┃技術論文 ┣━

プロトン伝導体を用いた水素測定による高温アンモニア雰囲気中 での純鉄の腐食挙動の解析

Corrosion Behavior Analysis of Pure Iron in High-temperature Ammonia Atmosphere by Hydrogen Measurement Using Proton Conductor

福本 倫久*1 FUKUMOTO Michihisa

原 聖也^{*2} HARA Seiya

高橋 弘樹*² TAKAHASHI Hiroki

ABSTRACT

Ammonia is considering as a fuel instead of fossil fuels. The reason is that ammonia does not emit greenhouse gases when burned. However, there are few reports on the corrosion behavior of materials when ammonia is used as fuel. Therefore, in this study, the hydrogen produced by the reaction between ammonia and metal was measured using a hydrogen sensor using a proton conductor. As a result, the amount of hydrogen produced by the decomposition of ammonia was small at low temperatures but increased at high temperatures. Also, when the ammonia content was low, oxidation of metals occurred preferentially. In this way, the relationship between the amount of hydrogen generated and corrosion behavior could be clarified.

キーワード:アンモニア,水素センサー,高温腐食,窒化 Key words : Ammonia, Hydrogen Sensor, High-temperature Corrosion, Nitridation

1. はじめに

異常気象などに代表されるように地球温暖化が大きな 問題になっている。その原因は、化石燃料を燃焼した際 に発生する温室効果ガスである。現在、我が国の温室効 果ガスの排出量はCO₂換算で12億1.300万トンであり、そ の結果,地球の平均温度が1.5℃上昇した(1)-(3)。そのため, 温室効果ガスの排出を抑制する必要がある。現在、化石 燃料に代わり燃焼しても温室効果ガスを排出しない水素 が注目されている(4)。しかし、水素は常温では液化せず、 気体であるため貯蔵および運搬に難がある。そこで、水 素を容易に液化しやすいアンモニアにし、燃料として用 いることが検討されている(5)。

アンモニア濃度が数ppmのFe基合金の高温腐食に関 する報告は多数存在する(6-13)。この環境では、窒化物は 生成せず、酸化物の生成のみが起こっている。一方、高 濃度アンモニア燃焼環境中におけるFe基合金の800℃以 上の耐高温環境性に関する報告は存在しない。その理由 として排ガス等の処理が困難であるため実験系の確立が 困難であることが考えられる。

アンモニア環境中では基材合金の主成分であるFeの 窒化およびアンモニアの分解による窒素分圧の上昇お

原稿受付 2023年8月9日 査読完了 2024年2月16日 秋田大学 大学院理工学研究科 革新材料研究センター * 1 〒010-0825 秋田市手形学園町1-1

よび水素の発生による酸素分圧の低下のように雰囲気の 変化が起こる。その結果,腐食挙動は複雑になる。また, アンモニア含有量が少ない環境において、十分な還元環 境とならないため酸化も起こる¹²。したがって、窒化に よる水素の発生挙動と微量に混入する酸素による酸化挙 動を詳細に検討する必要がある。

著者らはこれまでプロトン伝導体を用いて高温酸化に よって材料と水蒸気が反応して発生する水素をその場測 定してきた^{[4]-[18]}。本研究では、プロトン伝導体を用いた 水素センサーによって水素をその場測定することで材料 の耐環境性とアンモニアの分解反応との関係を明らかに した。実際の環境ではアンモニアと酸素の反応により熱 エネルギーを生成するため、酸素を供給した模擬環境で 試験を行う必要があるが、本研究では微量の酸素を含む 高温のアンモニア環境で材料の耐環境性について調査し た。

2. 実験方法

2.1 水素センサーおよび酸素センサー

Fig. 1に(a)水素センサーおよび(b)酸素センサーの概略 図を示す¹⁸⁸。水素センサーと酸素センサーはともに管状 である。Ptペーストを塗布し焼成することで電極を作製 した。管の内部と外部に電極を作製することで測定ガス と参照ガス間の起電力を測定した。測定ガスは、耐環境 性評価後のガスであり、参照ガスは酸素センサーでは大 気とし水素センサーではAr-1%H2とした。水素センサー にはプロトン伝導体であるCaZr0.9In0.1O3-a管を用い,酸

E-mail: fukumoto@gipc.akita-u.ac.jp

^{*2} 秋田大学 大学院理工学研究科 物質科学専攻

素センサーには酸化物イオン伝導体であるイットリア安 定化ジルコニア管(8mol%Y₂O₃-ZrO₂)を用いた。測定 した起電力を(1)および(2)式のNernstの式に代入するこ とで水素分圧および酸素分圧を算出した。

水素センサー:
$$E = \frac{RT}{2F} ln \frac{P_{H_2(ref)}}{P_{H_2(mea)}}$$
 (1)

(a) Hydrogen Sensor

(b) Oxygen Sensor

Fig. 1 Schematic diagram of hydrogen sensor $^{(a)}$ and oxygen sensor $^{(b)}$ $^{\tiny UB}.$

酸素センサー:
$$E = \frac{RT}{4F} ln \frac{P_{O_2(mea)}}{P_{O_2(ref)}}$$
 (2

ここで, R:気体状数 (J K⁻¹ mol⁻¹), T:温度 (K), F:ファラデー定数 (A s mol⁻¹), E:測定起電力 (V), $P_{O_2(ref)}$: (大気, 21%O₂, 0.21 atm), $P_{H_2(ref)}$:参照ガスは (Ar-1.09%H₂, 0.01 atm) である。水素センサーは500°C で,酸素センサーは700°C で作動させた。アンモニアの 熱分解反応を抑制するため,センサー温度を比較的低く し流速を早くすることで分解の影響を小さくした。また, センサー温度と純鉄の腐食温度が異なるが,本実験は開 放系であるため一定温度で作動する各センサーで測定し た水素分圧および酸素分圧の値を用いて腐食炉内の雰囲 気を推定して考察した。

その後,測定した水素分圧から発生水素量の算出を 行った。測定ガスを理想気体としてシャルルの法則が成 立すると仮定すれば,

Fig. 2 Schematic diagram of environmental resistance evaluation equipment.

度*T*rで測定したガス流量, *n*は発生ガス物質量, *T*rは 流量を測定した温度で,本研究では25℃である。単位時 間あたりの発生水素量を算出し,さらに全発生水素量を 各温度で算出した。

2.2 実験装置

各種熱機関に用いられている基本的な材料のベースと なるFeに注目して、純鉄を試料として本実験を行った。 純鉄はフェライト相であり、Feの純度は99.99%である。 試料寸法は2cm²の正方形試料とした。試料表面を#800 のエメリー紙で研磨し、実験に供した。

Fig. 2に本実験で用いた装置の概略図を示す。電気炉 の後段に水素センサーと酸素センサーを直列で設置した。 過去の研究において,直列でも正確に各種ガス分圧を正 確に測定できることを明らかにしている⁽¹⁴⁻¹⁸⁾。この水素 センサーで腐食ガスの水素分圧を測定し,酸素センサー を用いて酸素分圧を測定した。腐食ガスとしてAr-0.5% NH₃およびAr-5%NH₃ガスを用いた。その時のガス流速 は30 ml min⁻¹とした。混合ガス中には微量の酸素が含 まれており,その濃度は0.001~0.01%以下である。

縦型のシリコニット電気炉内に試料を設置し,500℃ から1100℃の各設定温度まで1時間で昇温した後,4時

Fig. 3 Mass change of Fe after 4 hours corrosion in each atmosphere.

- 30 -

間保持し,その後炉令した。電気炉の保護管には石英管 を用いた。電気炉の後段にいずれも管状の水素センサー および酸素センサーを設置し,排出されたガス雰囲気の 水素分圧および酸素分圧を測定した。

発生水素量の算出は、測定水素分圧 ΔP_{H2} を式(3)の圧 力の項に代入して単位時間あたりの発生ガス物質量dn / dtを算出して容積に変換することにより求めた。耐環 境性を評価した試料は、X線回折法(X-ray diffraction: XRD)を用いて生成した酸化物相の同定をおこなっ た。さらに電界放出型走査電子顕微鏡(Field Emission Scanning Electron Microscope: FE-SEM)、電子 プ ローブマイクロアナライザー(Electron Probe Micro Analyzer: EPMA)、集束イオンビーム装置(Focused Ion Beam: FIB)を用いて試料断面の観察、分析を行っ た。

3. 結果

Fig. 3にアンモニア雰囲気中でFeを腐食した際の試 料の質量変化を示す。その結果0.5%NH₃環境中におい て500℃では0.7 mg cm⁻²と600℃では0.8 mg cm⁻²と低 い値を示したが,腐食温度を上昇させることで,質量 増量は大きくなった。しかし,800℃を超えると,質量 増量は大きくなった。しかし、800℃を超えると,質量 増量は小さくなり、1000℃と1100℃では0.7 mg cm⁻²と なり質量変化は500℃と600℃と同程度になった。一方, 5%NH₃では700℃までは質量増量が上昇するが、700℃ 以上では質量増量は徐々に減少した。また、1000および 1100℃では0.5%NH₃よりも2倍の質量増量となった。こ のように、アンモニア環境では一般的な腐食挙動と異な り温度の上昇に従い質量は増加する挙動を示さなかった。 0.5%NH₃では800℃において4.2 mg cm⁻²および5%NH₃ では700℃において3.4 mg cm⁻²最大値を示し、その後低 下した。

Fig. 4 Time change of hydrogen partial pressure in each atmosphere.

Fig. 5 Time change of oxygen partial pressure in each atmosphere.

Fig. 4に電気炉後段の水素センサーで測定した水素分 圧の結果を示す。0.5%NH₃において水素分圧は500℃で 最も低い値を示した。腐食温度を上昇させることにより 水素分圧は上昇した。昇温過程中では徐々に水素分圧が 上昇する。その後、特定の温度に達すると急激に水素 分圧が上昇した。800℃から1100℃では等温保持過程中, ほぼ同様の値を示した。その時の水素分圧は 10^{-22} atmで あった。一方、5%NH₃では、初期の値が0.5%NH₃より も高い値を示した。昇温過程中の上昇は観察されなかっ た。また、500℃では腐食によって水素分圧が上昇する が、600℃から1100℃ではで同様な値となった。おおよ そ 10^{-15} atmの水素分圧となっており0.5% NH₃よりも大 きな値となった。

Fig. 5に酸素センサーで測定した酸素分圧を示す。 0.5%NH₃においては500℃では酸素分圧は低下しなかっ た。しかし、600℃および1100℃では酸素分圧は低下し た。特に1100℃では10⁻²¹ atmまで酸素分圧は低下する ことが明らかになった。一方、5%NH₃では酸素分圧は

10⁻²³ atmまで低下した。すなわち, 5%NH₃の方が酸化 過程中に酸素分圧が低下する。

Fig. 6に単位時間当たりの発生水素量を積分して算出 した全水素発生量を示す。比較のために試料を炉内に 設置しない場合の水素発生量も示す。試料を腐食しな い場合600℃より水素は発生していることがわかる。す なわち、アンモニアの分解は600℃付近より起こってい ることがわかる。その後、徐々に、上昇し1000℃およ び1100℃では一定の値を示す。これより1000℃および 1100℃ではアンモニアが完全に分解している。曝露時間 は4時間であり、0.5%NH₃を用いた場合、全水素発生量

Fig. 7 Cross-sectional structure after corrosion under each condition.

78

- 32 -

Fig. 8 Schematic diagram of corrosion behavior under each condition.

は計算より36 mLとなる。1000℃および1100℃の水素発 生量は35 mLであるためすべてのアンモニアが本条件で 分解していることが明らかである。しかし,試料を腐食 すると水素発生量は上昇する。これは試料の窒化によっ てアンモニアの分解が加速することに起因する。一方, 5%NH3では完全にアンモニアが分解すると350 mLの水 素が発生する。本実験の1000℃および1100℃では発生水 素量は320 mLであった。したがって,おおよそすべて のアンモニアが分解していることになる。また,試料を 炉内に設置することで急速に水素量は大きくなることが わかった。アンモニアの分解もしくは窒化による水素の 発生が起こっている。

Fig. 7に500℃,600℃,700℃,1000℃および1100℃ で腐食試験した後の断面組織を示す。500℃においては 両試料とも鉄酸化物が生成していた。500℃においては 十分にアンモニアの分解が起こらないためFig. 4に示し ように還元雰囲気にならない。その結果,酸化物が生成 した。一方,600℃においては0.5%NH₃ではアンモニア の分解が起こっても酸素分圧は大きく低下しないため酸 化物が生成した。一方,5%NH₃においては,500℃で は酸化物が生成していたが,600℃になると窒化物が生 成していた。さらに,窒化物中に空隙が観察された。こ の空隙は,水素による酸化物の還元に伴い生成した。

700℃において、0.5%NH₃では酸化物の生成のみが観 察された。しかし、5%NH₃では窒化物の生成と多数の 空隙が純鉄中に観察された。このように,酸化と窒化が 同時に起こる環境においては材料中に多数の空隙が観察 される。

1000℃では0.5%NH₃の酸化物中にFeの粒が観察され た。これは酸化物が水素によって還元されたことに起 因する。一方、5%NH₃では、窒化物が生成していた。 600℃および700℃で観察されたような空隙は観察されな かった。すなわち、酸化物の生成が抑制され、その還元 が起こらなかった。

1100℃において、0.5%NH₃では酸化物および窒化物の 生成は観察されなかった。アンモニアの完全な分解によ り水素が発生し還元雰囲気になった。そのため昇温過程 中に酸化物が生成したが、高温であるため酸化物の還元 が十分に起こった。一方、5%NH₃ではアンモニアの分 解が昇温過程中に起こり還元雰囲気になり酸化物の生成 が起こらない。その結果、窒素ポテンシャルが上昇し窒 化が起こる。

4. 考察

Fig. 8に各条件における腐食機構の模式図を示す。 0.5%NH₃雰囲気において500℃では、アンモニアの分解 が起こらず比較的酸素分圧が高いので鉄酸化物である Fe₃O₄相が生成する。しかし、温度が上昇すると酸素分 圧が低下して還元雰囲気になる。さらに窒素分圧も上昇 すると考えられる。そのため、酸素分圧の低下に伴い酸 化物の還元および残存アンモニによる窒化が起こる。し かし、雰囲気中のアンモニア含有量が少ないため窒化物 層の生成は観察されなかった。さらに温度を上昇させる とアンモニアの分解が加速され還元雰囲気になる。この 時の酸素分圧は1000℃および1100℃では10⁻²⁰ atmまで減 少している。そのため、表面に生成した酸化物が還元さ れ金属粒子が観察された。

一方,5%NH₃では,500℃において0.5%NH₃と同様に 酸化物(Fe₃O₄相)が生成していた。しかし,600℃に なると酸化物の生成は認められず窒化物の生成と酸化物 の還元に伴う空隙が観察された。さらに,高温になると 窒化物層の単層が生成することが明らかになった。この 時の酸素分圧は1000℃および1100℃では10⁻²¹ atm以下ま で減少している。0.5%NH₃よりも酸素分圧が減少し,酸 化物は生成しないで,窒素分圧の増加に伴い窒化物が生 成したと考えられる。以上のことから,雰囲気中に含ま れるアンモニアの量によって腐食挙動が大きく変化する ことが明らかになった。

Fig. 9に熱力学テータを用いて算出したアンモニアの 平衡時の分解量を示す。平衡計算に必要なデータは、米 国国立標準技術研究所のウェブサイトから取得した⁽¹⁹⁾。 アンモニアの分解反応における反応エンタルピー変化 Δ*H*は、500℃において53.38 kJ/molであり、1000℃にお いては55.88 kJ/molであった。すなわち、アンモニアの 分解反応は吸熱反応である。したがって、平衡状態では アンモニアの分解は温度が上昇すると起こることがわ かる。300℃で92.5%のアンモニアが分解し、500℃では 99.5%のアンモニアが分解する。また、700℃では99.9% が分解し、完全に分解することが明らかである。しかし、 本研究では、非平衡状態であり流速を30mLmin⁻¹として いるため、500℃では完全に分解は起こらなかった。そ して、800℃以上で全て分解した。すなわち、アンモニ

Fig. 9 Temperature dependence of ammonia equilibrium conversion.

アの熱分解反応はガスの流速に依存し、その結果、分解 反応が大きく純鉄の腐食挙動に影響を及ぼすことが明ら かになった。

5. 結言

プロトン伝導体を用いた水素センサーによりアンモニ ア雰囲気中におけるFeの高温腐食に及ぼす温度とアン モニア含有量の影響について調査した。以下の結論が得 られた。

- ・0.5%NH₃中において500℃および600℃では質量増量が 小さかったが,温度を上昇させると質量増量が大きく なった。しかし,800℃以上の温度では質量増量は減 少した。
- ・5%NH₃中において500℃では質量増量が小さかった が,温度の上昇に伴い質量増量が大きくなった。しか し,700℃以上では温度の上昇と共に質量増量が小さ くなった。
- ・水素分圧から算出した全発生水素量より、アンモニアの分解と腐食挙動が明らかになった。
- ・断面組織より0.5%NH₃環境では高温で発生水素による 酸化物の還元が起こることがわかった。
- ・5%NH₃環境では高温で窒化物層が表面に生成することが明らかになった。
- ・アンモニア雰囲気中では酸化と窒化およびアンモニアの分解で生じた水素による還元が起こるため詳細に腐食挙動を検討することが必要である。

参考文献

- (1) 環境省「温室効果ガスインベントリ」(2020)
- (2) 飯塚 悟,地球温暖化研究の概要,日本風工学会誌, Vol. 40, No. 4 (2015), pp. 375-379.
- (3) 経済産業省「2050年カーボンニュートラルに伴うグリーン成長戦略」(2020)
- (4) 松原直義,宮元敬範,丹野史郎,宮川 敦,阿部裕也, 横尾 望,金子和樹,高橋大志,中田浩一,水素エンジンにおける異常燃焼の発生メカニズムの解析,自動車技 術会論文集, Vol. 54, No. 1 (2023), pp. 100-105.
- (5) 小林秀昭,早川晃弘,アンモニア燃焼研究の意義とイン パクト,日本燃焼学会誌, Vol. 61, No, 198 (2019), pp. 277-282.
- (6) Ljungdahl, B., Larfeldt, J., Optimised NH₃ injection in CFB boilers, Power Technology, Vol. 120 (2001), pp. 55-62.
- (7) Zijlma, G. J., Jensen, A. D., Johnsson, J. E., van den Bleek,
 C. M., NH₃ oxidation catalysed by calcined limestone a kinetic study, Fuel, Vol. 81 (2002), pp. 1871-1881.
- (8) Lee, G. W., Shon, B. H., Yoo, J. G., Jung, J. H., Oh, K. J., The influence of mixing between NH₃ and NO for a De-NOx reaction in the SNCR process, J. Industirial and Engineering Chemistry, Vol. 14 (2008), pp. 457-467.
- (9) Nguyen, T. D. B., Kang, T. H., Lim, Y. I., Eom, W. H., Kim S. J., Yoo, K. S., Application of urea-based SNCR to a

municipal incinerator: On-site test and CFD simulation, Chemical Engineering Journal, Vol. 152 (2009), pp. 36-43.

- (10) Fu, S., Song, Q., Yao, Q., Mechnism study on the adsorption and reactions of NH₃, NO, and O₂ on the Cao surface in the SNCR deNOx process, Chemical Engineering Journal, Vol. 285 (2016), pp. 137-143.
- (11) Yao, T., Duan, Y., Yang, Z., Li, Y., Wang, L., Zhu, C., Zhou, Q., Zhang, J., She, M., Liu, M., Experimental characterization of enhanced SNCR process with carbonaceous gas additives, Chemosphere, Vol. 177 (2017), pp. 149-156.
- (12) Wei, B., Yang, W., Wang, J., Tan, H., Shou, S., Wang, F., Ma, J., Study on reduction mechanism of Fe₂O₃ by NH₃ under SNCR condition, Fuel, Vol. 255 (2019), pp. 115814.
- (13) Wu, W., Wei, B., Li, G., Chen, L., Wang, J., Ma, J., Study on ammonia gas high temperature corrosion coupled erosion wear characteristics of circulating fluidized bed boiler, Engineering Failure Analysis, Vol. 132 (2022), pp. 105896.
- (14) Fukumoto, M., Kawamori, Y., Sonobe, H., Hara, M. and Kaneko, H., Investigation of High-Temperature Oxidation in Steam for Ni-Al Alloys Using the Combination of a Hydrogen Sensor and an Oxygen Pump-Sensor,

Oxidation of Metals, Vol. 89 (2018), pp. 357-373.

- (15) Fukumoto, M., Kawamori, Y. and Hara, M., Investigation of cyclic oxidation in Ar-H₂O for NiAl containing Hf or Zr by the combination of a hydrogen sensor and an oxygen pump-sensor, Corrosion Science, Vol. 149 (2019), pp. 68-74.
- (16) Fukumoto, M., Nakajima, K. and Kawamori, Y., Investigation of Alumina Formation and Oxidation Rate of Ni-5 wt%Al-X wt %Cr Alloy Using Hydrogen Sensor and Oxygen Pump Sensor, Oxidation of Metals, Vol. 94 (2020), pp. 191-204.
- (17) Fukumoto, M. and Nakajima, K., Effect of Oxygen on Water Vapor Oxidation of Fe by Oxygen Partial Pressure Control Using Gas Sensor, High Temperature Corrosion of Materials, Vol. 99, No. 1-2 (2023), pp. 47-61.
- (18) 福本倫久,原 聖也,高橋弘樹,水素燃料を模擬した環境での水素センサーおよび酸素センサーを用いた純鉄の耐環境性の解析,日本ガスタービン学会誌, Vol. 51, No. 5 (2023), pp. 440-447.
- (19) 米国国立標準技術研究所ウェブサイト, https://www.nist.gov/srd.