、計算結果は実機計測値と最 大9.2%の誤差はあるが、ほぼ全域にわたり実機出力と良 好に一致している。

Table1 Specifications of target plant and over ground CAES

Rated power of turbine system		109 MW ((GT+ST)×2)		
Rated rotational speed		7280 rpm		
Compressor		17 stages axial flow		
Turbine		3 stages axial flow		
Combustor		Low NOx combustor		
Storage and discharge tanks		Sperical shape with a diameter of 18 m		
Intermediate compressor	Pressure ratio	4		
	Rated flow rate	10% of turbine system compressor		
Inner diameter of piping		0.14 m		
Initial tank pressure		5 MPa		

Fig. 4 Comparison between plant operation data and calculation conditions and result

Table 2 Calculation cases

CASE	Operation	Rotational speed	Fuel supply rate	IGV operation
1	Normal operation	Normal operation	Normal supply rate	Normal operation
2	Rapid fuel supply operation	Same as normal operation	Doubled supply rate after 1.35 h	Same as normal operation for IGV opening to Generator output
3	CAES operation	Same as normal operation	Doubled supply rate after 1.35 h	Same as normal operation for IGV opening to Generator output

Fig. 5 Calculation conditions of three cases

4.2 起動線の比較

Fig. 6に3ケースの起動線の計算結果を示す。実線で 示す実機の起動線はIGV開度68%で圧力比が定格圧力比 の77%まで上昇し、その後IGVを定格開度まで開けてい き定格運転点に到達する。ケース2の起動線もケース1 と同等であるが、IGV開度68%から定格開度までがわず かに圧力比が高く、タービン負荷が実機運転よりもわず かに増加した状態で定格運転点に到達する。

ケース3はIGV開度68%の状態で、サージ線直前まで 圧力比を上げ、IGV開度78%において定格運転点近くの 圧力比に到達する。他ケースに比べて、CAESからの空 気供給によってタービン負荷を上げるため、圧縮機吸気 流量が低い段階で動作点圧力比は上昇していることが分 かる。しかし、ケース3の起動線は10%サージマージン 以下に収まっている。

- 57 -

Fig. 6 Comparison of starting lines for three cases

4.3 出力変化率とタービン入口温度の比較

本研究では、Fig. 4に示した約1.35時間経過後からの 出力増加時間帯を対象に、出力変化率の検討を行う。 Fig. 7に各ケースの発電出力を示す。また, Fig. 7には Fig. 5に示したCAESからの空気供給量も示す。ケース 2では、Fig. 5の燃料流量が定格流量に達する1.64 hに おいて、発電機出力は定格出力に到達していない。この 段階では、まだIGV開度が低く空気流量が不足するため である。IGV開度が定格開度になる直前の1.7 hで定格出 力に到達する。ケース3のCAESを適用した場合, 1.62 hでほぼ定格出力に到達している。CAESからの空気流 量と比較すると、CAES開始時の空気供給量の立ち上が りと、発電機出力の増加の立ち上がりが同様の変化を示 す。CAES開始時の発電機出力の増加はCAESからの空 気量の増加が大きく影響することが分かる。1.35 hの部 分出力から定格出力到達までの時間は、従来運転では約 0.6 h掛かっていたのに対して、CAESを適用した場合に は約半分の時間で到達できている。

Fig. 8にタービン出力と圧縮機駆動動力を示す。ケース1および2では、IGV開度の増加に伴い、タービン出力 および圧縮機動力が増加する。ケース3では、IGV開度 を一旦78%開度で保持するため、圧縮機動力の増加は 抑えられるが、この間にもタービンにはCAESからの空 気供給があるためタービン出力は増加する。IGV開度を 78%で保持している間のタービン出力の増加により、発 電機出力は定格出力に達する。ケース1および2の発電 出力増加傾向は、燃料流量の増加率とIGV開度の増加率 に依存するが、CAESを適用する方法では、CAESから の空気供給開始時の空気流量の増加が発電出力の短時間 での増加につながることが特徴と言える。

Fig. 9はタービン入口のガス温度比を示したものであ る。ケース2では、発電機出力比が70%に到達する1.6 h で、タービン入口温度は定格温度に達するため、実際の 運転ではこれ以上の燃料流量を増加することはできな いことになるが、燃料流量を定格流量まで増加すると、 Fig. 9に示したようにタービン入口温度は定格温度の1.1 倍まで上昇する。また温度の上昇率も実機運転に比べて 大きくなっている。このため実際にはこのような運転は 行えないことが分かる。ケース3ではガス温度の上昇率 は従来運転とほぼ同等に保たれていることが分かる。燃 料流量の増加率を従来方法の2倍にしても,高温部位の 熱伸びは従来運転と同等に保てると考えられる。

Fig. 10は各ケースの燃空比の変化を示したものであ る。Fig. 9のタービン入口ガス温度と同様に,ケース1 と3に対してケース2の燃空比は高くなっている。燃空 比は燃焼器での燃料の燃え方に密接に関連する。CAES を適用した場合でも,燃空比の変化は,従来運転と大き く外れることはなく,従来運転と同等の燃焼が実現でき ると考えられる。

燃料流量の投入率を従来運転の2倍にすることで,発 電機出力の増加率を上げることを確かめてきたが,一方 で,燃料流量の増加は,高温部位の過熱や燃焼の安定 性にも影響を及ぼすと考えられる。燃料流量の増加と CAESを適用することで,高温部位の温度上昇や燃焼に 関しては従来運転方法と同等に維持できることを確認し た。

4.4 放出タンクの圧力変化

最後に、CAESシステムの計算結果として、ケース3 における放出タンクおよびタービン入口圧力の変化を、 定格タービン入口圧で正規化した結果をFig. 11に示す。 2.2で述べたように、CAESからの給気供給を可能にす るため、タンク圧力はタービン入口圧力よりも高く保持 されていなければならない。Fig. 11において放出タン ク内の空気圧は常にタービンの入口空気圧よりも高く 保たれている事が分かる。このため、Table 1に示した CAESの仕様で、ケース3においてCAESシステムは常 に安定した空気供給を行える事が示された。

Fig. 11 Pressure changes in CAES tank and turbine inlet

5. 結論

既存の中容量ガスタービンの部分負荷から定格負荷への出力変化率の向上を目的に,燃料流量の増加と共に地 上型CAESを適用した場合のタービンシステムの動作解 析を行い以下の結論を得た。

- (1) 燃料投入量を従来運転の2倍に、さらに地上CAES からの空気供給を行うことで、部分負荷から定格負 荷に到達する時間を、従来運転の約1/2に短縮できる ことを確認した。
- (2) CAESからの空気供給を行うことで、燃料供給率を 2 倍にした場合でも、タービン入口温度および燃空 比の変化は従来運転と同等に維持できることを確認 した。

謝辞

本研究は東北電力株式会社と東北大学の共同研究部門 である電力エネルギー未来技術共同研究部門で実施され たもので,研究遂行に対して東北電力株式会社からは多 くの支援を頂きました。ここに謝意を表します。

参考文献

- 福泉靖史,上田慎太,火力プラントの柔軟性向上による電力系統の安定化,火力原子力発電,Vol. 66, No. 11 (2015), pp. 16-31.
- (2) 野々村弘樹,中野晋,竹田陽一,負荷調整用地上型圧縮 空気エネルギー貯蔵(CAES)を備えたガスタービンシ ステムの基礎検討,日本ガスタービン学会誌,Vol. 48 No. 6 (2020), pp. 41-50.
- (3) 鈴木晃純,中野晋,田中翔悟,竹田陽一,菅原由貴,中 容量ガスタービン用動作解析シミュレータの開発,第 45回日本ガスタービン学会定期講演会 講演論文集, (2017), pp. 83-88.
- (4) Jidai Wang, Kunpeng Lu, Lan Ma, Jihong Wang, Mark Dooner, Shihong Miao, Jian Li, and Dan Wang, Overview of Compressed Air Energy Storage and Technology Development, Energies 10, 991 (2017).
- (5) 中北智文,小林英夫,奥原巌,高橋克行,安田友芝,圧 縮空気エネルギー貯蔵ガスタービン (CAES-G/T)の開
 発,石川島播磨技法, Vol. 43 No. 3 (2003).
- (6) Y. Kashiwabara, Y. Katoh, H. Ishii, T. Hattori, Y. Matsuura, and T. Sasada, Developments leading to an axial flow compressor for a 25 MW class high efficiency gas turbine, 90-GT-238, (1990).
- (7) 生井武文,井上雅弘共著,ターボ送風機と圧縮機,コロ ナ社,(1988).
- (8) Moustapha, H., Zelesky, M. F., Baines, N. C., and Japikse, D., Axial and Radial Turbines, Concept NREC, (2003).
- (9) Nonomura, H., Nakano, S., and Takeda, Y., A FUNDAMENTAL STUDY ON A GAS TURBINE SYSTEM WITH OVERGROUND COMPRESSED AIR ENERGY STORAGE (CAES) FOR LOAD FOLLOWING, Proceedings of Global Power and Propulsion Society, GPPS-CH-2020-0025 (2020).
- (10) Lefebvre, A. H., Gas Turbine Combustion, Taylor & Francis, (1983).
- (11) 関慧一,中野晋,竹田陽一,マイクロガスタービンの動作 解析,日本ガスタービン学会誌, Vol. 43 No. 3 (2015), pp. 68-74.